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Abstract: Proteins fluctuate, and such fluctuations are functionally important. As with any
functionally relevant trait, 1t 1s interesting to study how fluctuations change during evolution.
In contrast with sequence and structure, the study of the evolution of protein motions is much
more recent. Yet, it has been shown that the overall fluctuation pattern is evolutionarily con-
served. Moreover, the lowest-energy normal modes have been found to be the most con-
served. The reasons behind such a differential conservation have not been explicitly studied.
There are two limiting explanations. A “biological™ explanation 1s that because such modes
are functional, there is natural selection pressure against their variation. An alternative “phys-
ical” explanation is that the lowest-energy normal modes may be more conserved because
they are just more robust with respect to random mutations. To investigate this issue, I stud-
ied a set of globin-like proteins using a perturbed elastic network model (ENM) of the effect
of random mutations on normal modes. I show that the conservation predicted by the model
1s 1n excellent agreement with observations. These results support the physical explanation:
the lowest normal modes are more conserved because they are more robust.

Keywords: chemical physics; computer modeling; molecular dynamics; normal modes; pro-
tein dynamics; protein evolution.

INTRODUCTION

Protein motions are important for function. Typical examples are the required flexibility of binding sites
and the large conformational transitions necessary for allosteric activation. As with any other functional
trait, it 1s important to study how protein motions change during biological evolution. In contrast with
protein sequence and structure, the evolution of dynamics has been much less studied. However, there
has been significant recent progress.

The evolution of the overall pattern of protein flexibility 1s well studied in the case of adaptation
to extreme environments (see ref. [ 1] and references therein). Outside this domain, only recently back-
bone flexibility, as conveyed by B-factor profiles, has been used to perform systematic studies, which
have shown that flexibility diverges slowly so that it 1s significantly conserved at family and superfamily
levels [2,3].

Beyond comparative studies of overall flexibility, it 1s important to investigate individual motions
in more detail. The standard way of analyzing protein motions uses normal modes, the coordinates
describing the independent intrinsic vibrations. Each mode has an associated energy and amplitude,
which are related (the square amplitude is the inverse of the energy). Normal modes can be obtained in
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different ways, from diagonalizing the Hessian of the all-atom potentials used in molecular dynamics
(MD) simulations, to using coarse-grained elastic network models (ENMs) which model the protein as
a network of nodes connected by springs. For our purpose, we highlight that all methods give very sim-
ilar results, especially for the low-energy large-amplitude motions, which are the most interesting [4.5].
Here we will use an ENM to calculate the normal modes.

In several case studies, low-energy normal modes have been found to have functional value [6].
A remarkable result 1s that functional transitions between ligand-free and ligand-bound conformations
of allosteric proteins can usually be described using one or a few low-energy normal modes. This func-
tional importance prompted studies of evolutionary conservation of normal modes. It has been shown
that low-energy normal modes are evolutionarily conserved in several case studies [7-9]. A systematic
study of a large dataset of proteins representative of all structural classes and folds shows that this is a
general trend: the low-energy large-amplitude normal modes are the most evolutionarily conserved
[10].

The present work aims to investigate the reasons behind the observed higher conservation of the
lowest-energy normal modes. Are the low-energy normal modes conserved because they are function-
ally important or is there an alternative explanation? Most case studies mentioned before assume,
explicitly or implicitly, the functional interpretation. For example, some studies compare the divergence
of sequence or structure with that of motions and connect this to functional aspects [11,12]. However,
similarity of low-energy normal modes has been found also for structurally similar but functionally dis-
similar proteins, such as for non-homologous proteins with the same architecture [13] or even for com-
pletely unrelated proteins [10]. To account for this, an alternative explanation has been proposed: the
main reason behind such conservation could be that the low-energy normal modes are just more robust
with respect to mutations [10]. Even though one should not discard a role of functional constraints on
normal-mode conservation, an adequate null model should take into account the expected variation
under random mutations with no selective constraints.

This paper focuses on whether the higher conservation of the low-energy normal modes is due to
natural selection against their variation because they are functionally important or to their robustness
with respect to unselected random mutations. To investigate this issue, I use the linearly forced elastic
network model (LFENM), which models the effect of random mutations on protein structure [14,15],
to generate mutant structures and study the variation of their normal modes and compare the model pre-
dictions with the observed normal-mode variability for evolved proteins.

MATERIALS AND METHODS
Myoglobin and relatives

I will use the three datasets of proteins used to study the role of normal modes on evolutionary struc-

tural divergence in refs. [14,15]. All proteins are related to the sperm-whale myoglobin with Protein
Data Bank (PDB) code 1a6ém. The three sets are:

1)  The “globin-like” dataset, which consists of 23 members of the globin-like superfamily of evolu-
tionarily related proteins, according to the SCOP classification [16].

2)  The "myoglobin varants™ dataset, composed by labm and other 185 PDB files that correspond
to sperm-whale myoglobins including engineered mutants and alternative structures of the wild-
type determined under different experimental conditions: different ligand, pH, and/or tempera-
ture.

3)  The “LFENM" dataset, composed by 1500 structures generated using the linearly forced elastic
network model (see below).

A detailed list of the proteins included in the first two datasets can be found 1n [15].
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Elastic network model

The ENM represents the protein as a set of nodes centered at the alpha carbons connected by springs.
The potential energy 1s of the form

l i
V(r)zi(r—r[}) K(r—rg) (1)
where r is the position vector of a given conformation of the protein’s C , rj is the equilibrium (native)
conformation, and K is the stiffness matrix of the network of oscillators, which depends on the force

constants of the springs connecting nodes. There are a number of ENMs. Here we use the beta Gaussian
model [17].

Normal-mode analysis

Normal modes are the set of coordinates that uncouple the potential(1). They are obtained by solving
the eigenvalue problem

Kq, = 4,4, (2)

where the eigenvectors q,, are the normal modes and the eigenvalues A, represent the energies needed
to deform the protein along the normal mode directions. Thus, the lowest eigenvalues correspond to the
low-energy directions of deformation. The frequency of oscillations along mode # is proportional to 4, ,
and its amplitude is proportional to l:’\",l_n . Therefore, the lowest normal modes represent the slow,
large-amplitude, low-energy motions of the protein.

The lowest 6 normal modes have 0 eigenvalue. They represent translations and rotations of the
whole protein. The modes with non-zero eigenvalue represent internal motions and are the ones that are
going to be considered here. They are numbered n = 1,2,...3N - 6, N being the number of nodes of the

elastic network.

Normal-mode conservation

In order to study the evolutionary conservation of normal modes, we need to define and quantify nor-
mal-mode similarity. Let us assume that we have two proteins A and B that are aligned, so that there is
a one-to-one correspondence between a subset of sites of protein A with a subset of sites of protein B.
Let us number the sites included in these subsets from 1 to L, so that the ith site of the subset of pro-
tein A corresponds to the ith site of the subset of protein B. Let K be the stiffness matrix of protein A
(or B). Then sites can be sorted so that K can be written in block form:

Kpp Kp
K= 0 (3)
Kor Koo

where P corresponds to the subset of aligned sites and Q to that of nonaligned sites. Following [8,18,19]
we can find an effective matrix:

Kpp = Kpp— KpoK0Kop (4)
The eigenvectors of this matrix are the effective normal modes that describe the motion of the aligned
part of the given protein. Since the aligned subsets of proteins A and B correspond to each other, their
effective normal modes are comparable in the sense that they are vectors in the same space.

Since the effective matrices K and KB are symmetric, their eigenvectors form complete basis
sets of the space spanned by the coordinates of the aligned sites. Therefore, any vector within such
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space can be spanned in terms of either {qi‘} or {qE {. In particular, any normal mode of protein A can
be written as a linear combination of normal modes of protein B:

A AB B
q, = zsmn qn (3)

i

where the overlap is given by the inner product

S =ta"tp )
Let

2
P = (857 ) (7)

If the normal modes are normalized, it follows that
AB
Z B =1 (8)

so that P;f;,]? can be interpreted as the relative contribution of the mth mode of protein B to the nth mode

of protein A. The set {P;f‘mE} has the properties of a probability. Therefore, we can define an entropy
AB AB AB
H == Py Py (9)
m
This entropy 1s a measure of the variability of mode q;":‘ when compared with protein B: 0 < H;‘:‘E <
In(3N — 6). An alternative measure of variability 1s
cAB = o Ho (10)

fl

It can be interpreted as the effective number of modes of B contained in the nth mode of A: 1 < KHAB <
3N - 6.

To summarize, given two proteins A and B, they are aligned and superimposed, the effective K
matrices and corresponding normal modes are calculated, and the variability of each mode 1s calculated
using eq. 10. To quantify the variability of a mode of A with respect to a set of proteins, the variability
1s averaged over all members of the dataset.

Since the variability will depend on the difference between the two proteins compared, and I shall
compare very divergent globin-like proteins with low sequence identities, with cases in which there are
only a one or a few mutations, I will normalize the variabilities using Z-scores:

Ky _{E}

L, =
Ji)- 7 -

where averages are obtained over all normal modes.

Linearly forced elastic network model

Let (1) be the ENM potential for a given reference “wild-type” protein. Then, according to the LFENM,
the potential for a protein that results from introducing a perturbation into the reference protein is given
by

1«”:%(r—rﬂ)TK(r—rﬂ)—fT(r—rﬂ] (12)

© 2012, IUPAC Pure Appl. Chem., Vol. 84, No. 9, pp. 1931-1937, 2012



Evolution of protein motion 1935

where f is a “force” vector that models the effect of the perturbation. To model random mutations at a
given site 1 we use

£ = (13)

N

where fj,f is a three-dimensional force vector onto site k due to a random mutation at : and we use a vec-
tor directed along contact -k for all sites in contact with 7 (within a 7.5A cutotf) and a reaction force
f; = — Xf]. The magnitude of each force is picked randomly within the interval [f,f]. Here we used

L

1= 2. The equilibrium structure of the perturbed proteins, which minimizes its potential, 1s

g =ry +K7'f (14)

For a detailed description and derivation of the LFENM see refs. [14,135].

Once the perturbed equilibrium structure is obtained, we calculate the stiffness matrix of the per-
turbed protein K', which, within the ENM approximation depends only on structure. Then, we calcu-
late the perturbed normal modes {q, } and compare with the reference ones {q,} to obtain the degree
of variation of each mode. To study the effect of random mutations, we introduce several random muta-
tions at randomly picked sites and average over them.

RESULTS AND DISCUSSION

To study the origin of the higher degree of conservation of low-energy normal modes, I compared the
mode-dependent conservation of three sets of proteins: using as reference the sperm-whale myoglobin
with PDB code labm, (1) the “globin-like” dataset consists of 22 members of the homologous “globin-
like” superfamily, (2) the “myoglobin variants™ dataset that includes 185 mutants and variants of 1abm
in different experimental conditions, and (3) the “LFENM"™ dataset that consists of simulated mutants
obtained from labm by applying the LFENM model. For more details, see Methods and ref. [15].

For a given dataset, each protein was aligned and superimposed with the reference labm, I cal-
culated the normal modes, compared them with those of 1abm, and calculated the mode-dependent
degree of variation k,, then I averaged these over all the proteins of each dataset. Figure 1 shows the
average degree of variation as a function of normal mode for the dataset of globin-like evolved proteins
and the dataset of simulated LFENM proteins. As expected from previous reports, for the evolutionar-
ily related proteins, normal-mode variability tends to increase with normal-mode number: the lowest
normal modes are the most conserved. The lines that fit the points for the experimental and simulated
results are indistinguishable, showing that the agreement is excellent. More quantitatively, the correla-
tion coefficient between the globin-like and LFENM results is 0.95. Finally, inspection of the dataset of
myoglobin variants shows that even though it is noisier, there is a clear tendency of increasing vari-
ability with normal-mode number (data not shown). Results are noisy because despite the rather large
number of variants (185) the spectrum of mutations and experimental conditions studied is very biased:
most variation is due to either different ligands at the active site or engineered mutations at sites related
to the active site. Despite this, the agreement between the variants dataset and the other two datasets is
very good: the correlation coefficient between the variants dataset and the globin-like dataset is (.75,
and with the LFENM dataset is 0.70.
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Fig. 1 Evolutionary variability of normal modes. Variability, quantified using the Z scores of eq. 11 vs. normal-
mode index. Results for the experimental globin-like dataset of evolutionarily related proteins (open circles) and
for random mutants simulated using the LFENM model (crosses) are shown. The smooth lines are Loess it to the
points. They are difficult to tell apart using visual inspection due to the high similarity between experimental and
simulated results.

The excellent agreement between the mode-dependent evolutionary variability observed in glo-
bin-like proteins with that due to random mutations as obtained using the LFENM supports the idea that
the observed variability of normal modes reflects their robustness with respect to mutations, rather than
the effect of natural selection to conserve “functional” modes. This is not to say that the lowest normal
modes are nonfunctional. There is evidence for the functional relevance of the lowest normal modes in
many case studies (see ref. [6] and references therein). For the case of globin-like proteins, specifically,
the lowest two normal modes have been linked to function [20]. However, the present results imply that
one cannot use as evidence of the functional importance of a given normal mode its higher degree of
conservation. Selection acts onto the material produced by random mutations, therefore, to demonstrate
the effect of natural selection one should take first into account, as null hypothesis, the effect of random
mutations. LFENM 1s such a null model and the present results show that the relative variabilities of
different normal modes for the benchmark case of globin-like proteins do not depart from the expecta-
tions of the null model.

To summarize, I have shown that a very simple model of the effect of random mutations on pro-
tein normal modes accounts for the observed higher conservation of the lowest normal modes in evo-
lutionary related proteins. This strongly supports the notion that the observed evolutionary conservation
of the lowest normal modes 1s due to their higher robustness with respect to random mutations rather
than natural selection against the variation of functional traits.
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