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Abstract. In this paper we present an alternative procedure for reducing, in

the Lagrangian formalism, the equations of motion of first order constrained

mechanical systems with symmetry. The procedure involves two principal con-
nections: one of them is used to define the reduced degrees of freedom and the

other one to decompose variations into horizontal and vertical components.

On the one hand, we show that this new procedure is particularly useful when
the configuration space is a trivial principal bundle over the symmetry group,

which is the case of many interesting examples. On the other hand, based on

that procedure, we extend in a natural way the variational reduction meth-
ods to the Lagrangian systems with higher order constraints. Examples are

discussed in order to illustrate the involved theorethical constructions.

1. Introduction. In Reference [7], the Lagrangian reduction of generalized non-
holonomic systems (GNHS) was studied. Let us roughly describe how such a pro-
cedure works.

Let the triple

(L,CK , CV )

be a GNHS1 in the restricted sense of Ref. [7]. Thus, L denotes a Lagrangian
function on a configuration manifold Q, CK ⊂ TQ a submanifold defining kine-
matic constraints, and CV ⊂ TQ a distribution defining constraints in variations
(or equivalently, defining the subspace where constraint forces live). The case of
standard nonholonomic systems is obtained when CK = CV . If dimCV = v, the
equations of motion of the triple are given by the kinematic constraint equations,
defined by CK , together with a system of v second order ordinary differential equa-
tions (ODE), defined by L and CV . In this discussion, we will not take into account
the kinematic constraints, because they can be studied in a completely separated
way.

2000 Mathematics Subject Classification. Primary: 37J05, 70H30; Secondary: 70H50.

Key words and phrases. Lagrangian systems, variational reduction, principal connections.

Sergio Grillo is financially supported by CONICET.
1See [2, 8, 10, 27] for basic definitions and examples.

49

http://dx.doi.org/10.3934/jgm.2012.4.49


50 SERGIO GRILLO AND MARCELA ZUCCALLI

Suppose that the system (L,CK , CV ) is invariant under the action on Q of a Lie
group G, with Lie algebra g, and that

Q→ X = Q/G

is a principal fiber bundle. Then, fixing a principal connection

A : TQ→ g,

the above mentioned system of v second order ODEs, whose unknown is a curve
living inside Q, can be transformed into

• a set of v lower order ODEs whose unknown is a curve inside TX ⊕ g̃: the
reduced equations,2

• and the so-called reconstruction equations, which we will not discuss here.

(As usual, g̃ denotes the associated adjoint bundle.) The connection A is simply
used to identify TQ/G and TX ⊕ g̃ via its related Atiyah isomorphism. In addition,
if we choose A such that

CV = (CV ∩H)⊕ (CV ∩ V) , (1)

being H and V the horizontal and vertical subspaces (defined by A), and writing
vH = dim (CV ∩H) and vV = dim (CV ∩ V), the reduced equations decompose, in
turn, into two parts:

• vH second order ODEs
• plus vV first order ODEs.

They are similar to the equations appearing in Ref. [14] (see also [3]), where
Lagrangian reduction of standard nonholonomic systems was studied. Following
the last reference, such equations were called horizontal and vertical generalized
Lagrange-d’Alembert-Poincaré equations in [7]. They are defined by a function

l : TX ⊕ g̃→ R,

the reduced Lagrangian, the quotient CV /G, the reduced variations, and by the
connection A.

It is worth mentioning that A only depends on CV (and not on CK), because it
is constructed in such a way that variations can be decomposed into independent
horizontal and vertical terms [see Eq. (1)].

One difficulty with this reduction procedure is that, in order to give, for a concrete
system, an explicit expression of its reduced equations, one has to calculate (beside
the curvature B of A) several covariant derivatives of the reduced Lagrangian l, even
when Q → X is a trivial bundle. These calculations use to be too laborious. On
the other hand, this procedure can not be applied to mechanical systems subjected
to more general constraints, as the higher order constrained systems (HOCS) (see
[9] and [10]). The latter are given by triples (L,CK , CV ) where

CK ⊂ T (k)Q and CV ⊂ T (l)Q× TQ

are submanifolds3 such that, for each element ζ ∈ T (l)
q Q, the subset

CV (ζ) ≡ CV ∩ ({ζ} × TqQ) ,

2The order of some of these equations is 1. This is why they are called reduced equations.
One says that the symmetry reduces the order of some equations, i.e. the symmetry enable us to

partially integrate the original system ODEs.
3By T (r)Q we are denoting the r-th order tangent bundle of Q (see [16, 17] for a review).
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naturally identified with a subset of TqQ, is a subspace. Then, by using a connection,
we can not make a decomposition of CV (ζ) into horizontal and vertical parts. We
would need something depending on ζ.

In this paper, we shall consider an alternative procedure for Lagrangian reduction
that uses two connection-like objects instead of only one. One connection is used
to identify TQ/G and TX ⊕ g̃, and the other connection to decompose the reduced
equations into independent horizontal and vertical terms. This allows us:

1. to easily write, for each concrete system where Q→ X is a trivial bundle, an
explicit expression of the reduced equations (also useful in the case of standard
nonholonomic systems);

2. to develop a reduction procedure for HOCSs.

A similar idea has been implemented for the variational reduction of discrete
(generalized) nonholonomic systems (see Ref. [18]), where also two connection-like
objects are used.

It is worth mentioning that we shall restrict ourself to the Lagrangian formalism
only. Another approach to the problem of reducing constrained systems with sym-
metry, but in the symplectic setting of the Hamiltonian formalism, can be found
in Ref [6]. In a forthcoming paper, we shall study the Hamiltonian counterpart of
the variational reduction developed here (extending the results of [12] to HOCSs),
comparing such a variational approach with the symplectic one of Ref. [6].

The organization of the paper is as follows. In Section 2 we recall the usual vari-
ational reduction procedure for holonomic, standard nonholonomic and generalized
nonholonomic systems, and we present the alternative procedure mentioned above.
In Section 3 we study both procedures (the usual and the alternative) on trivial
principal bundles, illustrating how they work on a concrete example. We show (at
least in that example) that the alternative procedure is particularly useful when
trivial bundles are involved, in the sense that the derivation of reduced equations is
much simpler for the alternative procedure than for the usual one. Finally, in Sec-
tion 4, we extend the alternative variational reduction for higher order constrained
systems (HOCS). This drives us to the definition of a connection-like object

A : T (l)Q×Q TQ→ g,

whose properties and related Atiyah-like isomorphism are studied. The case of
trivial bundles is again analyzed carefully. At the end of the section we show how
the procedure works on a particular HOCS.

We assume that the reader is familiar with basic concepts of Differential Geom-
etry (see [4, 25, 29]) as well as the ideas of Lagrangian systems with symmetry in
the context of the Geometric Mechanics (see [1, 28]).

2. Reduction of GNHSs. In this section we shall review the main results of [7]
and then we shall formulate, based on such results, a new reduction procedure for
generalized nonholonomic systems (GNHS).
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2.1. GNHSs with symmetry. Motivated by mechanical systems such as rubber
wheels and certain servomechanisms, where d’Alembert’s principle is typically vio-
lated, it was defined and studied in Refs. [2, 8, 10, 27] a class of dynamical systems
that include the mentioned ones and encode, in our opinion, their main features.
We recall that definition below.

Definition 2.1. Given a manifold Q, let us consider the triples (L,CK , CV ) with

L : TQ→ R, CK , CV ⊂ TQ,
where CK is a submanifold of TQ and CV is a distribution on Q. We shall re-
fer to them as generalized nonholonomic systems (GNHS), with Lagrangian
function L, kinematic constraints CK and variational constraints CV . The el-
ements of CV will be called virtual displacements. We shall say that γ : [t1, t2]→
Q is a trajectory of (L,CK , CV ) if γ′ (t) ∈ CK , and for all infinitesimal variations4

δγ, such that δγ (t) ∈ CV , we have∫ t2

t1

〈dL (γ′ (t)) , κ (δγ′ (t))〉 dt = 0.

By γ′ : [t1, t2]→ TQ we are denoting the velocity of γ, defined as

γ′ (t) =
d

dt
γ (t) = γ∗ (d/dt|t) ∈ Tγ(t)Q;

and by κ the canonical involution κ : TTQ→ TTQ (see [19, 35]).

Remark 1. Triples above presented actually constitute a subclass of those defined
in [8] (identified there as the l = 0 subclass). Here, we choose the above definition
since in this section we are going to focus on such triples only. The rest of the
systems appearing in [8] (the l = 1 subclass) will be studied in the last section of
the paper, within a more general setting: the higher order constrained systems.

For a physical interpretation, applications and examples, see Refs. [8, 10, 21, 27,
30].

Suppose that a Lie group G acts on Q, with (left) action ρ : G×Q→ Q, and let
us consider its lifted action given by

ρ̃ : G× TQ→ TQ : (g, v) 7→ (ρg)∗ (v) .

Definition 2.2. We shall say the triple (L,CK , CV ) is G-invariant if, for all g ∈ G,

a.: L ◦ (ρg)∗ = L,
b.: (ρg)∗ (CK) = CK and (ρg)∗ (CV ) = CV ,

with ρg : Q→ Q : q 7→ ρ (g, q).

A similar definition can be formulated for right actions.

From the canonical projection p : TQ � TQ/G we can define the reduced
Lagrangian l : TQ/G→ R by the formula

l ◦ p = L, (2)

4Recall that, given a curve γ : [t1, t2] → Q, an infinitesimal variation of γ is a curve

δγ : [t1, t2] → TQ satisfying
a.: δγ (t) ∈ Tγ(t)Q, ∀t ∈ [t1, t2];

b.: δγ (t1) , δγ (t2) belongs to the null distribution on Q.
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and the reduced constraints

CK = p (CK) = CK/G and CV = p (CV ) = CV /G. (3)

We shall assume that TQ/G is a manifold and p a submersion.

2.2. Usual variational reduction procedure. The aim of this subsection is to
write the equations of motion of (L,CK , CV ) in terms of the reduced data l, CK
and CV . More precisely, by introducing an appropriate principal connection, we
are going to separate the reduced virtual displacements CV into horizontal and
vertical components, and construct the horizontal and vertical generalized Lagrange–
d’Alembert–Poincaré equations derived in [7].

2.2.1. Generalized nonholonomic connection. From now on, we will write X = Q/G,
and assume that the canonical projection π : Q � X is a principal fiber bundle
with structure group G. In particular, we will assume that ρ is a free action. Let
us denote the vertical distribution by V, that is, V = ker (π∗) ⊂ TQ.5

Now, we shall construct a principal connection related to (L,CK , CV ) and the
group G. We shall proceed in several steps.

1. Fix a G-invariant metric on Q. If L is simple, we can chose the metric which
defines its kinetic term. Let us assume that this is the case.

2. Consider the intersection

S = CV ∩ V, (4)

and write

CV = T ⊕ S and V = S ⊕ U , (5)

where T and U are the orthogonal complements of S in CV and V, respectively.
3. Consider the orthogonal complement of CV + V in TQ. Let us call it R.

Assume that T and R are C∞-distributions.
4. Define the principal connection form A• : TQ→ g (where g the Lie algebra of
G), which we shall call the generalized nonholonomic connection, with
horizontal distribution H• = R⊕ T .

Summing up, we have the Whitney sum

TQ = H• ⊕ V with H• = R⊕ T and V = S ⊕ U . (6)

Remark 2. It is worth mentioning that the generalized nonholonomic connection
is just the nonholonomic connection of Ref. [14], but related to CV instead of
CK . Then, A• only depends on L (since we are assuming that L is simple and
that the chosen metric is the one related to its kinetic term) and the variational
constraints CV only. The kinematic constraints given by CK are not involved in
the construction of the connection A•.

Remark 3. Some sums in (6) are not necessarily orthogonal.

Since

T = CV ∩H•,
it follows from (5) and (4) that

CV = T ⊕ S = (CV ∩H•)⊕ (CV ∩ V) .

5The fact that ρ is free implies that dimV = dimG.
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On the other hand, all the (generalized) distributionsR, S, T and U areG-invariant.
Therefore we can write

TQ/G = R/G⊕ T /G⊕ S/G⊕ U/G,

and in particular [see the first parts of (3) and (5)]

CV = T /G⊕ S/G. (7)

2.2.2. Decomposition of the reduced virtual displacements. Let g̃ = Q ×G g be the
associated adjoint bundle over X = Q/G. The elements of g̃ will be denoted as
equivalence classes [q, η], with q ∈ Q and η ∈ g.

Given a principal connection A (not necessarily the generalized nonholonomic
one A•), we can construct a fiber bundle isomorphism (see Ref. [13])

αA : TQ/G→ TX ⊕ g̃,

known as Atiyah isomorphism, such that, for all q ∈ Q and v ∈ TqQ,

[v] 7→ π∗ (v)⊕ [q, A (v)] .

Here, [v] = p (v) ∈ TQ/G. Denoting by a the map

a : TQ→ g̃ : v 7→ [q, A (v)] , (8)

we have

αA ◦ p (v) = π∗ (v)⊕ a (v) , ∀v ∈ TQ. (9)

Remark 4. Since αA is a linear bundle isomorphism, we have in particular that,
for each q ∈ Q, spaces (TQ/G)π(q) and Tπ(q)X ⊕ g̃π(q) have the same dimension.

Moreover, it can be shown that the map

αA ◦ p : TQ→ TX ⊕ g̃

defines a linear isomorphism when restricted to each TqQ.

When there is no risk of confusion, we shall identify the fiber bundles TQ/G
and TX ⊕ g̃ via the map αA. For instance, we shall see the reduced data CK and
CV as subsets of TX ⊕ g̃, i.e. we shall identify CK and CV with αA ◦ p (CK) and
αA ◦ p (CV ), respectively. If A = A•, in terms of the identification αA• we have

H•/G = αA• (H•/G) = π∗ (H•) = TX

and

V/G = αA• (V/G) = a• (V) = g̃.

As a consequence,

Proposition 1. C•V = αA• ◦ p (CV ) can be decomposed as

C•V = Chor
V ⊕ Cver

V ,

where [see Eq. (7)]

Chor
V = π∗ (CV ) = TX ∩ C•V (10)

and

Cver
V = a• (CV ) = g̃ ∩ C•V . (11)
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2.2.3. The generalized Lagrange–d’Alembert–Poincaré equations. As we have
said at the beginning of this section, we want to find the equations of motion of
a GNHS (L,CK , CV ) in terms of its reduced data l, CK and CV . By definition, a
curve γ : [t1, t2]→ Q is a trajectory of that system only if∫ t2

t1

〈dL (γ′ (t)) , κ (δγ′ (t))〉 dt = 0 (12)

for all δγ such that δγ (t) ∈ CV . Since L = l ◦ p [see (2)], then

〈dL (γ′ (t)) , κ (δγ′ (t))〉 = 〈p∗ (dl) (γ′ (t)) , κ (δγ′ (t))〉

= 〈dl (p (γ′ (t))) , p∗ ◦ κ (δγ′ (t))〉 .

Using the identification of TQ/G and TX ⊕ g̃ given by some αA (again, we are not
assuming at this point that A = A•), let us denote the composition

l ◦ αA : TX ⊕ g̃→ R

simply as l. Then,

〈dL (γ′ (t)) , κ (δγ′ (t))〉 = 〈dl (αA ◦ p (γ′ (t))) , (αA ◦ p)∗ ◦ κ (δγ′ (t))〉 .

Following the notation of [13], given a curve γ and a variation δγ, let us write

π ◦ γ = x, αA ◦ p ◦ γ′ = µ = ẋ⊕ v and αA ◦ p ◦ δγ = δx⊕ η,

where

ẋ = π∗ ◦ γ′, v = a ◦ γ′, δx = π∗ ◦ δγ and η = a ◦ δγ. (13)

In these terms, it was shown in [7] that, omitting dependence on time,

〈dL (γ′) , κ (δγ′)〉 =

〈
∂l

∂x
(µ) , δx

〉
+

〈
∂l

∂ẋ
(µ) ,

D

Dt
δx

〉
(14)

+

〈
∂l

∂v̄
(µ) ,

D

Dt
η + [v, η]− B̃ (ẋ, δx)

〉
,

where

B̃ : TX ×X TX → g̃ : (π∗ (uq) , π∗ (vq)) 7→ [q,B (uq, vq)] (15)

is the reduced curvature of A, B : TQ×Q TQ→ g is its curvature,

∂l

∂ẋ
: TX ⊕ g̃→ T ∗X and

∂l

∂v̄
: TX ⊕ g̃→ g̃∗ (16)

are the first and second components of the fiber derivative

Fl : TX ⊕ g̃→ T ∗X ⊕ g̃∗ (17)

of l, and
∂l

∂x
: TX ⊕ g̃→ T ∗X

is its base derivative (see [13] for more details). It follows from equality (14),
integrating by parts, that (12) holds if and only if〈

− D

Dt

∂l

∂ẋ
+
∂l

∂x
−
〈
∂l

∂v̄
, iẋB̃

〉
, δx

〉
+

〈
− D

Dt

∂l

∂v̄
+ ad∗v̄

∂l

∂v̄
, η̄

〉
= 0. (18)
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Remark 5. So far, we have been working with a left action. For a right action, we
only have to change the sign of the Lie bracket [v, η] appearing in (14). Accordingly,
Eq. (18) translates to〈

− D

Dt

∂l

∂ẋ
+
∂l

∂x
−
〈
∂l

∂v̄
, iẋB̃

〉
, δx

〉
+

〈
− D

Dt

∂l

∂v̄
− ad∗v̄

∂l

∂v̄
, η̄

〉
= 0.

If we now assume that A = A•, using (10), (11) and (13), it follows that, when
δγ (t) varies inside CV |γ(t), reduced variations δx (t) and η̄ (t) vary independently

inside

Chor
V

∣∣
x(t)

and Cver
V |x(t) ,

respectively. This enable us to decompose Eq. (18) into two parts, as we describe
in the next result (see Ref. [7] for a proof).

Theorem 2.3. Let (L,CK , CV ) be a GNHS and G a Lie group acting on Q. Suppose
that the system is G-invariant, π : Q � X = Q/G is a principal fiber bundle and
A• : TQ→ g is the generalized nonholonomic connection of the system. Fix a curve
γ : [t1, t2]→ Q. Then, γ is a trajectory of (L,CK , CV ) if and only if the curve

µ : [t1, t2]→ TX ⊕ g̃,

given by

µ (t) = ẋ (t)⊕ v̄ (t) = αA• ◦ p (γ′ (t)) ,

satisfies

µ (t) ∈ C•K ,

the Horizontal Generalized Lagrange–d’Alembert–Poincaré Equations〈
− D

Dt

∂l

∂ẋ
(µ (t)) +

∂l

∂x
(µ (t))−

〈
∂l

∂v̄
(µ (t)) , iẋ(t)B̃

〉
, δx (t)

〉
= 0 (19)

and Vertical Generalized Lagrange–d’Alembert–Poincaré Equations〈
− D

Dt

∂l

∂v̄
(µ (t)) + ad∗v̄

∂l

∂v̄
(µ (t)) , η̄ (t)

〉
= 0, (20)

for all curves

δx : [t1, t2]→ TX and η̄ : [t1, t2]→ g̃

satisfying

δx (t) ∈ Chor
V

∣∣
x(t)

and η̄ (t) ∈ Cver
V |x(t) .

Remark 6. For a right action (see Remark 5) we simply must change the sign of
ad∗v̄

∂l
∂v̄ in the vertical equation.

Note that, given a concrete mechanical system, in order to find an explicit expres-
sion of the equations (19) and (20), we have to calculate several covariant derivatives
of l (beside calculating the curvature B of A•). This can be very laborious, even in
the case in which Q→ X is a trivial bundle, because the generalized nonholonomic
connection is not, in general, the related trivial principal connection.
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2.3. The alternative procedure. In this subsection we shall develop the first
contribution of this paper: an alternative approach to variational reduction which
solve the above mentioned issue.

Given an arbitrary principal connection A, we have shown in the previous sub-
section that Eq. (12) holds if and only if Eq. (18) does. Moreover, we have the
following result.

Proposition 2. Let (L,CK , CV ) be a GNHS and G a Lie group acting on Q. Sup-
pose that the system is G-invariant and that π : Q � X = Q/G is a princi-
pal fiber bundle. Fix an arbitrary principal connection A : TQ → g and a curve
γ : [t1, t2]→ Q. Then, γ is a trajectory of (L,CK , CV ) if and only if the curve

µ : [t1, t2]→ TX ⊕ g̃,

given by
µ (t) = ẋ (t)⊕ v̄ (t) = αA ◦ p (γ′ (t)) ,

satisfies µ (t) ∈ CK and〈
− D

Dt

∂l

∂ẋ
(µ (t)) +

∂l

∂x
(µ (t))−

〈
∂l

∂v̄
(µ (t)) , iẋ(t)B̃

〉
, δx (t)

〉

+

〈
− D

Dt

∂l

∂v̄
(µ (t)) + ad∗v̄

∂l

∂v̄
(µ (t)) , η̄ (t)

〉
= 0,

(21)

for all curves
δx : [t1, t2]→ TX and η̄ : [t1, t2]→ g̃

satisfying
δx (t)⊕ η̄ (t) ∈ CV |x(t) .

To prove the above proposition, we need the next Lemma, which is a slightly
modification of the Lemma 10 that appears in Ref. [7].

Lemma 2.4. Under the conditions of last proposition, fix an arbitrary principal
connection A : TQ→ g, a curve γ : [t1, t2]→ Q and consider its projection

x : [t1, t2]→ X : t 7→ x (t) = π (γ (t)) .

Given curves δx : [t1, t2]→ TX and η̄ : [t1, t2]→ g̃, we have that

δx (t)⊕ η̄ (t) ∈ CV |x(t) (22)

if and only if there exists a curve δγ : [t1, t2]→ TQ satisfying

π∗ (δγ (t)) = δx (t) and a (δγ (t)) = η̄ (t) , (23)

and such that δγ (t) ∈ CV |γ(t).

Proof. See the proof of Lemma 4.6, for the l = 0 case. �

If Q → X is a trivial bundle, we can take A as the related trivial connection.
Then, the curvature and the reduced curvature are 0, and Eq. (21) reduces to〈

− D

Dt

∂l

∂ẋ
(µ (t)) +

∂l

∂x
(µ (t)) , δx (t)

〉
+

+

〈
− D

Dt

∂l

∂v̄
(µ (t)) + ad∗v̄

∂l

∂v̄
(µ (t)) , η̄ (t)

〉
= 0.
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Also, the involved derivatives are easy to calculate. This will be studied later, in
Section 3. The problem is that variations δx and η̄ are not independent. (We only
know that their sum must be an element of CV .) Let us work on that.

2.3.1. Using two connections. Given a triple (L,CV , CK) with symmetry group G,
let us consider an arbitrary principal connection A and the generalized nonholo-
nomic one A•, with related horizontal spaces H and H• respectively. Consider also
the isomorphisms

αA, αA• : TQ/G→ TX ⊕ g̃,

and write

αA ◦ p (v) = π∗ (v)⊕ a (v) ,

αA• ◦ p (v) = π∗ (v)⊕ a• (v) ,

CV,K = αA ◦ p (CV,K) and C•V,K = αA• ◦ p (CV,K) .

As we saw in Proposition 1, for C•V we have the decomposition

C•V = Chor
V ⊕ Cver

V = (C•V ∩ TX )⊕ (C•V ∩ g̃) .

At this point, in order to avoid any confusion, we need to change the notation
for reduced variations. Given a curve δγ, we shall write

αA ◦ p (δγ (t)) = π∗ (δγ (t))⊕ a (δγ (t)) = δx (t)⊕ η̄ (t) (24)

and

αA• ◦ p (δγ (t)) = π∗ (δγ (t))⊕ a• (δγ (t)) = δx• (t)⊕ η̄• (t) . (25)

Of course, if δγ is inside CV , then

δx (t)⊕ η̄ (t) ∈ CV and δx• (t) ∈ Chor
V , η̄• (t) ∈ Cver

V .

Let us study the relationship between variations δx• and η̄• with variations δx
and η̄. It is clear that δx (t) = δx• (t). From (24) and (25), it easily follows that

δx (t)⊕ η̄ (t) = αA ◦ (αA•)−1 [δx• (t)⊕ η̄• (t)] .

In terms of the canonical projections and inclusions

PTX : TX ⊕ g̃→ TX , Pg̃ : TX ⊕ g̃→ g̃, (26)

and

ITX : TX → TX ⊕ g̃, Ig̃ : g̃→ TX ⊕ g̃, (27)

we have that

δx (t) = PTX ◦αA ◦ (αA•)−1 ◦ ITX (δx• (t)) +PTX ◦αA ◦ (αA•)−1 ◦ Ig̃ (η̄• (t)) (28)

and

η̄ (t) = Pg̃ ◦ αA ◦ (αA•)−1 ◦ ITX (δx• (t)) + Pg̃ ◦ αA ◦ (αA•)−1 ◦ Ig̃ (η̄• (t)) . (29)

Lemma 2.5. For the projections and inclusions given above, we have the identities

PTX ◦ αA ◦ (αA•)−1 ◦ ITX = idTX , PTX ◦ αA ◦ (αA•)−1 ◦ Ig̃ = 0

and

Pg̃ ◦ αA ◦ (αA•)−1 ◦ Ig̃ = idg̃.
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Proof. Given u ∈ TX , if

(αA•)−1 (u⊕ 0) = p (v)

for some v ∈ TQ, then π∗ (v) = u. On the other hand,

αA ◦ p (v) = π∗ (v)⊕ ζ,

i.e. αA ◦ p (v) = u⊕ ζ for some ζ ∈ g̃. Therefore,

PTX ◦ αA ◦ (αA•)−1 ◦ ITX (u) = PTX ◦ αA ◦ (αA•)−1 (u⊕ 0)

= PTX ◦ αA ◦ p (v)

= PTX (u⊕ ζ) = u.

For the second identity, given ζ ∈ g̃, if (αA•)−1 (0⊕ ζ) = p (v) for some v ∈ TQ,
then π∗ (v) = 0, and accordingly

αA ◦ p (v) = π∗ (v)⊕ ξ = 0⊕ ξ

for some ξ ∈ g̃. Consequently,

PTX ◦ αA ◦ (αA•)−1 ◦ Ig̃ (ζ) = PTX ◦ αA ◦ (αA•)−1 (0⊕ ζ)

= PTX ◦ αA ◦ p (v)

= PTX (0⊕ ξ) = 0.

Let us show now the last identity. Given [q, η] ∈ g̃, if

(αA•)−1 (0⊕ [q, η]) = p (vq) ,

then vq = (Xη)q, being Xη the fundamental vector field associated to η. This

implies that

αA ◦ p (vq) = αA ◦ p
(

(Xη)q

)
= 0⊕ [q, η] ,

from which last identity easily follows. �

Using the last lemma and defining

ϕ = Pg̃ ◦ αA ◦ (αA•)−1 ◦ ITX : TX → g̃,

Eqs. (28) and (29) tell us that

δx (t) = δx• (t) and η̄ (t) = ϕ (δx• (t)) + η̄• (t) .

Note that ϕ = 0 when A = A•.

2.3.2. The alternative reduced equations. The above relation enable us to write vari-
ations δx and η̄, appearing in Eq. (21), and such that δx (t)⊕ η̄ (t) ∈ CV , in terms
of independent variations δx• and η̄• living inside Chor

V and Cver
V , respectively. This

gives rise to a new set of variationally reduced equations.
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Theorem 2.6. Let (L,CK , CV ) be a GNHS and G a Lie group acting on Q. Suppose
that the system is G-invariant, π : Q� X = Q/G is a principal fiber bundle and A•

is its generalized nonholonomic connection. Fix an arbitrary principal connection
A and a curve γ : [t1, t2] → Q. Then, γ is a trajectory of (L,CK , CV ) if and only
if the curve

µ : [t1, t2]→ TX ⊕ g̃,

given by

µ (t) = ẋ (t)⊕ v̄ (t) = αA ◦ p (γ′ (t)) ,

satisfies

µ (t) ∈ CK ,〈
− D

Dt

∂l

∂ẋ
(µ (t)) +

∂l

∂x
(µ (t))−

〈
∂l

∂v̄
(µ (t)) , iẋ(t)B̃

〉
, δx• (t)

〉

+

〈
ϕ∗
(
− D

Dt

∂l

∂v̄
(µ (t)) + ad∗v̄

∂l

∂v̄
(µ (t))

)
, δx• (t)

〉
= 0,

(30)

and 〈
− D

Dt

∂l

∂v̄
(µ (t)) + ad∗v̄

∂l

∂v̄
(µ (t)) , η̄• (t)

〉
= 0, (31)

for all curves

δx• : [t1, t2]→ TX and η̄• : [t1, t2]→ g̃

satisfying

δx• (t) ∈ Chor
V

∣∣
x(t)

and η̄• (t) ∈ Cver
V |x(t) .

Remark 7. Note that the variables x, ẋ and v̄, the submanifold CK and the
curvature B are related to A, while the variations δx• and η̄•, and the distributions
Chor
V and Cver

V , are related to A•.

Remark 8. For a right action, recall that we have to change the sign of ad∗v̄
∂l
∂v̄

(Remark 5).

Although the Eqs. (30) and (31) seem to be more complicated than Eqs. (19) and
(20), we shall see in the next section that, for trivial principal bundles, calculations
that drive us to concrete expressions of the equations of motion can be drastically
simplified.

3. The case of trivial bundles. The purpose of the present section is to study
the form that the reduced equations of a GNHS with symmetry G adopt, for the
usual and alternative procedures, in the cases in which the configuration space Q
of the system is a trivial principal bundle with structure group G. At the end of
the section we shall compare, in the context of trivial principal bundles, how both
procedures work on a concrete example.

Notation. Let X be a manifold, G a Lie group, and define Q = X ×G. Consider
the left and right actions

G×Q→ Q : (g, (x, h)) 7→ (x, Lgh) = (x, g h) (32)

and

Q×G→ Q : ((x, h) , g) 7→ (x,Rgh) = (x, h g) . (33)
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They make π : Q → X : (x, h) 7→ x into the left and right trivial principal fiber
bundles with base X and structure group G. For the lifted actions we shall use the
notation

G× TQ→ TQ :
(
g,
(
x, h, ẋ, ḣ

))
7→
(
x, g h, ẋ, g ḣ

)
and

TQ×G→ TQ :
((
x, h, ẋ, ḣ

)
, g
)
7→
(
x, h g, ẋ, ḣ g

)
.

As usual, we shall see h−1 ḣ and ḣ h−1 as elements in the Lie algebra g of G.

3.1. Left actions.

3.1.1. Connections. Given a manifold Q and a Lie group G, with Lie algebra g, re-
call that a principal connection A : TQ→ g, for a principal fiber bundle constructed
with a left action ρ, must satisfy

A
(
(ρg)∗ (v)

)
= Adg (A (v)) , ∀g ∈ G, ∀v ∈ TQ,

and

A (Xη) = η, ∀ η ∈ g,

where Adg : G → G is the adjoint action of g and Xη is the fundamental vector
field of η related to the action ρ.

Suppose that Q = X × G and that the action ρ is given by (32). With above
notation, last equations tell us that

A
(
x, g h, ẋ, g ḣ

)
= Adg

(
A
(
x, h, ẋ, ḣ

))
and

A
(
x, e, 0, h−1 ḣ

)
= h−1 ḣ.

As usual, e denotes the unit element of G. Then,

A
(
x, h, ẋ, ḣ

)
= A (x, h, ẋ, 0) +A

(
x, h, 0, ḣ

)

= Adh (A (x, e, ẋ, 0)) +Adh

(
A
(
x, e, 0, h−1 ḣ

))
= Adh (A (x) ẋ) + ḣ h−1,

where A is a g-valued 1-form on X , i.e. A : X → T ∗X ⊗ g, and it is given by
A (x) ẋ = A (x, e, ẋ, 0). Note that, an element (x, e, ẋ, ξ) is horizontal if and only if

A (x) ẋ+ ξ = 0. (34)

We shall say that the connection A is the trivial one if A (x) = 0 for all x.
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3.1.2. The isomorphism αA and the reduced curvature. For a trivial bundle Q =
X ×G, the left adjoint bundle g̃ can be identified with X × g by the map

g̃→ X × g : [(x, h) , ξ] 7−→ (x,Adh−1ξ) ,

with inverse

(x, ξ) 7−→ [(x, e) , ξ] .

This identification is well-defined because the action of G on Q × g that defines g̃
is given by

(g; ((x, h) , ξ)) 7→ ((x, g h) , Adgξ) .

Using such an identification, αA can be seen as the map αA : TQ/G → TX × g
such that [recall Eq. (9)]

αA ◦ p
(
x, h, ẋ, ḣ

)
= (x, ẋ)⊕

(
x,A (x) ẋ+ h−1 ḣ

)
. (35)

In terms of A, it can be shown that

B ((x, e, ẋ, 0) , (x, e, δx, 0)) = dA ((x, ẋ) , (x, δx))− [A (x) ẋ,A (x) δx] .

Accordingly, from the very definition of B̃ [see (15)], and identifying g̃ and X × g,
we have that

B̃ ((x, ẋ) , (x, δx)) = (x,B ((x, e, ẋ, 0) , (x, e, δx, 0)))

= (x, dA ((x, ẋ) , (x, δx))− [A (x) ẋ,A (x) δx]) . (36)

3.1.3. The usual and alternative reduced equations. Lets go back to Eqs. (30) and
(31), where the horizontal and vertical alternative reduced equations for a GNHS

are given. Recall that all the covariant derivatives and also the curvature B, that
appear in these equations, are related to an arbitrarily given connection A, while
the map ϕ is defined by A and the connection A•. So, the usual reduced equations
are obtained from (30) and (31) by taking A = A•.

For a trivial principal bundle, and under natural identifications, we can replace

∂l

∂v̄
: TX ⊕ g̃→ g̃∗,

which is the second component of the fiber derivative

Fl : TX ⊕ g̃→ T ∗X ⊕ g̃∗

[see (16) and (17)], by a partial derivative in a vector space, and replace the covariant
derivative

D

Dt

∂l

∂v̄

by a standard derivative of a vector with respect to t. Also, we can give a more
concrete expression for the base derivative ∂l/∂x. Let us see how to do that.
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Covariant derivatives on g̃ and its dual. The covariant derivative of a curve on g̃ is
given by

D

Dt
[(x (t) , h (t)) , ξ (t)] =

[
(x (t) , h (t)) , ξ̇ (t)−

[
A
(
x (t) , h (t) , ẋ (t) , ḣ (t)

)
, ξ (t)

]]
.

This defines the usual affine connection ∇A of g̃, related to the principal connection
A. If the curve is of the form [(x (t) , e) , ξ (t)], then

D

Dt
[(x (t) , e) , ξ (t)] =

[
(x (t) , e) , ξ̇ (t)− [A (x (t)) ẋ (t) , ξ (t)]

]
,

and as a consequence, identifying g̃ and X × g as above,

D

Dt
(x (t) , ξ (t)) =

(
x (t) , ξ̇ (t)− [A (x (t)) ẋ (t) , ξ (t)]

)

=
(
x (t) , ξ̇ (t)− adA(x(t)) ẋ(t) ξ (t)

)
. (37)

From that, it easily follows that the covariant derivative of a curve

(x (t) , α (t)) ∈ X × g∗ ' g̃∗

is

D

Dt
(x (t) , α (t)) =

(
x (t) , α̇ (t) + ad∗A(x(t)) ẋ(t) α (t)

)
. (38)

Now, consider ∂l/∂v̄. It takes values inside X × g∗. So, for each point (x, ẋ, ξ),
such a derivative is essentially a partial derivative of l w.r.t. ξ. More precisely,

∂l

∂v̄
(x, ẋ, ξ) =

(
x,
∂l

∂ξ
(x, ẋ, ξ)

)
. (39)

Accordingly, from Eq. (38),

D

Dt

∂l

∂v̄
(x (t) , ẋ (t) , ξ (t)) =

=

(
x (t) ,

d

dt

∂l

∂ξ
(x (t) , ẋ (t) , ξ (t)) + ad∗A(x(t)) ẋ(t)

∂l

∂ξ
(x (t) , ẋ (t) , ξ (t))

)
.

Moreover, seeing
D

Dt

∂l

∂v̄
as an element of g∗, and omitting dependence on

(x (t) , ẋ (t) , ξ (t)),

D

Dt

∂l

∂v̄
=

d

dt

∂l

∂ξ
+ ad∗A(x) ẋ

∂l

∂ξ
. (40)

Let us also say that, using (39), we have that

ad∗v̄
∂l

∂v̄
= ad∗ξ

∂l

∂ξ
. (41)
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Base derivative of l. The base derivative

∂l

∂x
: TX ⊕ g̃→ T ∗X

is defined by an affine connection ∇ on TX ⊕ g̃ given as a sum ∇ = ∇X ⊕∇A, being
∇X an affine connection on X . More precisely6〈

∂l

∂x
(x, y, ξ) , δx

〉
=

d

ds
l (x (s) , y (s) , ξ (s))

∣∣∣∣
s=0

,

with (x (s) , y (s) , ξ (s)) a horizontal curve w.r.t. ∇ such that

(x (0) , y (0) , ξ (0)) = (x, y, ξ) and
d

ds
x (s)

∣∣∣∣
s=0

= δx. (42)

It can be shown that〈
∂l

∂x
(x, y, ξ) , δx

〉
=

〈
∂cl

∂x
(ξ) (x, y) , δx

〉
+

〈
∂l

∂ξ
(x, y, ξ) , adA(x) δx ξ

〉
, (43)

where
∂cl

∂x
(ξ) : TX → T ∗X

is the base derivative of l w.r.t. connection ∇X for ξ fixed. The second term of
(43) can be derived by using the fact that, if (x (s) , y (s) , ξ (s)) is horizontal w.r.t.
∇X ⊕∇A, then [using (37) and (42)]

d

ds
ξ (s)

∣∣∣∣
s=0

=

[
A (x (0))

d

ds
x (s)

∣∣∣∣
s=0

, ξ (0)

]
= [A (x) δx, ξ]

= adA(x) δx ξ.

For brevity, we shall write (43) as〈
∂l

∂x
, δx

〉
=

〈
∂cl

∂x
, δx

〉
+

〈
∂l

∂ξ
, adA(x) δx ξ

〉
. (44)

The map ϕ for the trivial connection. Let us calculate the map ϕ : TX → g̃ when
A is the trivial connection, i.e. when the related 1-form A is the null one. Let us
denote A• the 1-form defining the generalized nonholonomic connection A•. We
shall show that

ϕ (x, ẋ) = (x,−A• (x) ẋ) . (45)

Using the Eq. (35), we know that

αA• ◦ p
(
x, h, ẋ, ḣ

)
= (x, ẋ)⊕

(
x,A• (x) ẋ+ h−1 ḣ

)
and

αA ◦ p
(
x, h, ẋ, ḣ

)
= (x, ẋ)⊕

(
x, h−1 ḣ

)
.

6To indicate an element of TxX , we are writing y instead of ẋ to avoid any possible confusion.



VARIATIONAL REDUCTION OF LAGRANGIAN SYSTEMS 65

In particular,

αA• ◦ p (x, h, ẋ, 0) = (x, ẋ)⊕ (x,A• (x) ẋ) ,

αA• ◦ p
(
x, h, 0, ḣ

)
= 0⊕

(
x, h−1 ḣ

)
,

αA ◦ p (x, h, ẋ, 0) = (x, ẋ)⊕ 0,

and

αA ◦ p
(
x, h, 0, ḣ

)
= 0⊕

(
x, h−1 ḣ

)
.

As a consequence,

α−1
A• ((x, ẋ)⊕ 0) = (αA•)−1 [(x, ẋ)⊕ (x,A• (x) ẋ−A• (x) ẋ)]

= (αA•)−1 [(x, ẋ)⊕ (x,A• (x) ẋ)]

+ (αA•)−1 [0⊕ (x,−A• (x) ẋ)]

= p (x, h, ẋ, 0) + p (x, h, 0,−hA• (x) ẋ) ,

and

αA ◦ (αA•)−1 ((x, ẋ)⊕ 0) = [(x, ẋ)⊕ 0] + [0⊕ (x,−A• (x) ẋ)]

= (x, ẋ)⊕ (x,−A• (x) ẋ) .

Finally, since by definition

ϕ = Pg̃ ◦ αA ◦ (αA•)−1 ◦ ITX ,
and

ITX (x, ẋ) = (x, ẋ)⊕ 0,

we have that

ϕ (x, ẋ) = Pg̃ [(x, ẋ)⊕ (x,−A• (x) ẋ)] = (x,−A• (x) ẋ) ,

as we wanted to show.

In the following we shall write the (usual and alternative) reduced equations in
the general case and in some useful particular situations.
Case 1: General case. Based on above results, the alternative horizontal and vertical
reduced equations for a trivial principal bundle are [using Eqs. (40), (41) and (44)]〈

− D

Dt

∂l

∂ẋ
+
∂cl

∂x
+ ϕ∗

(
− d

dt

∂l

∂ξ
− ad∗A(x) ẋ

∂l

∂ξ
+ ad∗ξ

∂l

∂ξ

)
, δx•

〉
−

−
〈
∂l

∂ξ
, B̃ (ẋ, δx•)− adA(x) δx ξ

〉
= 0

and 〈
− d

dt

∂l

∂ξ
− ad∗A(x) ẋ

∂l

∂ξ
+ ad∗ξ

∂l

∂ξ
, η•
〉

= 0,
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where η• is seen as a curve on g, ϕ as a map ϕ : TX → g, and B̃ is given by Eq.
(36). In the usual case, i.e. A = A• (and accordingly ϕ = 0), the equations have
the form 〈

− D

Dt

∂l

∂ẋ
+
∂cl

∂x
, δx

〉
−
〈
∂l

∂ξ
, B̃ (ẋ, δx)− adA(x) δx ξ

〉
= 0

and 〈
− d

dt

∂l

∂ξ
− ad∗A(x) ẋ

∂l

∂ξ
+ ad∗ξ

∂l

∂ξ
, η

〉
= 0.

Remark 9. In the above expression we are omitting the dot “•”, since we have only
one connection and we do not need to make any distinction (as in Section 2.2.3).

Case 2: Choosing A as the trivial connection. For the alternative procedure, we can
take A = 0, what implies that B̃ = 0. As a consequence, the equations read〈

− D

Dt

∂l

∂ẋ
+
∂cl

∂x
+ ϕ∗

(
− d

dt

∂l

∂ξ
+ ad∗ξ

∂l

∂ξ

)
, δx•

〉
= 0

and 〈
− d

dt

∂l

∂ξ
+ ad∗ξ

∂l

∂ξ
, η•
〉

= 0.

Using in addition the Eq. (45), the horizontal equation can be written〈
− D

Dt

∂l

∂ẋ
+
∂cl

∂x
, δx•

〉
−
〈
− d

dt

∂l

∂ξ
+ ad∗ξ

∂l

∂ξ
,A• (x) δx•

〉
= 0.

This can not be done for the usual procedure, because A• need not to coincide
with the trivial connection.
Case 3: TX is a trivial bundle and A is again the trivial connection. If TX is trivial,
then ∂l/∂ẋ can be seen as a partial derivative in a linear space. In addition, if we
choose ∇X as the trivial affine connection, then

D

Dt

∂l

∂ẋ

is a standard derivative of a vector with respect to t, and ∂cl/∂x is also a standard
partial derivative: ∂l/∂x. That is to say, the reduced equations translate to〈

− d

dt

∂l

∂ẋ
+
∂l

∂x
+ ϕ∗

(
− d

dt

∂l

∂ξ
+ ad∗ξ

∂l

∂ξ

)
, δx•

〉
= 0, (46)

or using Eq. (51)〈
− d

dt

∂l

∂ẋ
+
∂l

∂x
, δx•

〉
−
〈
− d

dt

∂l

∂ξ
+ ad∗ξ

∂l

∂ξ
,A• (x) δx•

〉
= 0, (47)

and 〈
− d

dt

∂l

∂ξ
+ ad∗ξ

∂l

∂ξ
, η•
〉

= 0 (48)

in the alternative case, and to〈
− d

dt

∂l

∂ẋ
+
∂l

∂x
, δx

〉
−
〈
∂l

∂ξ
, B̃ (ẋ, δx)− adA(x) δx ξ

〉
= 0 (49)

and 〈
− d

dt

∂l

∂ξ
− ad∗A(x) ẋ

∂l

∂ξ
+ ad∗ξ

∂l

∂ξ
, η

〉
= 0 (50)

in the usual one (see Remark 9 for notation).
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3.2. Right actions. Let us reproduce the results of the last subsection for the case
of right actions. If we have again a manifold Q and a Lie group G, with Lie algebra
g, a principal connection A : TQ → g related to a right action ρ of G on Q must
satisfy

A
(
(ρg)∗ (v)

)
= Adg−1 (A (v)) , ∀g ∈ G, ∀v ∈ TQ,

and

A (Xη) = η, ∀ η ∈ g.

If Q = X ×G and ρ is given by (33), using the notation presented at the beginning
of the section, last equations say that

A
(
x, h g, ẋ, ḣ g

)
= Adg−1

(
A
(
x, h, ẋ, ḣ

))
and

A
(
x, e, 0, h−1 ḣ

)
= h−1 ḣ.

Then,

A
(
x, h, ẋ, ḣ

)
= Adh−1 (A (x) ẋ) + h−1 ḣ,

where, as for the left action (32), A is a g-valued 1-form on X such that A (x) ẋ =
A (x, e, ẋ, 0). Again, we shall say that the connection A is the trivial one if A = 0.

Now, we shall list, without proof, the results obtained in the previous section,
but for the right action (33).

• Since the action of G on Q× g defining the right adjoint bundle g̃ is

(((x, h) , ξ) , g) 7→
(
(x, h g) , Adg−1ξ

)
,

the identification between g̃ and X × g is now given by

g̃→ X × g : [(x, h) , ξ] 7−→ (x,Adhξ) ,

with inverse

(x, ξ) 7−→ [(x, e) , ξ] .

• Identifying g̃ and X × g, the map αA is defined by [compare to (35)]

αA ◦ p
(
x, h, ẋ, ḣ

)
= (x, ẋ)⊕

(
x,A (x) ẋ+ ḣ h−1

)
,

and the reduced curvature B̃ by [compare to (36)]

B̃ ((x, ẋ) , (x, δx)) = (x, dA ((x, ẋ) , (x, δx)) + [A (x) ẋ,A (x) δx]) .

• The covariant derivative D
Dt

∂l
∂v̄ [see (40)] is given by

D

Dt

∂l

∂v̄
=

d

dt

∂l

∂ξ
− ad∗A(x) ẋ

∂l

∂ξ
,

and ∂l
∂x by [compare to (44)]〈

∂l

∂x
, δx

〉
=

〈
∂cl

∂x
, δx

〉
−
〈
∂l

∂ξ
, adA(x) δx ξ

〉
.

• The map ϕ, when A is the trivial connection, again satisfies the identity

ϕ (x, ẋ) = (x,−A• (x) ẋ) . (51)



68 SERGIO GRILLO AND MARCELA ZUCCALLI

• Using above results, taking A as the trivial connection and assuming that TX
is trivial (i.e. the Case 3 of the last subsection), the reduced equations are,
in essence, (47) and (48) for the alternative procedure, and (49) and (50) for
the usual one, but changing the signs of

ad∗ξ
∂l

∂ξ
, ad∗A(x) ẋ

∂l

∂ξ
and adA(x) δx ξ.

(Recall Remark 5.)

3.3. Ball rolling on a plane. Let us compare how the usual and the alternative
procedures work. To do that, it is enough to consider a standard nonholonomic
system, as a ball rolling on a horizontal plane. The configuration space of the
system is Q = R2 × SO (3). We shall denote (a, R) its points. The Lagrangian is

L
(
a, R, ȧ, Ṙ

)
= −1

4
I tr

[(
Ṙ R−1

)2
]

+
1

2
m ȧ2,

where I and m are the moment of inertia w.r.t. the center of gravity and the mass
of the ball, respectively. The rolling constraints are

ȧ = r ṘR−1E3,

with r the radius of the ball and E3 = (0, 0, 1). These are the kinematic con-
straints. Since we are dealing with a standard nonholonomic system, the variational
constraints coincide with the kinematic ones, i.e. they are given by

δa = r δRR−1E3.

Note that we are identifying the vectors of the form (x, y, 0) ∈ R3 with vectors of
R2. It is easy to see that the group G = SO (3) and the right action

ρ : Q×G→ Q : ((a, R) ,M) 7−→ (a, RM) (52)

define a symmetry for the system. Regarding this action, the manifold Q and the
Lie group G define a trivial fiber bundle with base X = R2. As a consequence, we
have the identification

g̃ = s̃o (3) = X × so (3) = R2 × so (3) .

We shall also write

TX = R2 × R2.

If we take A as the trivial connection, i.e.

A
(
a, R, ȧ, Ṙ

)
= R−1 Ṙ,

then we are in the Case 3 (see the end of Section 3.1.3) for a right action. Let us
write the reduced equations of the system for both the alternative and the usual
procedures.

The generalized nonholonomic connection, which in this case it is just a nonholo-
nomic connection, is given by (see [11])

A•
(
a, R, ȧ, Ṙ

)
= R−1 Ṙ− 1

r
R−1

[
Ê3, ˆ̇a

]
R,

where we are using the map

ˆ: R3 → so (3) (53)
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such that

x =
(
x1,x2,x3

)
7−→ x̂ =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 .
It can be shown that

x̂× y = [x̂, ŷ], x̂y = x× y, R̂x = Rx̂R−1, 〈x,y〉 = −1

2
tr (x̂ŷ) ,

∀x, y ∈ R3, R ∈ SO (3). The symbols × and 〈·, ·〉 indicate the cross product and
the euclidean inner product in R3 respectively.

The isomorphisms

αA, αA• :
TQ

G
→ R2 × R2 × so (3)

are given by

αA ◦ p
(
a, R, ȧ, Ṙ

)
=
(
a, ȧ, Ṙ R−1

)
and

αA• ◦ p
(
a, R, ȧ, Ṙ

)
=

(
a, ȧ, Ṙ R−1 − 1

r

[
Ê3, ˆ̇a

])
.

Identifying R3 and so (3) through (53) , A• is given by

A• (a) ȧ = −1

r
E3 × ȧ.

Thus

ϕ : R2 × R2 → R2 × so (3) : (a, ȧ) 7−→
(

a,
1

r
E3 × ȧ

)
.

On the other hand, identifying Rn and its dual (for n = 2, 3),

ϕ∗ : R2 × so (3)→ R2 × R2 : (a, ξ) 7−→
(

a,
1

r
ξ ×E3

)
. (54)

The reduced Lagrangian related to A is

l (a, ȧ, ξ) =
1

2
I 〈ξ, ξ〉+

1

2
m ȧ2,

too much simpler than that related to A•:

l (a, ȧ, ξ) =
1

2
I

〈
ξ +

1

r
E3 × ȧ, ξ +

1

r
E3 × ȧ

〉
+

1

2
m ȧ2.

In order to emphasize the presence of different connections, we are going to write
the last Lagrangian as

l• (a, ȧ, ξ•) =
1

2
I

〈
ξ• +

1

r
E3 × ȧ, ξ• +

1

r
E3 × ȧ

〉
+

1

2
m ȧ2.

The relationship between ξ and ξ• is given by

ξ• = ξ − 1

r
E3 × ȧ.

The partial derivatives of these Lagrangians are

∂l

∂a
=
∂l•

∂a
= 0,
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∂l

∂ȧ
= m ȧ,

∂l•

∂ȧ
=

(
m+

I

r2

)
ȧ +

I

r
ξ• ×E3,

∂l

∂ξ
= I ξ,

∂l•

∂ξ•
= I ξ• +

I

r
E3 × ȧ.

The reduced curvature of A is 0 and that of A• is

B̃• (a) (ȧ, δa) =

(
a,

1

r2
ȧ× δa

)
.

The horizontal and vertical reduced variations, w.r.t. to A•, live inside

C•V ∩ TX = R2 and C•V ∩ g̃ = 〈E3〉 ,

respectively.

According to the results of the last Section, the reduced equations (30) and (31)
corresponding to the alternative procedure, for connections A and A•, are

− d

dt

∂l

∂ȧ
+
∂l

∂a
+ ϕ∗

(
− d

dt

∂l

∂ξ
+
∂l

∂ξ
× ξ
)

= 0

and 〈
− d

dt

∂l

∂ξ
+
∂l

∂ξ
× ξ,E3

〉
= 0.

Using the above expressions for the partial derivatives of l we have

− d

dt

∂l

∂ȧ
+
∂l

∂a
= −m ä

and

− d

dt

∂l

∂ξ
+
∂l

∂ξ
× ξ = −I ξ̇.

And using the expression for ϕ∗ given in (54), we arrive at the equations

m ä +
I

r
ξ̇ ×E3 = 0 (55)

and 〈
ξ̇,E3

〉
= 0. (56)

The reduced constraint equations say

ξ ×E3 =
1

r
ȧ, (57)

what is equivalent to

ξ = λE3 +
1

r
E3 × ȧ, (58)

where λ is a new variable. Combining (55)-(58) it follows that

ä = 0, λ̇ = 0.
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Now, let us write the Equations (19) and (20) corresponding to the usual proce-
dure, using the connection A•. Again, according to the results of the last Section,
such equations are

− d

dt

∂l•

∂ȧ
+
∂l•

∂a
= p

(
1

r2

∂l•

∂ξ•
× ȧ

)
− 1

r

(
ξ• × ∂l•

∂ξ•

)
×E3

and 〈
− d

dt

∂l•

∂ξ•
+
∂l•

∂ξ•
×
(
ξ• +

1

r
E3 × ȧ

)
,E3

〉
= 0,

where p : R3 → R2 is the projection (x, y, z) 7→ (x, y). On the one hand,

− d

dt

∂l•

∂ȧ
+
∂l•

∂a
= −

(
m+

I

r2

)
ä−I

r
ξ̇• ×E3

and

− d

dt

∂l•

∂ξ•
+
∂l•

∂ξ•
×
(
ξ• +

1

r
E3 × ȧ

)
= −I ξ̇• − I

r
E3 × ä,

where we have used that
∂l•

∂ξ•
= I ξ• +

I

r
E3 × ȧ.

On the other hand,

1

r2

∂l•

∂ξ•
× ȧ =

(
I

r2
ξ• +

I

r3
E3 × ȧ

)
× ȧ

=
I

r2
ξ• × ȧ+

I

r3
(E3 × ȧ)× ȧ.

Accordingly,

p

(
∂l•

∂ξ•
× ȧ

)
= p (ξ• × ȧ) ,

and
1

r

(
ξ• × ∂l•

∂ξ•

)
×E3 =

I

r2
(ξ• × (E3 × ȧ))×E3.

With all that, we arrive at the equations

−
(
m+

I

r2

)
ä−I

r
ξ̇• ×E3 =

I

r2
[p ( ξ• × ȧ)− (ξ• × (E3 × ȧ))×E3]

and 〈
ξ̇•,E3

〉
= 0.

They are clearly more complicated than (55) and (56), and they were harder to be
derived. Working out a little bit the right member of the first equation, we have

(ξ• × (E3 × ȧ))×E3 = (E3 × ȧ) 〈ξ•,E3〉 = 〈ξ•,E3〉 E3 × ȧ.

Also, writing ξ• = 〈ξ•,E3〉 E3 + ξ•⊥,

p ( ξ• × ȧ) = p [〈ξ•,E3〉 E3 × ȧ + ξ•⊥ × ȧ] = 〈ξ•,E3〉 E3 × ȧ,

since 〈ξ•,E3〉 E3 × ȧ lives in the horizontal plane and ξ•⊥ × ȧ lives in the vertical
axis. This transforms the equations into(

m+
I

r2

)
ä +

I

r
ξ̇• ×E3 = 0 and

〈
ξ̇•,E3

〉
= 0,
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which coincides with (55) and (56) when we make the change of variables

ξ• = ξ − 1

r
E3 × ȧ,

as it must be. Imposing the rolling constraint, which says that

ξ• = λE3,

we finally arrive at the equations

ä = 0, λ̇ = 0.

4. Reduction of HOCSs. The aim of this section is to extend the results of the
Section 2, for GNHSs, to the case of higher order constrained systems (HOCSs).
So, in the first place, we shall recall the definition of HOCSs as presented in Ref.
[8], then, given a Lie group G, we shall say what we mean by a G-invariant HOCS,
and finally we shall develop for the later a reduction procedure that generalize that
presented in Section 2.3. At the end of the section, a simple example will be studied.

To do all that, we need to introduce some basic concepts and notation on higher
order tangent bundles.

4.1. Bundles T (k)Q. For k ≥ 0, let us denote by T (k)Q the k-th order tangent

bundle of Q [17, 16], given by a fiber bundle τ
(k)
Q : T (k)Q � Q such that, for each

q ∈ Q, the fiber T
(k)
q Q is a set of equivalence classes [γ]

(k)
of curves γ : (−ε, ε)→ Q

satisfying γ (0) = q. The equivalence relation says that γ1 v γ2 iff, for every chart
(U,ϕ) containing q, the equations

ds

dts

∣∣∣∣
t=0

(ϕ ◦ γ1) =
ds

dts

∣∣∣∣
t=0

(ϕ ◦ γ2) , for s = 0, ..., k,

are fulfilled. Of course, T (0)Q = Q and T (1)Q = TQ. Accordingly, τ
(0)
Q = idQ (the

identity map) and τ
(1)
Q = τQ (the canonical projection of TQ onto Q).

Given a curve γ : [t1, t2]→ Q, its k-lift is the curve

γ(k) : (t1, t2)→ T (k)Q : t 7→ [γt]
(k)
,

being γt : (−εt, εt)→ Q such that

γt (s) = γ (s+ t) and εt = min {t− t1, t2 − t} .

The 1-lift of γ is precisely its velocity γ′ : (t1, t2)→ TQ.

Consider now a map f : N →M . Its k-lift

f (k) : T (k)N → T (k)M

is given by

f (k)
(

[γ]
(k)
)

= [f ◦ γ]
(k)
.

Of course, f (1) = f∗.
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4.2. HOCS with symmetry.

Definition 4.1. Given a manifold Q, let us consider the triples (L,CK , CV ) with

L : TQ→ R, CK ⊂ T (k)Q, CV ⊂ T (l)Q×Q TQ,
with k, l ≥ 0, being CK a submanifold and CV such that, for every q ∈ Q and

ζ ∈ T (l)
q Q, the subset

CV (ζ) = CV ∩ ({ζ} × TqQ) ⊂ {ζ} × TqQ,
seen as a subset of TqQ, is void or a linear subspace. We shall refer to them
as Lagrangian systems with higher order constraints, or simply, higher
order constrained systems (HOCS), with Lagrangian function L, kinematic
constraints CK and variational constraints CV , whose elements will be called
virtual displacements; and we shall say that γ : [t1, t2] → Q is a trajectory of
(L,CK , CV ) if:

1. γ(k) (t) ∈ CK , ∀ t ∈ (t1, t2);
2. for all variations δγ such that

(
γ(l) (t) , δγ (t)

)
∈ CV , ∀ t ∈ (t1, t2), we have∫ t2

t1

〈dL (γ′ (t)) , κ (δγ′ (t))〉 dt = 0. (59)

For each q ∈ Q and ζ ∈ T (l)
q Q, consider the annihilator

FV (ζ) = (CV (ζ))
o ⊂ T ∗qQ,

whenever CV (ζ) is non void. Such subspaces give rise to a subset FV ⊂ T (l)Q×Q
T ∗Q that we shall call the space of constraint forces.

For physical interpretation and applications, see [9, 10, 21, 22, 23, 24, 31].

Definition 4.2. Let (L,CK , CV ) be a HOCS. Suppose a group G acts on Q, with
action ρ : G×Q→ Q, in such a way that

a.: L ◦ (ρg)∗ = L,

b.: ρ
(k)
g (CK) = CK ,

c.: for each q ∈ Q and ζ ∈ T (l)
q Q

(ρg)∗ (CV (ζ)) = CV

(
ρ(l)
g (ζ)

)
,

for all g ∈ G, with ρg : Q→ Q : q 7→ ρ (g, q).

In such a case, we shall say (L,CK , CV ) is a G-invariant triple.

Consider the canonical projections

pn : T (n)Q� T (n)Q
/
G

related to actions

ρn : G× T (n)Q→ T (n)Q : (g, ζ) 7→ ρ(n)
g (ζ) .

For n = 1 we shall write p1 = p. In terms of them we can define the reduced
Lagrangian l : TQ/G→ R by the formula

l ◦ p = L, (60)

and the reduced constraints CK ⊂ T (k)Q
/
G as

CK = pk (CK) = CK/G
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and

CV ⊂ T (l)Q
/
G×Q/G TQ/G

through the subspaces

CV (pl (ζ)) = p (CV (ζ)) = CV (ζ) /G. (61)

We shall assume that all quotients are manifolds and related projections are sur-
jective submersions. In the following, we shall write an analogue of the Lagrange-
d’Alembert-Poincaré (LDP) equations for the triple (L,CK , CV ), in terms of the
reduced data l, CK and CV . As for the alternative reduction developed in the pre-
vious sections, we shall use two connection-like objects: one of them (a genuine
principal connection) will be used to defined the reduced coordinates; the other
object will be used to decompose the variations into horizontal and vertical compo-
nents.

4.3. A reduction procedure. Let us consider a G-invariant HOCS (L,CK , CV )
with configuration space Q. Again, we will write X = Q/G, and assume that the
canonical projection π : Q � X is a principal fiber bundle with structure group
G. Following the same reasoning as in the Section 2.3, and fixing an arbitrary
principal connection A, it can be shown that a curve γ : [t1, t2]→ Q is a trajectory
of (L,CK , CV ) if and only if

pk

(
γ(k) (t)

)
∈ CK

and the curve µ : [t1, t2]→ TX ⊕ g̃, given by

µ (t) = ẋ (t)⊕ v̄ (t) = αA ◦ p (γ′ (t)) ,

satisfies 〈
− D

Dt

∂l

∂ẋ
(µ (t)) +

∂l

∂x
(µ (t))−

〈
∂l

∂v̄
(µ (t)) , iẋ(t)B̃

〉
, δx (t)

〉

+

〈
− D

Dt

∂l

∂v̄
(µ (t)) + ad∗v̄

∂l

∂v̄
(µ (t)) , η̄ (t)

〉
= 0,

(62)

for all curves
δx : [t1, t2]→ TX and η̄ : [t1, t2]→ g̃

such that
δx (t)⊕ η̄ (t) ∈ CV

(
pl
(
γl (t)

))
.

We want to decompose the Eqs. (62) into horizontal and vertical parts. In order to
do that we need to decompose each subspace CV

(
pl
(
γl (t)

))
. Since these subspaces

depend not only on x ∈ X but on the points of
(
T (l)Q

/
G
)
x
, a standard connection

it is not useful in this case. We need a more general object.

4.3.1. The l-connections.

Definition 4.3. Given l ∈ N∪{0}, an l−connection on the principal fiber bundle
π : Q� X is a map

A : T (l)Q×Q TQ→ g

such that, ∀ q ∈ Q and ∀ ζ ∈ T (l)
q Q, it is a linear transformation when restricted to

{ζ} × TqQ, and ∀ v ∈ TqQ, ∀ g ∈ G and ∀ η ∈ g

A (ζ,Xη (q)) = η and A
(
ρ(l)
g (ζ) , ρg∗ (v)

)
= Adg [A (ζ, v)] . (63)
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Remark 10. Note that, when l = 0, and identifying Q×Q TQ with TQ, we have
a genuine principal connection.

The following proposition is easy to prove.

Proposition 3. Giving an l-connection is the same as giving an assignment of a

linear subspace H(ζ) ⊂ TqQ to each q ∈ Q and ζ ∈ T (l)
q Q, such that

• TqQ = H (ζ)⊕ V (ζ), where V (ζ) = Vq: the vertical subspace at q;

• H
(
ρ

(l)
g (ζ)

)
= (ρg)∗ [H (ζ)], ∀ g ∈ G;

• and the subspaces H (ζ), which we shall call horizontal subspaces, depend
differentiably on q and ζ.

Given A, the horizontal spaces H (ζ) are defined by equality

H (ζ) = {v ∈ TqQ : A (ζ, v) = 0} ,
and given horizontal spaces H (ζ), the l-connection A is defined by the formula

A (ζ, v) = η,

where v −Xη (q) ∈ H (ζ).

Related to an l-connection we have a map

αA : T (l)Q
/
G×X TQ/G→ TX ⊕ g̃, (64)

similar to the Atiyah isomorphism of a principal connection, defined in the following
way:

1. Take a class of T (l)Q
/
G and a class of TQ/G, both of them based on the

same point x ∈ X .
2. Consider representatives ζ ∈ T (l)Q and v ∈ TQ of each one of these classes,

based on the same point q ∈ Q such that π (q) = x (this is always possible).
3. Define αA on the classes given in 1 as π∗ (v)⊕ [q, A (ζ, v)], i.e.

αA ([ζ] , [v]) = π∗ (v)⊕ [q, A (ζ, v)] .

It is well-defined because, if ζ ′ and v′ are representatives satisfying 2, based on a

point q′, then there exists (only one) g ∈ G such that ζ ′ = ρ
(l)
g (ζ) and v′ = ρg∗ (v):

the unique element g of G such that q′ = ρg (q). (Recall that action ρ is free.)
Accordingly, from the second part of (63),

αA ([ζ ′] , [v′]) = αA ([ζ] , [v]) .

We are writing, as usual, [ζ] = pl (ζ) and [v] = p (v).

Denoting by a the map

a : T (l)Q×Q TQ→ g̃ : (ζ, v) 7→ [q, A (ζ, v)] ,

we have

αA ([ζ] , [v]) = π∗ (v)⊕ a (ζ, v) , ∀ v ∈ TQ.

For each ζ ∈ T (l)
q Q, it can be shown that

α
[ζ]
A : (TQ/G)π(q) → Tπ(q)X ⊕ g̃π(q) (65)

: [v] 7→ αA ([ζ] , [v]) = π∗ (v)⊕ a (ζ, v)
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defines a linear isomorphism. In fact, spaces (TQ/G)π(q) and Tπ(q)X ⊕ g̃π(q) have

the same dimension (see Remark 4), and

π∗ (v)⊕ a (ζ, v) = 0

if and only if v ∈ Vq ∩H (ζ) = {0}, what ensure that α
[ζ]
A ◦ p is injective. Then, α

[ζ]
A

is injective and, as a consequence, a linear isomorphism.
From the last discussion it also follows that

α
[ζ]
A ◦ p : TqQ→ Tπ(q)X ⊕ g̃π(q)

defines a linear isomorphism (see Remark 4 again).

Remark 11. Let us clarify the definition of each α
[ζ]
A . Consider a class c ∈

T (l)Q
/
G, based on the point x ∈ X . We shall define

αcA : (TQ/G)x → TxX ⊕ g̃x

as follows:

1. Fix a representative ζ ∈ T (l)Q of c based on q ∈ Q. Of course, π (q) = x.
2. Consider a class of TQ/G based on x.
3. Fix a representative v ∈ TQ based on q.
4. Define αcA on the class given in 2 as π∗ (v)⊕ a (ζ, v).

If we fix another representative ζ ′ of c, based on q′, and another representative
v′ of the class given in 2, also based on q′, from the discussion on αA, it follows that

π∗ (v)⊕ a (ζ, v) = π∗ (v′)⊕ a (ζ ′, v′) .

Then, each αcA is well-defined.

In terms of the maps

aζ : TqQ→ g̃π(q) : v 7→ a (ζ, v) , (66)

defined for each ζ ∈ T (l)
q Q, we can write

α
[ζ]
A ([v]) = π∗ (v)⊕ aζ (v) ,

and we shall do it from now on.

4.3.2. The higher order connection. In order to develop a reduction procedure for
HOCS with symmetry we shall introduce, related to each G-invariant triple HOCS, a
particular l-connection: the higher order connection. This will enable us to separate
the reduced virtual displacements CV into horizontal and vertical components. The
construction of such an object will be done in several steps (compare with those
appearing in 2.2.1).

1. Fix a G-invariant metric on Q. We shall assume that L is simple, and that
we chose the metric which defines its kinetic term.

2. For each q ∈ Q and ζ ∈ T (l)
q Q, consider the intersection

S (ζ) = CV (ζ) ∩ V (ζ) ,

and write

CV (ζ) = T (ζ)⊕ S (ζ) and V (ζ) = S (ζ)⊕ U (ζ) ,

where T (ζ) and U (ζ) are the orthogonal complements of S (ζ) in CV (ζ) and
V (ζ), respectively.
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3. Consider the orthogonal complement of CV (ζ) + V (ζ) in TqQ. Let us call it
R (ζ).

We shall assume that the spaces R (ζ) ⊕ T (ζ) depend differentiably on q
and ζ.

4. Define the l-connection A• : T (l)Q× TQ→ g, which we shall call the higher
order connection, with horizontal subspaces (see Proposition 3)

H• (ζ) = R (ζ)⊕ T (ζ) .

In other words, given v ∈ TqQ, define

A• (ζ, v) = η

if v −Xη (q) ∈ H• (ζ).

It is easy to show that A• is effectively an l-connection. In particular,

TqQ = H• (ζ)⊕ V (ζ) .

Note that

T (ζ) = CV (ζ) ∩H• (ζ) .

Thus,

CV (ζ) = [CV (ζ) ∩H• (ζ)]⊕ [CV (ζ) ∩ V (ζ)] . (67)

Using the isomorphisms

α
[ζ]
A• : (TQ/G)π(q) → Tπ(q)X ⊕ g̃π(q)

: [v] 7→ π∗ (v)⊕ [q,A• (ζ, v)] ,

and the Eqs. (64) and (65), we have

H• (ζ) /G ' α[ζ]
A• (H• (ζ) /G) = π∗ (H• (ζ)) = Tπ(q)X , (68)

and [see (66)]

V (ζ) /G ' α[ζ]
A• (V (ζ) /G) = a•ζ (V (ζ)) = g̃π(q). (69)

Accordingly, combining (67), (68) and (69), the next result is immediate.

Proposition 4. Since C•V ([ζ]) ' α[ζ]
A• ◦ p (CV (ζ)), we have

C•V ([ζ]) = Chor
V ([ζ])⊕ Cver

V ([ζ])

with

Chor
V ([ζ]) ' π∗ (CV (ζ)) = Tπ(q)X ∩ C•V ([ζ])

and

Cver
V ([ζ]) ' a•ζ (CV (ζ)) = g̃π(q) ∩ C•V ([ζ]) .
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4.3.3. The maps ϕ[ζ]. Given a G-invariant triple (L,CK , CV ), consider the related
higher order connection A• : T (l)Q ×Q TQ → g and fix an arbitrary principal
connection A : TQ → g. Given an infinitesimal variation δγ on the curve γ, let us
write

αA ◦ p (δγ (t)) = π∗ (δγ (t))⊕ a (δγ (t)) = δx (t)⊕ η̄ (t) (70)

as before, and

α
[ζ]
A• ◦ p (δγ (t)) = π∗ (δγ (t))⊕ a•ζ (δγ (t)) = δx• (t)⊕ η̄• (t) , (71)

if ζ = γ(l) (t). It is clear that, if δγ (t) ∈ CV
(
γ(l) (t)

)
, then

δx (t)⊕ η̄ (t) ∈ CV

([
γ(l) (t)

])
,

and

δx• (t) ∈ Chor
V

([
γ(l) (t)

])
and η̄• (t) ∈ Cver

V

([
γ(l) (t)

])
.

Because of Proposition 4, all reduced variations inside CV can be written in terms
of independent variations δx• ∈ Chor

V and η̄• ∈ Cver
V . Let us derive, as in the Section

2.3.1, an expression of variations δx and η̄ in terms of δx• and η̄•.

From (70) and (71), it is clear that, for ζ = γ(l) (t),

δx (t)⊕ η̄ (t) = αA ◦
(
α

[ζ]
A•

)−1

[δx• (t)⊕ η̄• (t)] .

Then, using the canonical projection PTX and inclusion ITX [see (26) and (27)], we
have that

δx (t) = PTX ◦ αA
[(
α

[ζ]
A•

)−1

(ITX (δx• (t)))

]

+PTX ◦ αA
[(
α

[ζ]
A•

)−1 (
Ig̃ (η̄• (t))

)]
(72)

and

η̄ (t) = Pg̃ ◦ αA
[(
α

[ζ]
A•

)−1

(ITX (δx• (t)))

]

+Pg̃ ◦ αA
[(
α

[ζ]
A•

)−1 (
Ig̃ (η̄• (t))

)]
. (73)

Repeating the steps in the proof of the Lemma 2.5, we can demonstrate the next
result.

Lemma 4.4. Given q ∈ Q and ζ ∈ T (l)
q Q, the identities

PTX ◦ αA
[(
α

[ζ]
A•

)−1

(ITX (u))

]
= u, PTX ◦ αA

[(
α

[ζ]
A•

)−1 (
Ig̃ (η)

)]
= 0,

and

Pg̃ ◦ αA
[(
α

[ζ]
A•

)−1 (
Ig̃ (η)

)]
= η

hold for all u ∈ Tπ(q)X and η ∈ g̃π(q).
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So, defining

ϕ[ζ] : Tπ(q)X → g̃π(q)

such that

ϕ[ζ] (u) = Pg̃ ◦ αA
[(
α

[ζ]
A•

)−1

(ITX (u))

]
,

the Eqs. (72) and (73) tell us that

δx (t) = δx• (t) and η̄ (t) = ϕ[ζ] (δx• (t)) + η̄• (t) .

Note that the maps ϕ[ζ] define another one

ϕ : T (l)Q
/
G×X TX → g̃,

given by

ϕ ([ζ] , u) = ϕ[ζ] (u) , ∀q ∈ Q, ζ ∈ T (l)
q Q, u ∈ Tπ(q)X .

4.3.4. The higher order Lagrange–d’Alembert–Poincaré equations. We shall finally
derive a set of equations that describe the dynamics of a G-invariant HOCS on
Q, in terms of their corresponding reduced variables on TX and g̃. So, fix again
a G-invariant triple (L,CK , CV ). Let A• : T (l)Q × TQ → g be its higher order
connection, and fix an arbitrary principal connection A : TQ → g. Since we shall
use the maps ϕ[ζ], we need an expression of [ζ] in terms of reduced variables. We
also need to express the kinematic constraint equations, defined by the submanifold
CK , in terms of such variables.

From connection A, we can define for each n ≥ 1 the bundle isomorphism7 (see
Ref. [13])

α
(n)
A : T (n)Q

/
G→ T (n)X ⊕ ng̃,

such that, given a curve γ : [t1, t2]→ Q,

α
(n)
A

([
γ(n) (t)

])
=

(
[π ◦ γ]

(n)
(t) ;⊕ni=1

Di−1

Dti−1
a (γ′ (t))

)
.

Coming back to the notation introduced in the Section 2.2.3 [see Eq. (13)], since

π (γ (t)) = x (t) and a (γ′ (t)) = v̄ (t) ,

then

α
(n)
A

([
γ(n) (t)

])
=

(
x(n) (t) ;⊕ni=1

Di−1

Dti−1
v (t)

)
.

Using the map α
(n)
A for n = k, we shall identify CK = pk (CK) with

α
(k)
A ◦ pk (CK) .

Then, γ(k) (t) ∈ CK if and only if(
x(k) (t) ;⊕ki=1

Di−1

Dti−1
v (t)

)
∈ CK .

On the other hand, using α
(l)
A to identify T (l)Q

/
G and T (l)X ⊕ lg̃, we have that

δγ (t) ∈ CV
(
γ(l) (t)

)
if and only if

δx (t)⊕ η̄ (t) ∈ CV (c (t)) ,

7By ng̃ we are denoting the Whitney sum of n copies of g̃.
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being

c (t) =

(
x(l) (t) ;⊕li=1

Di−1

Dti−1
v (t)

)
.

Now, we are in conditions to write down the wanted equations.

Theorem 4.5. Let (L,CK , CV ) be a HOCS and G a Lie group acting on Q. Suppose
that the system is G-invariant, π : Q � X = Q/G is a principal fiber bundle, and
A• is its higher order connection. Fix an arbitrary principal connection A and a
curve γ : [t1, t2] → Q. Then, γ is a trajectory of (L,CK , CV ) if and only if the
curve

µ : [t1, t2]→ TX ⊕ g̃,

given by
µ (t) = ẋ (t)⊕ v̄ (t) = αA ◦ p (γ′ (t)) ,

satisfies (
x(k) (t) ;⊕ki=1

Di−1

Dti−1
v (t)

)
∈ CK ,

the higher order LDP horizontal equations〈
− D

Dt

∂l

∂ẋ
(µ (t)) +

∂l

∂x
(µ (t))−

〈
∂l

∂v̄
(µ (t)) , iẋ(t)B̃

〉
, δx• (t)

〉

+

〈(
ϕc(t)

)∗(
− D

Dt

∂l

∂v̄
(µ (t)) + ad∗v̄

∂l

∂v̄
(µ (t))

)
, δx• (t)

〉
= 0,

(74)

and the higher order LDP vertical equations〈
− D

Dt

∂l

∂v̄
(µ (t)) + ad∗v̄

∂l

∂v̄
(µ (t)) , η̄• (t)

〉
= 0, (75)

for all curves
δx• : [t1, t2]→ TX and η̄• : [t1, t2]→ g̃

satisfying
δx• (t) ∈ Chor

V (c (t)) and η̄• (t) ∈ Cver
V (c (t)) ,

where

c (t) =

(
x(l) (t) ;⊕li=1

Di−1

Dti−1
v (t)

)
.

Remark 12. The variables x, ẋ and v̄, submanifold CK , curvature B and curve
c (t) are related to A, while the variations δx• and η̄•, and subspaces Chor

V (c (t)) and
Cver
V (c (t)), are related to A•.

Remark 13. Again, for a right action we have to change the sign of ad∗v̄
∂l
∂v̄ .

To prove the above theorem, it is enough to show the following result, which
generalizes the Lemma 2.4 to l-connections.

Lemma 4.6. Under the conditions and notation of last Theorem, consider a curve
γ : [t1, t2]→ Q. Given δx : [t1, t2]→ TX and η̄ : [t1, t2]→ g̃, we have that

δx (t) ∈ Chor
V

([
γ(l) (t)

])
and η̄ (t) ∈ Cver

V

([
γ(l) (t)

])
(76)

if and only if there exists δγ : [t1, t2]→ TQ satisfying

π∗ (δγ (t)) = δx (t) and a•γ(l)(t) (δγ (t)) = η̄ (t) ,

and such that δγ (t) ∈ CV
([
γ(l) (t)

])
.
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Proof. Given a curve δγ such that δγ (t) ∈ CV
([
γ(l) (t)

])
, it follows from the

Proposition 4 that the curves δx (t) = π∗ (δγ (t)) and η̄ (t) = a•
γ(l)(t)

(δγ (t)) satisfy

(76). Let us show the converse. Consider curves δx and η̄ fulfilling (76), and let
η : [t1, t2]→ g be the unique curve such that

η̄ (t) = [γ (t) , η (t)] .

Define

δγv (t) = Xη(t) (γ (t)) .

Taking into account that for each q ∈ Q and ζ ∈ T (l)
q Q the map π∗,q : TqQ→ Tπ(q)X

gives rise to a linear isomorphism when restricted to H (ζ), define

δγh (t) =
(
π∗,γ(t)

∣∣
H(γ(l)(t))

)−1

(δx (t)) .

By construction, δγv (t) ∈ Vγ(t) and δγh (t) ∈ H
(
γ(l) (t)

)
. Then, the sum δγ (t) =

δγh (t) + δγv (t) gives rise to a curve δγ : [t1, t2]→ TQ such that

π∗ (δγ (t)) = π∗
(
δγh (t)

)
= δx (t)

and

a•γ(l)(t) (δγ (t)) =
[
γ (t) , A•

(
γ(l) (t) , δγ (t)

)]
=
[
γ (t) , A•

(
γ(l) (t) , δγv (t)

)]
=

[
γ (t) , A•

(
γ(l) (t) , Xη(t) (γ (t))

)]
= [γ (t) , η (t)] = η̄ (t) .

It rests to show that δγ (t) ∈ CV
([
γ(l) (t)

])
. From calculations above it follows that

α
[γ(l)(t)]
A• ([δγ (t)]) = δx (t)⊕ η̄ (t) ∈ C•V

([
γ(l) (t)

])
.

In particular,

α
[γ(l)(t)]
A• ([δγ (t)]) ∈ α[γ(l)(t)]

A• ◦ p
(
CV

(
γ(l) (t)

))
.

But α
[ζ]
A• ◦ p is injective for all ζ. Then

δγ (t) ∈ CV
(
γ(l) (t)

)
,

and the proof is over. �

4.4. The case of trivial bundles revisited. Let us come back to the notation of
the Section 3. Consider a HOCS (L,CK , CV ) with configuration space Q = X ×G,
and suppose that the triple is G-invariant under the left action (32). In particular,
Q defines a trivial principal bundle with structure group G and base X .

4.4.1. l-Connections and isomorphisms αA. An l-connection A : T (l)Q×QTQ→ g,
in the notation of the mentioned Section, satisfies

A
(
g ζ;x, g h, ẋ, g ḣ

)
= Adg

(
A
(
ζ;x, h, ẋ, ḣ

))
and

A
(
ζ;x, e, 0, h−1 ḣ

)
= h−1 ḣ,
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being g ζ = ρ
(l)
g (ζ). Note that ζ belongs to T

(l)
(x,h)Q in the first equation and to

T
(l)
(x,e)Q in the second one. Note also that the classes of T (l)Q

/
G are in bijection

with the elements of T
(l)
(x,e)Q. Then, from above equations and linearity of A,

A
(
ζ;x, h, ẋ, ḣ

)
= A (ζ;x, h, ẋ, 0) +A

(
ζ;x, h, 0, ḣ

)
= Adh

(
A
(
h−1 ζ;x, e, ẋ, 0

))
+Adh

(
A
(
h−1 ζ;x, e, 0, h−1 ḣ

))
= Adh

(
A
(
h−1 ζ;x, e, ẋ, 0

))
+Adh

(
h−1 ḣ

)
= Adh (A ([ζ]) ẋ) + ḣ h−1,

where

A : T (l)Q
/
G→ T ∗X ⊗ g (77)

is given by

A [ζ] ẋ = A (ζ;x, e, ẋ, 0) , (78)

with ζ ∈ T (l)
(x,e)Q.

Using the identification between g̃ and X × g mentioned in the Section 3.1.2,
αA can be seen as a map

αA : T (l)Q
/
G×X TQ/G→ TX × g.

Moreover, it is easy to show that [compare to Eq. (35)]

α
[ζ]
A ◦ p

(
x, h, ẋ, ḣ

)
= (x, ẋ)⊕

(
x,A [ζ] ẋ+ h−1 ḣ

)
. (79)

4.4.2. The map ϕ. Consider the higher order connection A• related to (L,CK , CV ).

Given ζ ∈ T (l)
(x,h)Q, we can write the map ϕ[ζ] : TxX → g̃x, defined as

ϕ[ζ] (x, ẋ) = Pg̃ ◦ αA
[(
α

[ζ]
A•

)−1

(ITX (x, ẋ))

]
,

completely in terms of A• when the principal connection A, appearing in formula
above, is taken as the trivial one. In fact, following the same steps as in Section
3.1.3 [this time using Eq. (79) instead of (35)], it can be proved that

ϕ[ζ] (x, ẋ) = (x,−A• [ζ] ẋ) , (80)

where we are identifying g̃ and X × g as in last section.
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4.4.3. The reduced equations. For simplicity, let us suppose also that TX is a trivial
bundle. According to the calculations of the Section 3, yhe Eqs. (74) and (75)
translate to 〈

− d

dt

∂l

∂ẋ
+
∂l

∂x
+ (ϕc)

∗
(
− d

dt

∂l

∂ξ
+ ad∗ξ

∂l

∂ξ

)
, δx•

〉
= 0 (81)

and 〈
− d

dt

∂l

∂ξ
+ ad∗ξ

∂l

∂ξ
, η•
〉

= 0 (82)

respectively [see Eqs. see (46) and (48)], where

c =

(
x(l);⊕li=1

di−1

dti−1
ξ

)
.

We are writing the unknown as a curve (x (t) , ẋ (t) , ξ (t)) on TX × g. Using the
Equation (80), the horizontal equations translates to〈

− d

dt

∂l

∂ẋ
+
∂l

∂x
, δx•

〉
=

〈
− d

dt

∂l

∂ξ
+ ad∗ξ

∂l

∂ξ
,A• (c) δx•

〉
The kinematical constraints can be written(

x(k);⊕ki=1

di−1

dti−1
ξ

)
∈ CK .

Again, if we consider the right action (33), we must change the sign of ad∗ξ
∂l
∂ξ .

4.5. The ball on the plane. In this section we shall calculate the higher order
connection and write down the horizontal and vertical higher order LDP equations
for a concrete constrained system.

Let us consider a ball of mass m and moment of inertia I moving along a horizon-
tal plane. This time we do not necessarily consider the rolling constraints. Recall
that the configuration space of the (unconstrained) system is Q = R2 × SO (3).
Consider again the right action ρ of G = SO (3) on Q given by (52). Recall that ρ
defines on Q the structure of a trivial principal bundle. Using such an action, we
can identify TQ and

R2 × SO (3)× R2 × so (3) . (83)

Note that under this identification, the action ρ∗ on TQ translate into the right
multiplication of the second factor, i.e. the action

((a, R, ȧ, ξ) ,M) 7→ ((a, RM, ȧ, ξ)) . (84)

This in turn gives rise to the identification

TQ/G = R2 × R2 × so (3) . (85)

In the following, we shall also use (53) to identify so (3) and R3.

Now, we shall impose on the system kinematic constraints CK ⊂ T (k)Q with
k ≥ 0, that we shall not specify, and variational constraints CV ⊂ TQ×Q TQ given
below. Under the identification (83), CV can be seen as a subset of(

R2 × SO (3)
)
×
(
R2 × so (3)

)
×
(
R2 × so (3)

)
. (86)

Suppose that CV is given by the points (a, R, ȧ, ξ,x,y) such that

〈f1 (a, R, ȧ, ξ) ,x〉+ 〈f2 (a, R, ȧ, ξ) ,y〉 = 0,
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being
f1 : TQ→ R2 and f2 : TQ→ so (3) .

In other words,

CV (a, R, ȧ, ξ) =
{

(x,y) ∈ R2 × so (3) : 〈f1,x〉+ 〈f2,y〉 = 0
}
.

The symbol 〈·, ·〉 indicates the euclidean inner product in R2 and R3 ' so (3).

Remark 14. Examples of constraints CK ⊂ T (2)Q can be found in [9, 10, 21, 22, 23,
24, 31], where dissipative systems and applications to control of servomechanisms
are described.

Remark 15. The constraints CV given above can be interpreted as the annihilator
of a space of constraint forces FV generated by the (co)vector (f1 (v) , f2 (v)) at the
point v ∈ TQ.

We shall assume that the above defined triple (L,CK , CV ) is a G-invariant HOCS,
with G = SO (3). We already know that L is G-invariant, so we are assuming that

ρ
(k)
M (CK) = CK , ∀M ∈ SO (3) ,

and, for all v ∈ TQ,

(ρM )∗ (CV (v)) = CV ((ρM )∗ (v)) , ∀M ∈ SO (3) ,

which is equivalent to ask that [recall (84)]

fi ((a, RM, ȧ, ξ)) = fi ((a, R, ȧ, ξ)) , ∀M ∈ SO (3) , i = 1, 2.

Note that f1 and f2 do not depend on the group variable. So we can assume that
they are functions

f1 : R2 × R2 × so (3)→ R2

and
f2 : R2 × R2 × so (3)→ so (3) .

In other words, f1 and f2 defines functions on TQ/G [see (85)].

In order to write down the reduced equations of motion for (L,CK , CV ), we need
to calculate the higher order connection of the triple, which in the present case is a
1-connection

A• : TQ×Q TQ→ so (3) ,

and the related map [see (77)]

A• : TQ/G→ T ∗R2 ⊗ so (3) . (87)

Using (85), A• can be seen as a map

A• : R2 × R2 × so (3)→ T ∗R2 ⊗ so (3) .

We must follow the steps of Section 4.3.2.

1. Let us fix on Q the Riemannian metric given by the euclidean inner product
on the fibers of TQ (which we have identified with R2 × R3).

2. Since the vertical subspaces are

V (a, R, ȧ, ξ) = V(a,R) = {(a, R,x,y) : x = 0}

= {0} × so (3) ,
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it follows that

S (a, R, ȧ, ξ) = CV (a, R, ȧ, ξ) ∩ V (a, R, ȧ, ξ)

= {(x,y) : x = 0, 〈f2 (a, ȧ, ξ) ,y〉 = 0}

= {0} × 〈f2 (a, ȧ, ξ)〉⊥ .
From now on, suppose that f2 never vanishes. Then,

T (a, R, ȧ, ξ) =

{
(x,y) : y = − 〈f1 (a, ȧ, ξ) ,x〉

‖f2 (a, ȧ, ξ)‖2
f2 (a, ȧ, ξ)

}
and

U (a, R, ȧ, ξ) = {(0, λ f2 (a, ȧ, ξ)) : λ ∈ R}

= {0} × 〈f2 (a, ȧ, ξ)〉 .

3. Also, using that f2 6= 0, we have that CV (a, R, ȧ, ξ) is given by the points
(x,y) such that

y = − 〈f1 (a, ȧ, ξ) ,x〉
‖f2 (a, ȧ, ξ)‖2

f2 (a, ȧ, ξ) + ŷ,

with
〈f2 (a, ȧ, ξ) , ŷ〉 = 0,

that is to say

ŷ ∈ 〈f2 (a, ȧ, ξ)〉⊥ .
For simplicity, let us take ‖f2 (a, ȧ, ξ)‖ = 1. Then

CV (a, R, ȧ, ξ) =
{

(x,− 〈f1,x〉 f2 + ŷ) : ŷ ∈ 〈f〉⊥
}
. (88)

As a consequence,
CV (a, R, ȧ, ξ) + V(a,R) = T(a,R)Q,

and
R (a, R, ȧ, ξ) = 0.

4. Summing up, the horizontal spaces defining A• are

H• (a, R, ȧ, ξ) = T (a, R, ȧ, ξ)

=
{

(x,− 〈f1 (a, ȧ, ξ) ,x〉 f2 (a, ȧ, ξ)) : x ∈ R2
}
.

It is easy to show that the spaces H• (a, R, ȧ, ξ) define effectively a 1-connection.
Using the Proposition 3,

A• : TQ×Q TQ→ so (3)

is given by [see (86)]

A• ((a, R, ȧ, ξ,x,y)) = 〈f1 (a, ȧ, ξ) ,x〉 f2 (a, ȧ, ξ) + y,

and from the Eqs. (77), (78) and (87), it follows that

A• (a, ȧ, ξ) x = 〈f1 (a, ȧ, ξ) ,x〉 f2 (a, ȧ, ξ) .
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The maps

α
(a,ȧ,ξ)
A• : TQ/G→ TR2 × so (3) ,

according to (79), (85) and the Eqs. above, are given by

α
(a,ȧ,ξ)
A• (a,x,y) = (x, 〈f1 (a, ȧ, ξ) ,x〉 f2 (a, ȧ, ξ) + y) .

Applying α
(a,ȧ,ξ)
A• ◦p to each CV (a, R, ȧ, ξ) [see (88)], we can construct subspaces

Chor
V (a, ȧ, ξ) and Cver

V (a, ȧ, ξ) ,

which in this case are (see Proposition 4)

Chor
V (a, ȧ, ξ) = TaR2 × {0}

and

Cver
V (a, ȧ, ξ) = {0} × 〈f2 (a, ȧ, ξ)〉⊥ .

We have now all the elements to write the reduced equations. From 3.3, we know
that the reduced Lagrangian corresponding to the trivial connection is

l (a, ȧ, ξ) =
1

2
I 〈ξ, ξ〉+

1

2
m ȧ2,

and that

− d

dt

∂l

∂ȧ
+
∂l

∂a
= −m ä

and
d

dt

∂l

∂ξ
+ ad∗ξ

∂l

∂ξ
= I ξ̇.

So, from (81) and (82) (changing the sign of ad∗ξ
∂l
∂ξ ), the higher order LDP equations

for the system are

〈−m ä, δx•〉+
〈
I ξ̇,A• (a, ȧ, ξ) δx•

〉
= 0,

or equivalently,

〈−m ä, δx•〉+
〈
I ξ̇, 〈f1 (a, ȧ, ξ) , δx•〉 f2 (a, ȧ, ξ)

〉
= 0, (89)

and 〈
I ξ̇, η•

〉
= 0, (90)

for all δx• ∈ R2 and η• ∈ 〈f2 (a, ȧ, ξ)〉⊥. Eq. (89) says that

−m ä +
〈
I ξ̇, f2 (a, ȧ, ξ)

〉
f1 (a, ȧ, ξ) = 0

and Eq. (90) that

I ξ̇ = λ f2 (a, ȧ, ξ)

for some number λ. Combining both equations we have

m ä = λ f1 (a, ȧ, ξ) and I ξ̇ = λ f2 (a, ȧ, ξ) .

Then, the functions f1 and f2 represent directions of constraint forces (see Remark
15), and λ a Lagrange multiplier which gives the strength of such forces. The latter
can be determined by using the kinematic constraints C•K .
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[30] D. Pérez, “Sistemas Dinámicos no Holónomos Generalizados y su Aplicación a la Teoŕıa
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