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Influence of network dynamics on the
spread of sexually transmitted diseases

Sebastian Risau-Gusman*

Consejo Nacional de Investigaciones Cientificas y Técnicas, Centro Atomico Bariloche,
8400 San Carlos de Bariloche, Argentina

Network epidemiology often assumes that the relationships defining the social network of
a population are static. The dynamics of relationships is only taken indirectly into account
by assuming that the relevant information to study epidemic spread is encoded in the net-
work obtained, by considering numbers of partners accumulated over periods of time
roughly proportional to the infectious period of the disease. On the other hand, models explicitly
including social dynamics are often too schematic to provide a reasonable representation of a real
population, or so detailed that no general conclusions can be drawn from them. Here, we
present a model of social dynamics that is general enough so its parameters can be obtained
by fitting data from surveys about sexual behaviour, but that can still be studied analytically,
using mean-field techniques. This allows us to obtain some general results about epidemic spread-
ing. We show that using accumulated network data to estimate the static epidemic threshold
lead to a significant underestimation of that threshold. We also show that, for a dynamic network,
the relative epidemic threshold is an increasing function of the infectious period of the disease,
implying that the static value is a lower bound to the real threshold. A practical example
is given of how to apply the model to the study of a real population.

Keywords: sexually transmitted diseases; epidemic threshold; pairwise models

1. INTRODUCTION

Even though the aim of mathematical modelling in epi-
demiology is to predict the patterns of spread of
infectious diseases, the complexity of real populations
has always constrained modellers to use strong assump-
tions. Even though these do not always guarantee the
existence of analytical solutions, at least the models
become tractable. On the other hand, the search for
analytical simplicity has sometimes taken over more
practical considerations.

One of the strongest assumptions used in most epide-
miological models is the Law of mass action [1]. First
proposed by chemists, it postulates that in dynamical
equilibrium, the rate of a chemical reaction is pro-
portional to the concentrations of the reactants, and
can be derived from the probability of collision between
reacting molecules. The analogy between the move-
ments of molecules and living beings, drawn almost a
century ago [1], leads to the epidemiological version of
this postulate: the ‘force of infection’ is proportional
to the densities of infected and uninfected individuals
(called ‘susceptibles’ in the epidemiological literature).
It implies that the population has no structure, i.e.
that every person can be in contact with every other
(‘random mixing’).

In general, however, members of a population inter-
act only with a very small subset of it. Thus, one way
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to go beyond the random mixing assumption is to con-
sider that the members of the population form a social
network, which is usually modelled as a graph. Its nodes
represent individuals, and each edge joins individuals
that could pass an infection to each other. The
number of connections of a certain node is called the
degree of the node. The definition of the network
depends strongly on the type of interaction necessary
to transmit the disease whose spread is being modelled.
The advantage of the network over the random mixing
approach is that models can be better adapted to
specific populations. Needless to say, this implies
having more data about the social structure, as well
as new concepts and tools to analyse them. Fortunately,
these are provided by social network analysis, a field
that has developed rapidly in recent years [2]. The
mathematics are not as straightforward as in the analy-
sis of mass-action models, but for some cases,
interesting results can be obtained by using approxi-
mations (some of them derived from statistical
physics). One example is the relationship that exists
between the properties of the network and the epidemic
threshold A., defined as smallest value of the infectivity
A for which a small number of infectives can trigger an
epidemic (also defined as the value which makes Ry,
the basic reproductive ratio or the disease larger than
1). For a disease with infectivity A and an infectious
period o !, mean-field approximations give [3,4]:

A= k)

¢ T2y (1.1)

This journal is © 2011 The Royal Society
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where (k) and (k%) are the first and second moments of the
degree distribution of the network. In this equation, as in
the rest of the paper, the tilde over a variable indicates
that the corresponding quantity has been calculated for
a static network, to distinguish it from the analogous
quantity calculated for dynamic networks.

Network epidemiology seems particularly well-suited
for the analysis of the spread of sexually transmitted dis-
eases (STDs), as the definition of the network in this case
is more straightforward (although not free of problems
[5]). The large number of surveys of sexual behaviour
carried out in the last three decades provides an invalu-
able resource for modellers. Interestingly, a common
feature of many sexual networks built from survey data
is that their degree distribution has a very long tail: a
small number of individuals report very large numbers
of sexual contacts. Mathematically, this means that,
even though (k) is rather small (typically less than 3),
(k% can be very large. Applying equation (1.1) to such
networks (which, as explained below, is not altogether
correct) would lead to the conclusion that, for those
populations, even STDs with very low infectivity can
trigger an epidemic. It has even been argued that some
sexual networks have power law degree distributions
with infinite variance [6,7], which would imply a vanish-
ing epidemic threshold, but there is some controversy
about this [8].

One aspect that is usually disregarded in the network
approach is the dynamic nature of social interactions. It
isreasonable to assume that, even though at all times indi-
viduals are free to end their existing relationships and
create new ones, these dynamics produce a steady state,
in which the instantaneous distribution of contacts does
not change. One possibility to estimate the epidemic
threshold of the system is to use equation (1.1) for the
instantaneous distribution. Hereafter, we call this esti-
mate, A, the static threshold. One of the aims of this
paper is to clarify the relationship between A, and the
real threshold for a dynamic network, A..

A problem of this approach is that the instantaneous
distribution is usually not available. In general, we only
have the information obtained from sexual behaviour
surveys. Respondents to these surveys, however, are
usually asked about the number of partners over a cer-
tain time period 7, and the distribution thus obtained is
often used as a proxy for the instantaneous distribution.
The critical thresholds calculated using equation (1.1)
for these distributions, hereafter called A.(T), can also
be used as estimates of A, or even of A.. But it is diffi-
cult to ascertain how close distributions of accumulated
contacts can be to the instantaneous distribution [9]. It
is often suggested that if the time period asked about in
the survey is similar to the infectivity period of the dis-
ease analysed, epidemic thresholds can be estimated by
using the proxy network [6,10,11]. In other words, it is
argued that for certain values of T, A.(T') can be a good
estimate of A.. But, in general, this argument remains at
a qualitative level. In the following sections we show,
quantitatively, what is the relationship between all
these quantities for a family of dynamic models.

Models that take into account the dynamic nature of
social networks usually consider the formation and
dissolution of links between individuals as stochastic
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processes [12]. In the context of classical compartmental
models used to study the spread of infectious diseases,
pair formation was introduced by Dietz [13] and Dietz &
Hadeler [14]. These analytical models were extended
to structured (i.e. heterogeneous) populations by
Castillo-Chavez and co-workers (see [15] and references
therein). More complex models have been studied, but
only through numerical simulations [16-19]. More
recently, pair formation has also been included in network
models, in which the number of partners of the individuals
is taken explicitly into account [20-23]. In principle,
this would provide a framework to use the information
gathered in sexual behaviour surveys. However, the
additional complication of dealing with network dynamics
has led either to models that have analytical solutions but
that are too simple to be applied in a realistic setting, or to
models that rely exclusively on numerical simulations,
from which it is difficult to draw general conclusions.

The model of network dynamics presented in §2 is
an attempt to overcome these limitations. We obtain
the predictions for the distributions of contacts in a popu-
lation using a mean-field approximation, in which it is
assumed that in the interaction of each individual with
its neighbourhood, the influence of each neighbour can
be replaced by an average influence, which is treated as
a new variable. In this way, the problem becomes analy-
tically tractable because the interactions now depend
only on this new variable and the present number of con-
tacts of each person. The ‘social’ dynamics does not
depend on the epidemiological parameters of a given dis-
ease, but only on the sexual nature of transmission. In §3,
we study two synthetic examples of the model that gener-
ate the same instantaneous distribution of contacts and
we use computer simulations to test the approximations
used. Additionally, we provide a practical example using
survey data of a real population to build a model of
its social dynamics. These models allow us to show
that the static epidemic threshold A, is significantly
underestimated by the estimates A.(7') obtained using
accumulated contact distributions (i.e. A, > A.(7T)). In
84, we add the spread of an STD to the dynamic network,
and we find general equations for the true epidemic
threshold A. and the number of infected in the steady
state using a mean-field approximation. We show that,
for the family of dynamic networks analysed and within
the approximation used, it is always true that A, > A..
We apply these results to the populations analysed in
83. In §5, we allow the social interactions to depend
also on intrinsic features of the individuals. We use the
same real population as in §3 to show an example of
how intrinsic features are included in the model. It is
also shown that, in general, the range of possible values
for A, is significantly smaller than in the case when
such features are not included. In §6, some conclusions
are drawn and the possible extensions of the model
are discussed.

2. MODEL

We consider a population of N epidemiologically identi-
cal individuals. It has been shown that static models
with individuals placed on a bipartite network give
identical predictions to models where the population
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is not divided into two groups [9], so we assume that
partnerships can be established between any two individ-
uals. Thus, even though our model applies strictly only
to homosexual populations, its predictions should be
qualitatively correct for heterosexual populations, with
similar epidemiological variables for both sexes. Simu-
lations of heterosexual and homosexual populations
with the same parameters support this conjecture (see
the electronic supplementary material, appendix).

We assume that partnerships can be established and
dissolved with a rate that depends on features of the
two individuals. We consider the number of partners
as the only dynamic attribute; we first assume that
rates depend only on that number. Thus, the rate of
partnership creation between individuals ¢ and j is
p(k;, k;, t) and the rate of partnership dissolution is
o(k;, k; t), where k; and k; are the number of current
sexual partners of 7 and j at time t. As we only deal
with steady states, hereafter the ¢ dependence is
dropped from all quantities.

In the steady state, the master equation for the
degree distribution P(k) is:

0=(N—k+1)P(k—1)p,_ + (k+1)P(k+1)o11
— P(k)(N — k)pj, — kP(k)oy, (2.1)

where p;, = (p(k, k), is the average probability per unit
time that an individual with k partners gets a new partner
and o= (o(kk)), is the average rate of break-up
of his existing relationships (a detailed derivation of this
equation is given in the electronic supplementary
material, appendix). The interpretation of the terms in
the equation is straightforward. The first and second
terms correspond to the increase in the fraction of nodes
with k neighbours given by, respectively, the fraction of
nodes with £ — 1 neighbours that have gained one link,
and the fraction of nodes with £+ 1 for which one link
was deleted. The third and the fourth terms correspond
to the decrease in the fraction of nodes with & neighbours
given by the fraction of nodes that have gained, or lost,
one link. In principle, the link-creation probability
should be averaged only over those individuals that are
not current partners of the individual. However, as in
real populations, & is much smaller than N; this quantity
is very well approximated by the average over the
entire population:

N
pr = (p(k, k) = N7 plk, k)
=1

N

=" p(k, k) P(k).

ki

(2.2)

For oy, the distribution that should be used to cal-
culate the average is P(kjk), the degree distribution of
the individuals connected to an individual having k
partners. However, if we assume that the dynamics do
not generate a significant assortative mixing by
degree, P(kjk) can be written as P(kj|k) = kP(k;)/(k).
The resulting average link dissolution is:

P(ki)

o = ok, k) =Y ok k)k— >

0 (2.3)
l
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Solving equation (2.1) gives the steady-state degree
distribution, for k> 0:

Plk; 7, ..., ax_1) = P(O)<]Z> I =

where P(0) is obtained by normalizing the distribution,
and the N parameters z; (=0, ..., N — 1) are obtained
by solving the N self-consistency equations:

o= P B3 (6 DP(Ga, ..
Yoo 2 a(i )Pk,

The number of such equations to be solved imposes a
practical constraint on the models that can be effec-
tively analysed. One of the simplest ways to reduce
the number of equations to only one is to consider separ-
able functions: N 'p(k;, k;) = p(k;)p(k;) (the scaling
factor N~ ' ensures that all terms of equation (2.1) are
of the same order) and o(k; k;) = o(k;)o(k;). This
choice has the added advantage of ensuring that there
is no assortative mixing by degree [20]. Note that if
p(k) is an increasing function of %, individuals with
many partners are more likely to attract new ones.
This is reminiscent of preferential attachment in
models of network growth [24] (note however that in
our model, the number of nodes is kept fixed and only
the links can vary).

If a model is to be used for understanding the spread
of a disease in a real population, its parameters should
be adjusted by comparing with available data. For sim-
pler models, it has been suggested that this could be
done by using an empirical instantaneous distribution
[20]. In our model, however, equation (2.5) shows that
rescaling the link creation and dissolution functions
does not change the equilibrium distribution. This
was to be expected, because changing the timescale
cannot change the nature of the steady state reached.
Thus, timescales should be obtained from other popu-
lation measurements. An important problem of this
approach is that information about instantaneous
degree distributions is usually not available. Instead,
almost all surveys ask respondents about the number
of sexual contacts accumulated over a certain time
period. Thus, we need the distribution of accumulated
contacts of the model (i.e. the probability of having
had %k contacts during a given time period), P{(k),
which can be written as:

(2.4)

-,CL‘NA)
~7-TN71)

(2.5)

k
Pr(k) =Y Pr(k— K|K)P(K), (2.6)
k=0
where Pr(k— KK) is the probability of having
k — K new contacts over a time period of length 7, con-
ditional on having ¥ partners at the beginning of that
period. The evolution equations for these conditional
probabilities are:

w = pulPr(m—1|n+ 1) — Pr(m|n)]

+ no,[Pr(m|n — 1) — Pp(m|n)], (2.7)

for0 < m,n < N — 1, with py—1; = 0 and gy = 0. With the
aid of some mathematical software, this recursion can be
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solved exactly, for any desired value of T (see the electronic
supplementary material, appendix). Using this solution,
the 2(N — 1) parameters p,, and o, can be adjusted to fit
the distributions obtained in any given survey. For real
populations, however, it is evident that the number of
contacts cannot scale as N.

Thus, for obtaining more realistic parameters, one
could allow independent values only for the first few p,
and o, The values of the remaining parameters can
either be set to 0, or given by a function of n (depending
on a few adjustable parameters) that generates a rapid
decay of P(k). An example of this is given in §3.

3. APPLICATION EXAMPLES

First we analyse two different models, called A and B,
that generate almost the same instantaneous contact
distribution. The distribution has been chosen to have
a power law tail with exponent 3 to mimic the long
tails observed in some sexual and social networks.
Even though both models have the same static
threshold, they are dynamically very different, giving
very different values for the estimates A.(T). This
shows that in general, it is not advisable to use accumu-
lated contact distributions as proxies for the
instantaneous one. For both models, we use separable
creation and destruction functions. Model A is defined
by p(k)= Cxk?/(k+1)* (for k>0), p(0)=1 and
a(k) = 1, whereas model B is defined by p(k) = Cgk®/
(k+1) (for k>0), p(0) =1 and o(k) =k Cx and Cp
are numerical constants. The instantaneous distribution
is P(k) = PyDja"/k®, where D= [[%, (1 —i/N). z is
obtained by solving the self-consistency equation for
each model. The constants C, and Cp are adjusted to
obtain a degree distribution that has a mean value of
order 1, and a variance large enough to mimic the long
tails observed in sexual networks.

Figure 1 shows that the mean-field approach is a very
good approximation for the corresponding stochastic
model, both for the instantaneous degree distribution
as well as for the accumulated ones. It also shows
that, even for models with the same instantaneous
degree distribution, the distribution of the number of
accumulated partners can be rather different. Using
equation (1.1), the accumulated partners distributions
can be used to calculate the estimates A.(T), which
are shown in the inset of figure 1. For both models,
Ao(T) decays rapidly with T, and therefore even for
small values of T, these estimates can be very different
from the static threshold, A, = A.(0). To see whether
these differences are relevant in a real setting, we have
applied this model to data from the National Survey
of Sexual Attitudes and Lifestyles II (NATSAL), car-
ried out in Britain in 2000—2001 [25,26]. Participants
were asked about the number of male and female part-
ners during several, overlapping, time periods prior to
the survey. From these data, one can build, for each
time period, the distribution of the number of accumu-
lated partners. We have only used the data related to
homosexual men, as our model deals strictly with one-
sex populations. However, as information about sexual
orientation was not asked from participants of
NATSAL, we have defined men who have sex with men

J. R. Soc. Interface (2012)
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Figure 1. Distributions of number of partners accumulated
over a time period 7, for models A and B (see text). The
full lines for T=0 are given by equation (2.4), whereas the
other lines are obtained by solving recursively equations (2.7).
Symbols correspond to simulations for a system with 10 000
individuals (averaged over 100 runs). The symbols and lines
falling on the left vertical axis represent the fraction of indi-
viduals having 0 sexual partners. Error bars are smaller
than the symbols. The inset shows the estimates A,(T") calcu-
lated for the distribution of accumulated partners for different
time periods. A.(0) is the static epidemic threshold, which is
the same for both models. (Online version in colour.)

(MSM) as those men having reported at least one male
partner within the 5 years prior to interview [27]. This
leaves 166 out of 4762 male respondents. Because of
recall problems, the accuracy of the reports decreases as
the time period asked about increases [28]. This is already
apparent in substantial heaping present in the data for the
5 years recall period. In our case, this dataset is further
skewed because it has been used to define MSM. Thus,
we have adjusted our model to fit only the degree distri-
butions for the recall periods of one month, three
months and 1 year, obtaining reasonably good fits (see
the electronic supplementary material, appendix). Note
that, in contrast with what is done in static models, we
use one set of parameters to fit the three sets of data sim-
ultaneously. Figure 2 shows the resulting cumulative
distributions of accumulated partners. As explained in
the electronic supplementary material, appendix, the
overestimation of the 5 years distribution can be partially
explained from the definition of MSM used.

The instantaneous degree distribution shows that
a fraction of the population may have many (more
than 10) ‘instantaneous’ partners. One may wonder at
such high levels of ‘concurrency’. But, it is important
to remember that in our model, the relationships invol-
ving such individuals are bound to last rather short
times (typically a few hours). This can be thought of
as modelling very particular events such as visits to a
bathhouse. The inset of figure 2 shows the estimates
Ae(T), calculated using the model degree distributions
for several time periods T (see the electronic supplemen-
tary material, appendix). As in the figure 1, A.(T)
decreases with T, which implies that A.(7) < A, and
that, as estimates of A., these quantities get worse
when large time periods are used. In fact, already the
one month distribution leads to an underestimation of
A: by about 50 per cent. To understand whether this
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0.01

cumulative distribution

0.001

T T T T Ry T T T T T T

1 10 100

number of partners

Figure 2. Cumulative distribution of the number of sexual
partners accumulated over different periods of time for a
population of homosexual men. Symbols correspond to data
from the British National Survey of Sexual Attitudes and Life-
styles (NATSAL 2000). The lines joining the symbols are only
guides to the eye. The full lines are the predictions of the
epidemic model for recall periods of one month (triangles
with lines), three months (squares with lines), 1 year (dia-
monds with lines) and 5 years (circles with lines) (from
bottom to top). The lowest dotted line is the prediction for
the instantaneous cumulative degree distribution. The inset
shows the estimates A.(T) calculated for the distribution of
accumulated partners for different time periods. A.(0) is the
static epidemic threshold.

underestimation is relevant, the spread of a disease
should be analysed taking into account the intrinsic
dynamics of the network in order to calculate the real
epidemic threshold A.. The question is not only how
close A. and A, are, but which one is larger, because if
Ac < A, then there would be a range of 7T, where
Ao(T) could be a good estimate of A, even if it is not
a good estimate of A.. Unfortunately, in §4 it is shown
that, at least within the approximations used, this is
not the case: the dynamic threshold is always larger
than the static one.

4. EPIDEMIC SPREAD

We consider the propagation of a disease that can be
cured, and that confers no immunity, i.e. individuals
can be reinfected as soon as they become susceptible
again. This type of models, called SIS, are considered
acceptable models of such STDs as gonorrhoea and
chlamydia [29].

It isassumed that, in an existing relationship between a
susceptible and an infected individual, infection can be
transmitted with a rate A (also called infectivity), and
that infected individuals recover at a rate a. Thus, the
average duration of the disease is 1/a. We call the quoti-
ent A/« relative infectivity, which can be interpreted as
the probability that the disease is transmitted from an
infected to a susceptible individual, provided that the
relationship between these individuals is at least as long
as the infectious period of the disease.

We also assume that the social dynamics are not
affected by the propagation of the disease. We need to
calculate P, (k, I, t), the probability that at time ¢ an

J. R. Soc. Interface (2012)

agent x has k simultaneous relationships and is infected.
The master equation for this depends on the two-point
probabilities P, (k;, S; ky, I; t), which in turn depend on
three-point probabilities, and so on. To get a closed
system, we choose the same ansatz as for equation (2.1)
(see its derivation in the electronic supplementary
material, appendix): P, (k,, S; k,, L t) = (kk,/NFk))
Pk, S; t)P,(k, I t), which implies assuming the absence
of degree correlations. Averaging over all agents with
the same number of partners, &, the master equation for
P(k, I) becomes:

O0=(N—-k+1)Pk—1,D)p_1 +(k+1)P(k+1,I)0%41
+ AkOP(k) — P(k,I)((N — k)p;, + ko + AkO + ).
(4.1)

This equation is analogous to equation (2.1) but with
three terms added, related to the possibility of getting
infected or recovering. The third term, for instance,
gives the increase in the number of infecteds of degree
k given by the transmission of infection by one of its
k contacts. 0="> ;(k/(k)P(k, I) represents the prob-
ability that a given neighbour is infected. Since P(k, I)
depends on 6, the definition of 6 becomes a self-
consistency equation that must be solved to find the
correct value of 6. The ansatz used implies that this
quantity is the same for all nodes. Equation (4.1) can
be more compactly rewritten as:

(al + Ag) Py = P'OA, (4.2)

where I is the N x N identity matrix, A is a tridiagonal
matrix defined by (Ag)ii1=—10% (Ag)u= (N— 1)
Pi—1 + (Z - 1)0'2'_1 + (’L - 1))\9 and (Ag)th:_(N_ Z)
pi—1 (0 < i< N —1) and the vectors P; and P’ are given
by (P),=P(.) and (P'),=jP(j) (0<j<N-—1).
P(j) is given by equation (2.4). The self-consistency
condition becomes:

(k)

k(o + Ag) 'P =2,

- (4.3)

The epidemic threshold is obtained from this
equation by taking the limit 6 — 0:
k)

Ae=——— g (4.4)
k(oI +Ay) P

The fraction of infected individuals is:

nr = 6A1(adl+ Ag) ' P, (4.5)

where 1 is the vector with all components set to 1. In
the limit where the characteristic times of the disease
are much shorter than the ones characterizing the
social dynamics (i.e. A— o | @ — oo, but keeping
the relative infectivity A/a constant), the usual
result for a static network is obtained (equation (1.1)):
A0 = a(k)/(k*) = A.. Intuitively, one can think that
the disease spreads so fast that it ‘sees’ only the
instantaneous network. In the case that the spread
of the disease is much slower than the network
dynamics (i.e. A — 0, a — 0, but keeping A/a con-
stant), we obtain (see the electronic supplementary
material, appendix) Ay = @/(k). Thus in this case,
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Figure 3. Relative epidemic threshold (solid line) and relative
static epidemic threshold (dashed line) as a function of the
infectious period of the disease, for the NATSAL model.
The inset shows the epidemic thresholds as functions of
infectious period.

the social dynamics is so fast that, in terms of disease
spread, the network is equivalent to an ‘average’
network where all nodes have the same degree, (k).
Note that AZ®> A%

Although for static networks, the relative threshold A,/
a is a constant, for dynamic networks, the relative
threshold does depend on the infectious period # = 1/a.
Figure 3 shows that the relative epidemic threshold of
the NATSAL model is larger for STDs with larger
infectious periods. For ¢ of the order of a few months,
as is the case of untreated gonorrhoea, chlamydia and
syphilis, the difference between the dynamic and the
static threshold A, can be significant. In terms of the
non-normalized epidemic threshold, the inset of figure 3
shows that when the dynamics of the network is taken
into account, A. decreases more slowly than A., as
functions of 4.

Interestingly, it can be proven (see the electronic sup-
plementary material, appendix) that the effect of the
dynamics is always the same for all possible choices of
the link creation and dissolution functions, p(k; k;) and
o(k;, k;): the relative epidemic threshold is an increasing
function of #. Even though the mean-field approximation
is in general not very good for sparse networks (as should
be the case of most instantaneous sexual networks), simu-
lations carried out for the stochastic analogue of the
NATSAL model, shown in figure 4, qualitatively confirm
the analytical prediction of the increase of A./a with 4.
Note that the real epidemic threshold is even larger
than the mean-field value and therefore the underesti-
mation mentioned is even worse when compared
with simulation values.

For large values of the infectivity, figure 4 shows that
ng, the fraction of infected individuals in the endemic
state, grows with ¢, and its derivative at the epidemic
threshold also grows with #. This too is a general
feature of this kind of model. Interestingly, for large A,
n; does not tend to 1:

P(0
lmm=1- 0)

lim et (4.6)
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Figure 4. Fraction of the population that is infected, in the
equilibrium state, as a function of the infectivity of the
disease, for several values of the infectious period. (a) Theor-
etical curves obtained for the NATSAL model. (b) Results of
simulations of populations of 10000 individuals, using the
same parameters as for the NATSAL model. Symbols corre-
spond to averages over 100 runs. The lines joining the
symbols are only guides to the eye.

Intuitively, the picture is as follows. In a static net-
work (i.e. # — 0), the disease cannot reach isolated
individuals. In the dynamic case, however, even
momentarily isolated people get a partner after a time
1/{po), on average. But there is a probability that iso-
lated, infected people get cured before they get a
partner. This ensures that there is always a fraction of
isolated individuals who are not infected. The pro-
portion of partners that are infected, 6, is also an
increasing function of A/a but it tends to 1 for large
infectivities, for all values of #.

5. INCLUDING INTRINSIC FEATURES

Our model can be extended in many ways to make it
more realistic. One of them is to consider that the abil-
ity to obtain partners can depend not only on the
present number of partners, which is a dynamical vari-
able, but also on intrinsic features of each individual
that do not change over time (or at least over the
times relevant for the problem). Many characteristics
have been proposed to account for this ability:
beauty, talent, particular social behaviours and even
geographical location. The downside to this added rea-
lism is that such features are not easy to univocally
define [30], let alone quantify. It is interesting, however,
to see that some general properties can be derived for
our model.

We assume that the features ftake a finite number of
values, whose probability mass function is II(f). The
rates of partnership creation and dissolution depend
now on the fof each agent: p(k; f;, k; f;) and o(k;, f,
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k;, f;). The population can be divided into subpopu-
lations with a common value of f, with a degree
distribution P(k|f) given by equation (2.4). One impor-
tant difference with the model analysed in the previous
sections is that the time average of the number of part-
ners is not the same for all individuals, but depends on
their features. The interaction between the subpopu-
lations is encoded in the self-consistency parameters
z;( f), calculated from:

:L'(f) - <k>Zl,f’ p(lafa laf/)P(l;wa'-axN‘f/)
S S a(i [ LIP3, . av|f)

Note we are assuming that the dynamics intro-
duces no degree correlations within each subpopulation
(as in §3), but also that there is no correlation between
the intrinsic features of a node and its neighbours. It is
also possible to obtain the distribution of accumulated
contacts. In this case, Pr(m|n, f) is the probability
that an individual with feature f, having n partners at
the beginning of a given time period of duration T,
has had m partners at the end of that period. There is
now a set of equations for each f, analogous to
equations (2.7), which can be solved independently of
each other. The degree distribution for the period T
is Py (m) = 5y S0y Pr (min, f)P()TI(S).

The analysis of the spread of an infectious disease
can be carried out much in the same way as in §4.
Using the mean-field approximation, the epidemic
threshold is:

(5.1)

olk)

= , 5.2
" (k(al+ Ay) P, (5:2)

where (P7); = j P(j|f), )y denotes an average over the
distribution II( f) and () denotes an average over both
II(f) and P(n). It is instructive to compare the cases
where different distributions of f generate the same
instantaneous network. As expected, the static limit
(t;— 0) does not depend on 7(f). But the opposite
limit does depend on the features:

% _ ok
AZ(I(f)) = GOy,

where k( f) is the average of k over the individuals with
the same value of f For a non-trivial feature distri-
bution, it can be shown that this value is strictly
smaller than A7 = a/(k), the limit found in §4. In
other words, the effect of the social dynamics on the
spread of the disease is less pronounced if the instan-
taneous network is (at least partly) generated by the
features of the individuals.

In STD epidemiology, it is often assumed that there
is a small group of individuals, usually called core
group, whose contribution to the spread of the disease
is disproportionately large. Even though there is some
ambiguity in the exact characterization of it [31], this
label is frequently applied to people with very many
sexual contacts [20]. As mentioned above, for the
model presented in §3, the time average of the number
of partners is the same for all members of the population.
This implies that the people who are in the tail of the
instantaneous distribution, which can be considered as

(5.3)
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Figure 5. Relative epidemic threshold as a function of the
infectious period of the disease. The full curve corresponds
to the model that includes the data of gay pub visitation
frequency and the dotted curve corresponds to the model
that does not include that information.

a core group, cannot be always the same. In this
sense, the core group is a dynamic structure. On the
other hand, when intrinsic features are included in the
model, the time average becomes dependent on them
and therefore the composition of the core group
becomes more stable (because people with a larger
time average of number of contacts will be more likely
to be in the tail of the contact distribution at any
given time). Our result suggests that, even though
dynamic and static models can have core groups
having the same number of individuals at any time
(because their instantaneous contact distributions are
the same), dynamic core groups might be not as
effective as static ones in driving an epidemic.

For a practical example of including intrinsic features,
we have again used the NATSAL data. Of the data pro-
vided by the survey, one that in principle can be
unambiguously related to the ability to acquire contacts
is the frequency with which the individuals visit gay
pubs. Even though there were 10 possible answers, to
have statistically significant sets we have accumulated
the populations in only three groups: high frequency,
medium frequency and low frequency (see the details in
the electronic supplementary material, appendix). We
have fitted the accumulated contact distribution of
each population and thereby obtained the respective
values of p(k, f) and o(k, f). As before, we have assumed
that the rate of creation and dissolution of contacts
between individuals ¢ and j is simply multiplicative:
p(kw fia kj7 f}) = N_l p(km fz)p(kﬁ f]) and O-(kw fia kja f}) =
o(k;, f;)o(k;, f;). Note that, as in the previous sections,
this implies assuming that there is no assortativity by
degree or feature. Figure 5 compares the epidemic
threshold obtained for this population when the gay
pub visitation frequency is taken into account versus
what is obtained when this feature is not considered.
As predicted, the range of possible values of the epidemic
threshold becomes smaller when intrinsic features are
included. However, note that there is still a twofold
difference between the largest and smallest values of A..
It is interesting to note that up to approximately four
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months, adding intrinsic features to the model does not
change the epidemic threshold.

6. DISCUSSION AND CONCLUSION

The use of pair formation models to study the spread of
STDs is certainly not new. In the context of the mass
action approximation, they have been adapted to take
into account many different features of real populations,
both analytically [14,15] and numerically [16]. More
recently, pair formation has also been included in some
network models in which the number of contacts of
each individual is explicitly taken into account.
In general, however, most models do not use the data
about sexual networks that can be obtained from
sexual behaviour surveys. A notable exception are the
dynamic network models used to study the spread
of human immunodeficiency virus [21,32]. They consider
dynamics where links are neither created nor destroyed;
instead, randomly selected couples simply swap their con-
tacts. This preserves the number of contacts of each
individual at all times and thus the distribution of con-
tacts is an input parameter of these models. In the
model presented in this paper, the dynamics of stochastic
and independent creation and destruction of links gener-
ates a steady state with a degree distribution that does
not change (except for small stochastic fluctuations),
even though individuals are free to have any number of
contacts. The parameters of the model can be tuned to
obtain almost any desired degree distribution in the
steady state. It is important to realize that surveys of
sexual behaviour only provide information about the dis-
tribution of the number of contacts accumulated during
given periods of time, and not about the instantaneous
distribution of contacts. We have found analytical
expressions that give the distribution function of the
number of accumulated contacts, which makes possible
a direct comparison with the results obtained in the sur-
veys. This could also be useful in models of social network
dynamics not specifically related to the spread of diseases
[33]. Interestingly, there have been some recent attempts
in determining the rates of partnership formation and
dissolution [34,35] in sexual networks. Even though
these studies still do not have the level of detail necessary
to use their results as inputs of the model presented here,
they could be useful to test its predictions.

We have found that, because of the interplay
between the social and the epidemic dynamics, the rela-
tive epidemic threshold, as a function of the average
duration of infection, increases monotonically between
the two limit cases, A%/ = (k)/(k*) and AY/a = 1/({k).
Thus, approximating the epidemic threshold by the
static network threshold entails an underestimation.
Also the examples analysed show that, in real cases,
this underestimation can be significant for STDs
having an infectious period of the order of months (as
85, although to a lesser degree, this also happens
when intrinsic features are included). But, even in the
case when A, is a good approximation, the problem
that remains is how to estimate its value from sexual be-
haviour survey data. Usually, A, is estimated from the
network built by considering the distribution of the

J. R. Soc. Interface (2012)

number of accumulated partners as a degree distri-
bution for each recall period. We have shown that this
approximation does improve as shorter periods are con-
sidered. Unfortunately, we have also shown that, in real
cases, even the values obtained for rather short recall
periods (one month) can be much smaller than A..

It is often assumed that to study the spread of STDs
with short infectious periods, the relevant information
is encoded in the distribution of sexual partners for
short recall periods, whereas longer periods (of the
order of years) are more relevant for STDs with long
infectious periods. The results of the previous sections
show that this might not be the case, at least for
the epidemic threshold. It is true that sometimes this
threshold is well-approximated by the static limit,
whose estimation necessitates information about
sexual partners in time periods as short as possible.
But for STDs with long infectious periods, we find
that the epidemic threshold obtained with distribution
of partners for long recall periods underestimates the
static epidemic threshold, which in turn underestimates
the real threshold. Therefore, for these diseases, the best
would be to build a good social dynamics model by
fitting the empirical data for several recall periods,
and to calculate its corresponding epidemic threshold.

Perhaps, the two most important limitations of the
model presented here concern the assumptions of no assor-
tativity and the unipartiteness of the network. As
mentioned above, the predictions of homosexual and het-
erosexual populations may differ only if the social
dynamics and the epidemiological characteristics of both
populations are not the same. But taking this into con-
sideration doubles the number of parameters, and it is
not clear that analytical results can be obtained as
easily. This problem is compounded by the fact that fitting
heterosexual partner distributions is far from trivial
because the distributions reported by men and women
are usually not even compatible (the total number of con-
tacts reported by men is substantially higher than the total
reported by women). Although many explanations have
been proposed for this, there is still no consensus on this
matter. Thus, many different models should be tested,
using several criteria to make the distributions compatible.

Regarding assortativity, our model is only strictly
valid for populations with no degree correlations.
While this may be true in some cases [36], it must be
acknowledged that it is not in many others. One
obvious example are populations with prostitutes,
where a significant negative assortativity is to be
expected. In those cases, the model presented here, com-
bined with computer simulations, could be used as a
null model to study the influence of degree correlations.
There is also room for improvement in the approxi-
mation we have used. One possibility is to go one step
further from the mean-field theory and to include the
different moment closures that have been successfully
applied in simpler models [37]. It is not clear, however,
whether in our case such modifications would lead to
analytical solutions or approximations, which is one of
the main advantages of the model presented here.

While this manuscript was under review, we lear-
ned of a work published very recently that deals with
dynamic network models whose parameters are adjusted
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by comparing the resulting networks (obtained with com-
putational simulations) with data taken from NATSAL
2000 [38].

I wish to thank M. N. Kuperman and D. H. Zanette for a
critical reading of the manuscript and useful suggestions.
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