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OMICS Publishing Group is an Open Access publication model 
that enables the dissemination of research articles to the global 
community. The special features offered by OMICS Group Journals, 
such as Digital Articles, Audio Version, and Language Translation 
Social networking are of paramount importance to connect worldwide 
researchers within the nanomedical field. Hopefully, the Open Access 
Journal of Biosafety will contribute to improve the public health that 
depends on safety issues yielded from basic and applied research and 
on accurate interpretations made on regulatory guidances. 

Nanotechnology encompasses a broad conjunct of techniques 
aimed to engineer, characterize and make use of structures of 1 
(nanoplates), 2 (nanotubes) or 3 dimensions (nanoparticles) in the 
nanoscale, known as nano-objects. The upper limit of the nanoscale was 
fixed at 100 nm [1], but in the nanopharmaceutical field the nano-scale 
is accepted to rise up to 200-300 nm. Biosynthesized molecules (such as 
hormones, proteins, nucleic acids) and drugs, whose activity depends 
on a primary structure and not on new phenomena derived from its size 
in the nano-scale, do not fit into the definition of nano-object [2]. Also 
the lower limit of the nanoscale was fixed in 1 nm in order to exclude 
atoms [2]. Beyond these constraints, there is no restriction in chemical 
nature of nano-objects. Today, the global market of nanotechnological 
consumer product is gained by non biodegradable and mostly non-
dispersive nano-objects. This is underscored by the raise from 212 to 
1317 products (nearly 521%) between 2006 and 2011 [3]. On the other 
hand, Nanomedicine is the emerging discipline that employs nano-
objects as tools to solve medical problems [4,5]. The volume market of 
Nanomedicine is expected to exceed $160 billion by 2015, according to 
a business report recently launched by the Global Industry Analysts Inc 
[6]. The main technological platform of Nanomedicine is nano-drug 
delivery, accounting for 78 % global sales and 58 % of patent filling 
worldwide [7,8] followed by development of nano-objects for in vitro/in 
vivo diagnosis [9] and tissue engineering [10]. The field is characterized 
by the advent of a different type of nano-objects, inherently dispersive 
or ‘free’. 

A survey of pre-clinical and clinical nanomedical developments 
allows identifying two groups of nano-objects. One group comprises 
nanoparticles made of metals (gold, silver, cupper), metallic oxides 
(titanium, zinc, cerium, iron), ceramics, semiconductors nanocrystals 
known as quantum dots (QD) (cadmiun selenide, cadmium sulphide, 
zinc sulphide, cadmium telluride, indium phosphide, and indium 
arsenide) and carbon-based nanotubes (CNT) and fullerens. These 
nano-objects typically differ from bulk material by manifesting 
changes in at least one of the following features: fluorescence (eg 
QD), color (localized surface plasmon resonance of Au and Ag 
nanoparticles); electronics, thermal and mechanics properties 
(metallicit/semiconducting; specific heat, thermal conductivity and 
thermo power; young modulus of carbon nanotubes), as well as 
chemical reactivity (metallic nanoparticles). Biodegradability is the 
breakdown of a substance catalyzed by enzymes in vitro or in vivo [11]. 
Most of these nano-objects are non-biodegradable, biodurable and / 
or biopersistent. Some of them possess cores that dissolve, releasing 
intrinsically toxic ions when their capping and hydrosoluble envelope 
is destabilized. The second group comprises those prepared by self 
association of drug or lipids, or made of polymers such as poly(esters) 

polylactide, polyglycolide, polycaprolactone; poly(hydroxyalkanoate)
s and their blocks copolymers; poly(ethylene glycol); starch; cellulose 
and chitosan. In this group, the presence of new physical or chemical 
phenomena because of their size in the nano-scale is almost absent. 
Most of them are biodegradable. 

For a given mass of particles, as the diameter of the particles is 
reduced, the number of particles increases exponentially and the 
surface- to-volume ratio increases linearly. Because of this, nano-
objects possess a large surface per unit mass. A typical example are the 
hollow mesoporous silica nanoparticles with an average pore diameter 
of about 2 nm and a surface area of 880 m2/g. Nano-objects of the first 
group such as 10-50 nm diameter nanoparticles and nanotubes of high 
aspect ratio have maximal potential for surface phenomena such as 
redox catalysis and/or to establish attractive interactions. Excluding 
the dendrimers, these phenomena are minimal for the second group of 
nano-objects with sizes between 80-200 nm. 

Nanoparticles possess heterogeneous shape and size. In the 
lower limit of the nano-scale, dendrimers and quantum dots possess 
hydrodynamic diameters in the order of the globular proteins (4-7 
nm). In the opposite side, targeted pegylated liposomes share diameters 
(between 100-200 nm) and structural complexity with virus [12]. In 
fact nano-objects and microorganisms are both particulate matter. 
This is why a number of containment measures for safe handling of 
nano-objects such as the use of HEPA filters, follows the practices of 
classical biosafety. However, biosafety is the discipline addressing the 
safe handling and containment of infectious micro organisms and 
hazardous biological materials, in contained laboratory settings to 
minimize risks to human health and the environment [13]. Its principles 
arose from Microbiology and were launched to impair the penetration 
of infectious/virulent agents across primary/secondary barriers after 
dermal/inhalatory exposition. According to that, infectious agents are 
divided in four risk groups that correlate with four biosafety levels. But 
nano-objects differ from micro organisms in being unable to replicate. 
Nano-objects are neither infectious agents nor fit the definition 
of biohazard. Nonetheless the exposition to certain nano-objects 
can be harmful. Different to classical biohazards, when evaluating 
the harmful effects of nano-objects, data on production method, 
structural features and material biodegradability/biopersistence 
come into play. Besides, their harmful effects has to be evaluated in 
the absence of the quantitative data needed to define an occupational 
exposition level (OEL) [14]. In such cases, the pharmaceutical 
industry assigns biological active entities, such as pharmaceuticals and 
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infectious agents, into one of five occupational hazard bands using 
available toxicological information [15,16]. Similarly, according to 
their anticipated degree of hazard, a “control banding” approach is 
performed for a qualitative risk assessment of nano-objects. In general, 
control banding means a process in which a single control technology 
(such as general ventilation or containment) is applied to one range or 
band of exposures to a chemical (such as 1-10 mg/m3) that falls within a 
given hazard group (such as skin and eye irritants, or severely irritating 
and corrosive) [14,17,18]. The Stoffenmanager Nano (version 1.0) is 
a recently published risk-banding tool developed for employers and 
employees to prioritize health risks occurring as a result of exposure to 
inhaled manufactured nano-objects [19] . 

Undoubtedly scientists, private partners and governments from 
developed countries are leading the current nanomedical I+D+i 
worldwide scenario. In this context, the word nanotechnology often 
exclusively recalls on characteristics from the first group of nano-
objects. However, less familiarized stakeholders from developing 
countries, could find challenging to cope with the welter of 
documentation on safety issues [20]. Moreover, most of the guidelines 
for biosafe handling of nano-objects in occupational settings do not 
reflect the sharp difference between the first and the second groups of 
nano-objects. 

To properly conduct risk assessment on nano-objects, their harmful 
effects on living beings have to be determined [21,22]. Today a number 
of analytical tools can be used to quantify and correlate structural 
features of nano-objects with induced in vitro oxidative stress, type of 
cell death (necrosis/apoptosis), genotoxicity, and intracellular traffic 
[23], as well as pre-clinical studies of pharmacokinetics, biodistribution 
and dose-related toxicity [24]. However, the simple quantification of 
cytotoxicity/toxicity is useless to predict the risk of a non intentional 
exposition in work settings. The ability of nano-objects to penetrate /
damage epithelial barriers of lungs and skin are the in vitro assays to be 
intended in first place for a realistic risk assessment. Remarkably, data 
has to be interpreted according to the following considerations: 

1) The cytotoxicity/toxicity of nano-objects can not be extrapolated 
from toxicity data for the bulk material. Amongst the main differences 
with the bulk phase material, nanoparticles/nanotubes of the first 
group exhibit increased chemical reactivity (solubility, acidity), differ 
in surface chemistry, possess particular core chemistry, and present 
contaminating metals. Such differences become wider as the diameter 
of the nanoparticle falls below the 100 nm. Because of this, not only size 
distribution and shape, but number and exposed area of nano-objects 
per mass or volume, together with data on the features specified above, 
has to be informed to asses the effect of a given dose of the first group 
of nano-objects. On the contrary, doses of the second group of nano-
objects can be suitably assessed on the bases of mass concentration plus 
size distribution. 

2) Cells and nano-objects interact in a unique fashion, illustrated 
by the highly regulated endocytic mechanisms employed by cells to 
recognize and take up nano-objects [25,26]. This is the main reason 
why non-biodegradable but biocompatible (the ability of a material to 
perform with an appropriate host response in a specific application) 
bulk materials can become toxic and non-biocompatible when 
reduced to the nano scale. Bulk material can not be taken up by cells. 
However, if a bulk material is reduced to a 10 µm particle, it could be 
phagocytosed by accessible macrophages; if it is reduced to a particle of 
less than 200-300 nm, the resultant nano-object could be pinocytosed 
by most of the accessible cells. Afterwards, the intracellular pathway 
followed by the nano-object will mostly depend on its size, shape 

and surface nature. The outcome of the intracellular processing will 
depend on its biodegradability and the chemical nature of metabolites, 
leading to different degrees of toxicity. Nano-objects made of material 
containing C-C backbone, such as CNT are not biodegradable. There 
are other nanoparticles that are not biodegradable such as ceramics 
and quantum dots, but CNT are also biopersistent. Biopersistence is 
defined as the ability of a fiber to remain in the lung in spite of the 
lung’s physiological clearance mechanisms. These defense mechanisms 
are a) transportation of entire particles by the mucociliary escalator and 
by alveolar macrophages, b) dissolution of fibers, and c) disintegration 
[27]. Bioerosion is defined as the conversion of a material that is 
insoluble in water into one that is water-soluble [28]. Biodurability 
includes only the removal of fibers from lungs by dissolution and 
disintegration [27]. Note that biodegradable/(bioderodible) and non 
biopersistent nano-objects are not excluded from being highly toxic, 
according to the route of exposition and the dose [4]. 

3) Nano-objects may exhibit potential interference issues with 
standard cytotoxicity assays [29]. For instance dendrimers were 
reported to interfere with endotoxin test (Limulus Amebocyte Lysate) 
causing false positive results [30]. The large surface per unit mass of 
fullerens and CNT is responsible for their high adsorption capacity 
of proteins, and/or of contaminant metals (predominantly Fe, Ni, 
Co). Consequently their effective size, charge and behavior will vary 
according to the set of adsorbed material. Hence, these nano-objects 
could confound cytotoxicity data by inducing indirect effects through 
the adsorption of nutrients and growth factors from culture media. The 
excess surface energy of CNT, metal oxide, and silica nano-objects, 
which is size-dependent, enhances their catalytic activity. Hence, 
redox-active nano-objects such as TiO2, ZnO and single wall CNT 
may cause false signals in assays based on substrate oxidation. Metallic 
nano-objects, QD or nanoshells, can absorb and emit light of different 
wavelengths, and might distort the signal intensity in assays with an 
optical readout, which is the case for most of the commonly used 
cytotoxicity method. Superparamagnetism of Fe2O3 generates strong, 
local magnetic fields which lead to the production of free radicals 
that in turn may interfere with cytotoxicity methods based on redox 
reactions. Metallic nano-objects that dissolve in aqueous solutions, 
will release metal ions or trace metals when introduced into biological 
media. Cytotoxicity assays that are sensitive to metal ions may therefore 
be perturbed in the presence of dissolving nanoparticles. None of 
these interferences are manifested by most of the lipid/polymer based 
biodegradable nano-objects. On the contrary, testing the cytotoxicity 
of metallic/non-biodegradable nano-objects may require of novel 
technologies different from classical MTT production and LDH release 
assays [31].

4) The toxicity of nano-objects depends on the route of exposition. 
Once released into air, nano-objects remain airborne for considerable 
periods of time. By inhalation (the primary exposure route to the 
human body for nano-objects) [32], volatile nanoparticles/nanotubes 
gain access to the deep alveolar epithelium region of the lungs, an 
extremely thin barrier (<0.5 µm) of vast surface area (> 100 m2) 
[33]. Hence in vitro realistic assays for risk assessment would be 
performed on polarized epithelial cell lines, preferably avoiding the 
use of suspension exposures [34]. For instance, triple cell co-culture 
model (human bronquial epithelial cell line 16HBE14o, human blood 
monocyte-derived macrophages and dendritic cells), that mimics the 
airway epithelial barrier is preferred over conventional monocultures 
[35]. In second place, non intended exposition can occur by skin 
contact or swallowing after inhalation and in order to test penetration 
reconstituted tridimensional skin models (such as EpiDerm), or 
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enterocyte-like Caco-2 and mucus-secreting MTX-E12 could be used, 
respectively [36]. 

skin, initiate oxidative stress, and induce redox sensitive transcription 
factors thereby affecting/leading to inflammation. However pristine, 
non-functionalized CNT are biopersistent and exert pronounced 
pathogenic effects in animal models, with induction of oxidative 
stress, inflammation, fibrosis and mutagenic effects. CNT present 
the phenomena of nanopenetration, an energy-independent passive 
process, where the nanotubes diffuse across the cellular membrane 
[56]. Nanopenetration enables the uncontrolled distribution of CNT 
within the body. If inhaled, CNT are not cleared by the mucocilliary 
escalator; only a few will be removed by alveolar macrophages and 
most of them will be taken up by the alveolar epithelium [57]. After 
that, their translocation or displacement to organs distant from the 
point of penetration, can take place. Translocation occurs along weeks 
and months, and it has been reported only for biopersistent material. 
In general inhalation of CNT or of similar biopersistent nano-objects 
of the first group can affect places distant from the respiratory system, 
such as the cardiovascular and/or immune systems, to potentially 
accumulate in the nervous system. In sum, in vitro and pre-clinical 
tests on the first group of nano-objects suggest the appearance of 
health risks in intentional exposition. Their industrial manufacture has 
to be under close security measures regulated by the Toxic Substances 
Control Act (TSCA), enforced by the Environmental Protection 
Agency (EPA). Further exposition is supervised by the Department 
of Labor through the Occupational Safety and Health Administration 
(OSHA), and the National Institute for Occupational Safety and Health 
(NIOSH). NIOSH is the leading federal agency providing guidance and 
conducting research on the occupational safety and health implications 
and applications of nanotechnology in USA. Currently, excepting the 
dendrimers, the second group of nano-objects is not under surveillance 
of TSCA/NIOSH. 

On the other hand, nano-objects from the second group, namely 
nanoparticles and nano-vesicles such as liposomes and niosomes; 
solid lipid nanoparticles, nanocapsules and nanospheres are already 
accepted by the cosmetic industry [58,59]. More importantly, 
these plus plain, targeted, sterically stabilized vesicles, micelles and 
polymeric micelles (co-polymer based micelles, e.g. pluronic F127), 
polymer nanoparticles (chitosan-based), nanocrystals (made of 
sirolimus, aprepitant, fenofibrate, megestrol acetate) are entering the 
pharmaceutical industry to Increase dissolution velocity and saturation 
solubility, to modify bioavailability, pharmacokinetics, biodistribution 
and intracellular traffic of drugs loaded to their structure. Together with 
a good therapeutic/cosmetic performance, biodegradable and poorly 
biopersistent nano-objects of the second group reduce consistently the 
potential harmful in intended expositions. Their scaling up is done on 
the bases on aqueous suspensions. None of them cross primary barriers 
of contention such as splash shields, face protection, gloves, and lab 
coats. When in contact with skin or if inhaled, they remain at the site 
of contact (epithelial barriers) and do not traslocate. Therefore, the 
manufacture and further handling of these nano-objects would not 
pose a threat for workers, excepting if loaded with hazardous (mostly 
anti-neoplasic) drugs. Nonetheless, the absence of risks in the work 
place does not exclude deadly acute toxicities during therapeutic use. 

The reasons why the pharmacy and cosmetic industry have already 
accepted the second group of nano-objects have been outlined here. 
Different to the first one, the second group is under regulation of the 
governmental body Food and Drug Administration (FDA) through 
the Center for Drug Evaluation and Research (CDER), the Center 
for Biologics Evaluation and Research (CBER), and the Center for 
Devices and Radiological Health (CDRH) en EUA. Up to now, current 
advanced pre-clinical and clinical trials [60] suggest that first group of 

On the other hand, it is only after intravenous administration that 
nano-objects come in contact with blood cells and plasma proteins 
[37,38]. In this environment, cells can recognize specific surface features 
of nano-objects, in a manner similar to pathogenic microorganisms. 
This can lead to acute reactivity such as complement activation 
[39,40]. This phenomenon however, can take place after intravenous 
administration at determined dosages but not in occupational settings 
after inhalation or skin contact [41,42]. 

5) The production method and the size/ physical aggregation 
state play a major role when evaluating potential toxicities of nano-
objects [43]. Although nanoparticles are readily collected by HEPA 
filters [17], the most penetrating particle size for respirators equipped 
with commonly used electrostatic filter media remains in the range of 
30–100 nm [43]. Because of this nanoparticles/nanotubes produced 
by techniques involving massive dispersion in the gas phase, or 
nanostructured powders, in volatile liquid formulations and dusty 
dry formulations requires of contention measures to impair their 
inhalation, and in a lesser extent, swallowing or skin contact. For 
instance laser pyrolisis (gas phase) synthesized supermagnetic 
iron oxide nanoparticles (SPION), used as contrast agents for 
magnetic resonance imaging, but are classified as biocompatible and 
biodegradable, showing no severe toxic effects in vitro or in vivo [44]. 
On the other hand, air dispersed, intrinsically toxic and biopersistent 
nano-objects maximize their chances of penetration across epithelial 
barriers in unwanted contact and their potential hazard increases during 
manufacture. Chemical aerosol flow [45] / laser pyrolysis synthesized 
QD, can expose their toxic core after mechanical or physical stress 
destabilization. They can be hazardous during manufacture, but later 
non intended contact with QD is poorly harmful if the commercial 
presentation is dispersed in aqueous buffer. Besides, after skin contact, 
QD are trapped within the stratum corneum, and are removed without 
entering the dermis [46]. On the other hand, CNT can be synthesized by 
electric arc discharge, laser evaporation or chemical vapor deposition. 
CNT are hollow structures, insistently presented as suitable alternative 
to well established drug nano-carriers such as the biodegradable 
nanovesicles of the second group. However, today there is no consensus 
on the CNT toxicity. The absence of data confirming their safety and 
improved therapeutic efficacy over liposomes for instance, hampers 
its full acceptance by the nano-drug delivery field [47,48]. Moreover, 
available data suggests that CNT pose threats for general manipulation 
and non intended exposition. Effectively, unpurified CNTs can 
cross the stratum corneum and after accessing the mice skin dermis, 
cause oxidative stress, depletion of glutathione, increased dermal cell 
number, localized alopecia and skin thickening [49,50]. Once taken up 
by cells, CNT can cause oxidative stress, chronic inflammation, and 
apoptotic death [51]. In general terms, oxidative stress induced by 
exposure to biopersistent nano-objects of the first group may stimulate 
an increase of the cytosolic calcium concentration [52] or may cause 
the translocation of transcription factors (e.g., NF- B) to the nucleus, 
which regulate pro-inflammatory genes, such as TNF-α and iNOS [53]. 
These nano-objects may exert pro inflammatory effects and induce the 
cell’s apoptosis through a reactive oxygen species mediated mechanism, 
often mediated by glutathione depletion [52,54]. Alternatively, 
exceeding oxidative stress may also modify proteins, lipids and nucleic 
acids, which further stimulates the anti-oxidant defense system or 
even leads to cell death [55]. CNT toxicity may be dependent upon 
the metal (particularly iron) content. Metals may interact with the 
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nano-objects is far for being under the regulatory acceptances of the 
drug delivery field [61-64].
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