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a b s t r a c t

A new approach for approximating the continuum wave functions for hydrogenic atoms with Gaussians
basis sets is developed and tested. In this the plane wave is left unchanged and the distorting factor,
represented by the Confluent Hypergeometric function, is expanded as a sum of Spherical Harmonics
multiplied by a series of Gaussians. In this way the number of spherical waves and Gaussians will be
significantly reduced and the plane wave will be responsible for the momentum conservation.

As compared with previous methods that expand the full continuum, including the plane wave, our
strategy does not require a great quantity of partial waves for convergence. Dense oscillations which are
characteristic of the plane wave, are avoided. To test the performance of this approximation to describe a
free-bound atomic form factor, the ionization cross section of hydrogen by impact of protons in first Born
approximation is calculated. Compared with the exact results, a good agreement with just 4 spherical
waves and ten Gaussians each is obtained. The method looks very interesting, especially to speed up
atomic and molecular collision calculations involving the continuum.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Since the seminal work of Boys [1], the use of Gaussian Type
Orbitals (GTOs) to describe atomic and molecular states has
become a fundamental tool in quantum chemistry. It has been
very successful in the calculation of ground as well as excited
states. The greatest advantage of the GTOs over the Slater Type
Orbitals (STOs) is their power to reduce multicenter integrals to a
simple closed form [2–4]. This formidable reduction in computing
time has displaced the STO from the mainstream of computing
codes in Molecular Physics. The difference is still more favorable
when dealing with traveling orbitals, i.e. integrals containing
plane waves exp(ik · r). Thus, when using GTOs, a closed form
for matrix elements integrals can be found; whereas numerical
integrals are required when using STOs. Nevertheless, STOs are
still very important in atomic collision calculations for several
reasons: to properly describe the cusp condition, and to exactly
represent the hydrogenic wave functions, among others. Several
authors [5,6] have expanded the close coupling technique in order
to solve the Schroedinger equation by using the GTO set since the
matrix elements, including translation factors, can be evaluated
analytically.
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Even though there is much published literature on the use of
GTOs in bound states, there is not much work about GTOs in con-
tinuum states. In the seventies, GTOs were used in R-matrix calcu-
lations as basis functions to study elastic collision of electrons with
H2 [7], and in cross sections for charge transfer in proton–hydrogen
collisions at intermediate and high energies [5]. The UK R-Matrix
group [8] based on the early work of Nestmann and Peyerimhoff
[9,10] used the GTOs to represent continuum states. In these arti-
cles the authors optimized the GTO basis set by fitting radial wave
functions (Bessel functions for neutral targets). Later a general pro-
cedure for generating such basis sets for both charged and neutral
systems was developed by Faure et al. [11,12]. The aim of this pro-
cedure is to find the best set of Gaussian exponents that fit the con-
tinuum wave functions within an energy interval. With this set of
exponents, any continuum wave function in that interval can be
adjusted. Thus Tarana and Horacek [13] have calculated electron-
F2 elastic cross sectionswithR-Matrix using a continuumGTObasis
set. They tested the quality of their basis set by solving the R-Matrix
problem for the free particle where the phase shifts are zero.

Ref. [14] refers to another relevant method, which consists
of a diagonalization of the Hamiltonian in a GTO set for a given
set of eigenvalues. The basis obtained should describe the whole
oscillatory behavior of the continuum.

All cited methods approximate the radial continuum functions
using a series of Gaussians. For example, take the expansion of a
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free state represented by a plane wave:

eik·r

(2π)3/2
=


lm

il


2
π
jl(kr)Ym

l (k̂) Y
m∗

l (r̂). (1)

If the GTO set is used to represent the radial function, this
basis would describe the oscillation of the jl(kr) Bessel function.
Considering that one Gaussian function can represent at most one
maximum or one minimum, we would need as many Gaussians as
half-oscillations. If we have high energy electrons, (large values of
k) a large number of Gaussians would be required.

In this article another approach will be used. In general, the
continuum wave function can be written:

ψk(r) =
eik·r

(2π)3/2
D(k, r), (2)

where D(k, r) is the distortion factor introduced by the potential.
The aim of this work is to expand only the distorting factor D(k, r)
in a series of spherical functions of the form

D(k, r) =


l,m

Dl(k, r)Ym
l (k̂) Y

m∗

l (r̂) (3)

and to approximate the radial functions Dl(k, r) by a series of
Gaussians. Thus, the planewave in (2) representing the kinematical
characteristic of the continuum is left intact.

We expect the factor D(k, r) to behave smoothly because the
origin of the strong oscillatory pattern is mainly due to the plane
wave, which is here excluded from the expansion. It is well-known
that the plane waves are not a problem in the calculation of the
integralswhenGaussians are useddue to the fact that a closed form
can be obtained.

In this article the factor D(k, r) for the Coulomb case will
be expanded in Gaussians and the ionization cross section of
hydrogen in the ground 1s-state by impact of protons will be
calculated. This is a typical calculation in atomic collision involving
the continuum. As the exact result is known [15–18] it will be
feasible to examine the possibility of this method to describe
not only integrated cross sections but also singly and doubly
differential cross sections where the lack of precision is more
evident.

In Section 2 the theoretical aspect and the matrix element
calculation using Gaussians are introduced. In Section 3 the exact
calculations are comparedwith the results obtainedwith theGTOs.
Atomic units are used except where indicated.

2. The method

The continuum state of a hydrogenic atom can be expressed as
follows

ψ−

k (r) =
eik·r

(2π)3/2
D−(a, k, r), (4)

where D−(a, k, r) is the Coulomb distortion to the plane wave
due to the Coulomb potential satisfying the ingoing asymptotic
condition

D−(a, k, r) = N(a)1F1(−ia, 1,−i(kr + k · r)), (5)

N(a) = eπa/2Γ (1 + ia) is the so-called Gamow factor a =

Z/k, Z is the Coulomb nuclear charge and 1F1 is the Confluent
Hypergeometric function. Startingwith the integral representation
of 1F1 (Eq. (6.5.1) in Ref. [19]), and after a complex algebraic
calculation which is omitted here, the following expansion is
obtained:

D−(a, k, r) =


lm

D−

l (a, r, k) y
m
l (k̂, r̂), (6)

yml (k̂, r̂) = klYm
l (k̂) r

lYm∗

l (r̂), (7)
and

D−

l (a, r, k) = N(a)4π
Γ (l − ia)(−i)l

Γ (−ia)l!(2l + 1)!!
× 1F1(l − ia, 2l + 2,−2ikr). (8)

The core aim of this method is to approximate D−

l (a, r, k) (real
and imaginary part) with a sum of Gaussians

D−

l (a, r, k) ∼=

S
s

als(k)e−αlsr2 . (9)

The success of this method depends on two assumptions: First,
a rapid convergence with l in Eq. (6) is required. It will be proved
that a good approximationwill be obtainedwith fewpartialwaves;
it will suffice to accurately describe the magnitudes of interest
considering lmax = 8. Second, if D−

l (a, r, k) does not have a strong
oscillatory pattern, the expansion (9) works with a small number
of Gaussians. It is expected that the plane wave, which has been
removed from the expansion,will take awaymost of the oscillatory
patterns of the continuum.

It must be remembered that, in the conventional treatment, the
expansion in partial waves is:

ψ−

k (r) = 4π

lm

il
ul(r)
kr

Ym∗

l (k̂)Y (r̂)

where function ul(r) is real [17]; while this function D−

l (a, r, k)
is complex and both the real and the imaginary parts must be
approximated separately. But this fact is greatly compensated for
by the diminution in the necessary number of Gaussian basis
functions and the reduction of partial waves required.

To find the best parameter set of Eq. (9), strategies similar to the
oneused inRefs. [11,9] are followed. First, a bidimensional grid on k
and r is established. Then a grid of equally spaced values of k so that
kµ = 0.1 + 1.2(µ− 1) a.u. with µ ranging from 1 to 12 is chosen,
together with another set of rν with ν ranging from 1 to 120 in
a constant mesh, so that the range of r-values lie in the interval
[0, 14] a.u. It is assumed that the set of Gaussian coefficients αnl for
a given value of angular momentum holds for all values chosen for
k. In this bidimensional grid the distance function is built

Fl(αl1 · · ·αlS) =


µ


ν


s
alsµe−αlsr2ν − Dlνµ
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−
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

−g
αli

αlj
−
αlj

αli

 , (10)

where for sake of simplicity, it was shortenedDlνµ = D−

l (a, rν, kµ),
and alsµ = als(kµ). The exact values of the Hypergeometric
function included in Dlνµ were evaluated with the Perger et al. [20]
code. The second term in Eq. (10) is added to avoid the convergence
of two different αls in the same value [9]. The strength of this
separation has been set to be g = 20.

The values of kµ here considered cover a wide spectrum
of electron energies, which allows the study of the ionization
of hydrogen atoms for impact energies between few keV to
2 MeV/amu. To obtain the set of αls, Eq. (10) is minimized and the
coefficients alsµ were found by a least-square fit to the set Dlνµ.
Theminimum of Fl(α1 . . . .αN)was obtained by the Powell method
using lnαls as variational parameters [21,11]. A list of αls for the
first eight values of angular momentum for hydrogen (Z = 1)
are given in the Tables 1 and 2 for real and imaginary parts of
the functions, respectively. For other nuclear charges (Z > 1)
the same coefficients with an appropriate scaling can be used. In
atomic units the transformation required is to replace r by r

Z , and
it is due to the scaling symmetry of the Schroedinger equation for
the Coulomb potential [22].
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Fig. 1. Functions D−

l (a, r, k) as a function of r for three values of angular momenta, l = 0, l = 4 and l = 6 and three values of k as indicated. Solid lines: exact results given
by Eq. (7), crosses: our 10-Gaussian approximation given by Eq. (8).
Table 1
Exponents of the continuum basis set αls given by Eq. (8). Real part.

i l = 0 l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8

1 50.14027 5.480120 6.150530 4.104476 2.788807 2.0578627 2.516662 1.166146 1.562035
2 7.052100 3.240182 3.809258 2.741133 1.909801 1.4572600 1.765046 0.842100 1.123037
3 2.025116 1.931101 2.375013 1.854451 1.276196 1.0283147 1.236053 0.592876 0.791875
4 1.082984 1.143770 1.465699 1.252529 0.668160 0.7095468 0.845401 0.379052 0.446408
5 0.278845 0.664955 0.891287 0.839097 0.278582 0.4734297 0.565162 0.246379 0.280483
6 0.149681 0.163297 0.381556 0.554004 0.123669 0.1787970 0.291030 0.166075 0.189987
7 0.081580 0.093433 0.105105 0.231613 0.080425 0.1143517 0.144526 0.111321 0.133231
8 0.045299 0.052503 0.056098 0.071236 0.051125 0.0749643 0.099716 0.072590 0.092780
9 0.009268 0.020868 0.024499 0.041493 0.031927 0.0399839 0.069167 0.045661 0.064255

10 0.000100 0.002373 0.003576 0.010153 0.009945 0.0188267 0.021568 0.011987 0.037582
2.1. Approximate wave functions

With the coefficients obtained, anywave functions ranging near
the k-interval used to calculate the coefficients can be approxi-
mated using a simple least square fit. Fig. 1 plots the exact value
of the real and imaginary part of D−

l (a, r, k) given by Eqs. (8) in
solid lines, along with our approximated values given by the ex-
pansion (9) for three values of angular momenta (l = 0, l = 4 and
l = 6) represented by crosses. In this figure we can observe the
deterioration level of the Gaussian expansion with the angular
momentum. For l = 0 the expansion is very good for the range
of energy considered. For larger values of l the exact value of
D−

l (a, r, k) presents fine oscillations that this 10-Gaussian expan-
sion cannot fully reproduce. Nevertheless, it is still true that for
l = 6, this approximation does not deviate significantly from the
exact values.

Fig. 2 plots the total solution of the wave equation ψ−

k (r) for
the hydrogen for four values of k and ejected electron angles θ
with respect tok. In this last case the series (6) are approximated
with lmax = 8. The agreement is quite good even at small distances
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Table 2
Exponents of the continuum basis set αls given by Eq. (8). Imaginary part.

i l = 0 l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8

1 6.207101 11.81367 4.443446 2.702729 1.799427 1.875402 1.928604 1.202149 1.134437
2 1.791078 2.964620 2.630378 1.765517 1.230155 1.309149 1.346854 0.875973 0.829470
3 0.476867 1.385471 1.548170 1.116467 0.808150 0.883093 0.935386 0.503411 0.592771
4 0.264939 0.815529 0.940160 0.643399 0.451763 0.544773 0.641143 0.246747 0.391066
5 0.147263 0.388077 0.581966 0.242294 0.147394 0.339040 0.430836 0.170105 0.216914
6 0.081249 0.106435 0.223086 0.152682 0.094082 0.104770 0.232519 0.117861 0.149721
7 0.044104 0.053218 0.055032 0.096328 0.060544 0.071043 0.087134 0.080035 0.104061
8 0.023261 0.029464 0.034161 0.059423 0.038126 0.047928 0.059904 0.053185 0.069528
9 0.011612 0.015722 0.020773 0.036466 0.023444 0.031745 0.040492 0.034412 0.045327

10 0.000299 0.008701 1.64 × 10−9 0.008813 0.013295 0.020367 0.015147 0.020911 0.019565
Fig. 2. Real and imaginary part of the continuumwave functionsψ−

k (r) for different values of k and ejected angles cos θ = k ·r as indicated. Solid lines: exact results given
by Eqs. (3) and (4), dots: Gaussian approximation given by Eqs. (3), (5) and (8) with 10 Gaussians and lmax = 8.
where the main contribution to the matrix elements is relevant.
It is then concluded that our strategy to approximate the wave
function is adequate. In the next section, its ability to approximate
the free-bound matrix elements will be considered.

3. Ionization of hydrogen

The first Born approximation for hydrogen ionization by pro-
tons using this Gaussian expansion is calculated. Its transition
matrix element is denoted by

Tik = −
4πZP
q2

Fik(q), (11)
Fik(q) =


drψ−∗

k (r) eiq·rψi(r), (12)

where Fif (q) is the atomic form factor, ZP is the projectile Coulomb
charge and q is the momentum transfer vector. If the continuum
wave function denoted by Eq. (5) and the exact ground state of
hydrogen are used, Eq. (12) has an analytical solution in [15,16].

To exploit this Gaussian scheme, it is required that ψi is also
expanded in Gaussians. When dealing with the 1s-ground state
(i = 1 s), just a six term expansion is used,

ψ1s(r) ∼=

6
t=1

b0t e
−β0t r2 , (13)
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Fig. 3. Total ionization cross section of hydrogen by the impact of protons as a
function of the projectile energy calculated with the first Born approximation. Solid
line: exact calculation. Symbols connected with dotted lines: Gaussian expansion
with lmax = 2 (empty squares), 3 (empty triangles), and 8 (empty circles), as
indicated.

where the coefficients b0t and β0t are found to be

b0t = (0.33741, 0.21597, 0.20636, 0.16089,
0.07044, 0.00892) and

β0t = (7.88373, 1.42466, 0.55364,
0.24547, 0.11424, 0.05347).

The form factor then can be denoted as

F1sk(q) =


lm


s t

b0t als(k)klYl,m(k̂)

×


drr lYl,m(r̂)e−αlsr2 eiQ·re−β0t r2 (14)

withQ = q−k. Due to the rectangular symmetry of the Gaussians,
it is convenient to turn the Spherical Harmonics Yl,m(r̂) into the
Cartesian form using the relation

r lYl,m(r̂) =


(l − m)!
(l + m)!

 1
2

l−m
2

k=0

C1(l,m, k)

×

m
p=0

C2(m, p)
k

i=0

k−i
j=0


k
i

 
k − i
j


× x2(k−i−j)+py2j+m−pz2i+l−2k−m, (15)

C1(l,m, k) =
(−1)k

2l


l
k

 
2l − 2k

l


(l − 2k)!

(l − 2k − m)!
, (16)

C2(m, p) =


m
p


(cos δ + i sin δ), (17)

and δ = (m − p)π/2. In this way the atomic form factor can be
expanded in a sum of three-dimensional integrals, which can be
denoted as a product of three independent integrals (on x, y and z)
of type

eiQxxe−ax2xndx = n!e−
Q2
4a


π

a
in


Q
2a

n

×

n
2

s=0

(−1)s

(n − 2s)!s!


a
Q 2

s

. (18)

The atomic form factor then has a closed form in terms of the
Gaussian set of the continuum, keeping its main characteristic,
which is the plane wave, intact.

3.1. Result

Cross sections for ionization of hydrogen are

σ1s =


dE


dΩ

dσ1s,k
dE dΩ

, (19)

=


dE

dσ1s,k
dE

=


dΩ

dσ1s,k
dΩ

, (20)
Fig. 4. Single differential cross section for ionization of hydrogen as a function of the electron energy calculated in first Born approximation. Solid lines: Exact result. Red
empty circles: Gaussian approximation with lmax = 8. Blue empty squares: Gaussian approximation with lmax = 2. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Double differential cross section for ionization of hydrogen as a function of the electron energy for different ejection angles calculated in first Born approximation.
Solid lines: Exact result. Red empty circles: Gaussian approximation with lmax = 8, and blue empty circles the same with lmax = 2. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
dσ1s,k
dE dΩ

=
(2π)4

v2


dη

T1s,k2 , (21)

where E = k2/2 is the electron energy, Ω is the solid angle
of emission, and η is the bidimensional transversal momentum
transfer.

To begin with, the total cross section is examined. Fig. 3, plots
σ1s as a function of the proton impact energy. As indicated in the
previous section, ten values of αls (see the table), lmax = 2, 3 and
8, 10 Gaussians for each value of k and l (als in Eq. (9)), and 12 val-
ues of k for a Gaussian integration are used. The exact first Born
results [18] using the full hypergeometric functions are indicated
by a solid black line. The agreement between this Gaussian expan-
sion and the exact first Born results is very good. By using a mod-
erate expansion, only lmax = 3, a reasonable result is achieved up
to 1 MeV protons. Even with a short expansion, lmax = 2, a regu-
lar performance at low impact energies is obtained. We can then
extract the following relation between the impact energy and the
lmax; the larger the projectile energy, the larger lmax.
The test can be progressed to explore the single differential
cross section. Fig. 4 shows dσ1s/dE as a function of E for four
different proton impact energies, 100, 250, 500 and 1000 keV.
Results with lmax = 3 are difficult to distinguish from the ones of
lmax = 8. The agreement is very good and reasonable values using
lmax = 2 can be obtained.

The binary cusp is correctly described in every case, and this is
mainly due to the fact that the planewave eik·r in thewave function
ismaintained. Also, by reducing lmax the soft electron energy region
is deteriorated and this region is the one that contributes the most
to the total cross section. That is the origin of the failure of the
simple expansion with lmax = 2 observed in Fig. 3.

The most complex test is the double differential cross section.
Fig. 5 displays dσ1s/dEdΩ as a function of the ejected electron
energy for two escaping angles θ = 0 and 30° and for three
impact energies: 100, 500 and 1000 keV. In this figure a black line
shows the exact result of Ref. [18], and red (blue) empty circles the
Gaussian results with lmax = 8 (lmax = 2). The agreement with the
exact calculation (represented by the black line) is quite good. This
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method is capable of reproducing the binary peak at E ∼ 200 eV
for EP = 100 keV, E ∼ 1050 eV for EP = 500 keV and E ∼ 2100
for EP = 1000 keV, in the forward direction (θ = 0°). The
binary peak is also well-reproduced for the angle of θ = 30°. The
explanation is simple: as the full plane wave in the wave function
ismaintained, themomentumconservation is accurately described
and, consequently, the binary sphere is correctly reproduced. Here
it should be noted that for the correct description of the binary
peak in a conventional (full) partial wave expansion as many as 30
partial waves are necessary for the energies considered here. Not
only is the binary peak region well reproduced but also the soft
peak region where the total cross section is more sensitive. In the
intermediate energies there are some small discrepancies in the
calculations with lmax = 8 and a larger for lmax = 2 for projectile
impacts of 500 and 1000 keV. For lower energies the agreement is
quite good regardless of the lmax considered.

4. Conclusions

In this paper an alternative technique for approximating atomic
continuum wave functions with a Gaussian basis is introduced.
The procedure employed is based on the approximation of the
distorting factor of the wave function (the Hypergeometric for the
Coulomb case) leaving the plane wave intact. Although both, the
real and imaginary parts of the function are approximated, this
method allows the achievement a rapid convergence in partial
waves and also a reduction in the number of Gaussians used to
approximate the Hypergeometric function.

These approximate functions are used to calculate several
cross sections in the ionization of hydrogen in the first Born
approximation. Very good results are achieved when compared
with the exacts ones. The calculation has been adapted in order
to use Cartesian coordinates. These coordinates are much more
suitable for use in quantum chemistry for complex targets such as
molecules or solids [4]. As the hydrogenic target has been used,
D−

l (a, r, k) has a closed-form and the test is direct.
The expansion of these methods to more complex targets is

work still outstanding. Although the methods used have been
applied to the calculation of the hydrogen atom; they can also
be implemented with other atoms containing more electrons, to
do this, approximating the multielectron potential by a central
potential is required. This can be done with several methods such
as the OPM method [23]. In this case the function D−

l (a, r, k)
is obtained by solving a differential equation and approximating
the solutions by Gaussians in the same way as it is done with
the hydrogenic case. Both the Gaussian approximation of the
waves functions and the Cartesian coordinates calculus methods
provide the necessary elements to calculate several cross sections
of more complex targets as molecules in the Born approximation.
The extension of this method to molecular targets is forthcoming
work as well as the expansion of the methods beyond the Born
approximation (i.e. Distorted Wave approximations).
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