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Abstract
We analyze the vibrational effects on the Ti 1s excited states in cubic SrTiO3 and related
pre-edge x-ray absorption fine structure using first-principles methods. Ground-state,
total-energy and electron–core hole Bethe–Salpeter calculations are performed for different
atomic configurations related to eg-symmetry distortions of SrTiO3. From these, we can obtain
normal-mode gradients of the electronic excited-state energy, i.e., of the excited-state
Born–Oppenheimer surface. This yields the corresponding electron–phonon coupling
coefficients that allow us to predict the spectral broadening induced by those vibrational modes.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The excitation spectra of molecules and solids depend on the
electronic and vibrational degrees of freedom. Hence, their
complete description must reflect both of the above. For
instance, the pre-edge features in the Ti 1s edge in a perovskite
compound reflect the crystal field-split 3d manifold, but each
peak is itself broadened for several reasons, including lattice
vibrations. Nowadays, core and valence-electron excitations
and spectra are often calculated using the Bethe–Salpeter
equation (BSE). However, this is usually done for fixed atomic
positions. Beyond that, the spectra can be calculated using
the Born–Oppenheimer approximation, so that the electronic
and nuclear motions are considered independently. In this
approximation, the electronic energy is treated as a function of
atomic configurations around some equilibrium one. Initially,
when an electron–hole pair is created by optical excitation, the
final state has approximately the same atomic configuration as
the initial state. However, optical transitions such as occur
in x-ray absorption formally involve electronic-vibrational
levels. As a result, vibrational effects shift and broaden
spectral features because of coupling of atomic displacements
to electronic states and excitations.
3 Present address: Instituto de Desarrollo Technológico para la
Industria Quı́mica (INTEC), Güemes 3450, 3000 Santa Fe, Argentina.

In this work we compute the electronic excited-state
forces in order to include the vibrational effects on the
spectrum for the Ti K-shell electron excitation spectra in
cubic SrTiO3 (STO). The Ti K near-edge absorption spectrum
is characterized by Ti 1s–3d quadrupolar transitions, to
the lower, triply-degenerate T2g (dxy , dyz , dzx ) state and
upper, doubly-degenerate Eg (dx2−y2 , d3z2−r2 ) state. In the
presence of the attractive potential of a Ti 1s core hole, such
states are essentially localized molecular orbitals. The forces
are computed within the Born–Oppenheimer approximation.
By combining these results with those of vibrational-
mode calculations and going beyond the Born–Oppenheimer
approximation using a model Hamiltonian, we incorporate key
vibrational effects into the absorption spectrum.

Section 2 describes vibrational-mode (phonon) calcula-
tions in cubic STO (in the electronic ground state). In section 3,
we present an approximation that we use to calculate excited-
state forces in the case of core excitations. Section 4 gives
the results for our calculated spectra and Born–Oppenheimer
excited-state energy in cubic STO with the atoms displaced
along localized vibrational eg modes. In section 5 we describe
the model Hamiltonian used to quantify the broadening of the
electronic excitation spectrum resulting from such vibrational
degrees of freedom.
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Table 1. Irreducible representations (irr. rep.) and calculated
wavenumbers (ν/c) for �-point phonons in cubic STO.

irr. rep. ν/c (cm−1)

t1g 113i
t1u 99, 187, 454, 587
t2g 136, 433
t2u 221
eg 545
a1g 887

2. Phonon calculations

SrTiO3, one of the best-studied perovskite materials, adopts
the centrosymmetric cubic structure at room temperature, and
undergoes a structural phase transition from the cubic to a
tetragonal, nonpolar antiferrodistortive (AFD) phase as the
temperature drops below 105 K [1, 2]. Cooling to still lower
temperatures results in a strong Curie–Weiss-type increase in
the static dielectric response, suggestive of a phase transition
at about 36 K. However, no ferroelectric transition actually
occurs, and the dielectric constant saturates to an enormous
value at zero temperature.

First-principles calculations have contributed significantly
to the understanding of the structural properties of STO.
In particular phonon calculations in cubic STO at the zero-
wavevector � point are well reported in the literature [3, 4], as
well as in the tetragonal phase [5]. Because we want to analyze
vibrational effects involving the six oxygen atoms around one
Ti, we report phonon calculations using a doubled unit cell with
the two Ti atoms along the [111] direction. First-principles,
density functional [6] calculations were performed within
the local-density approximation (LDA) [7] as implemented
in the ABINIT code [8]4. Teter extended-norm-conserving
pseudopotentials [9] were used treating 10 electrons as
valence for Sr(4s24p65s2), 12 for Ti(3s23p64s23d2) and 6
for O(2s22p4). Calculations were performed with a 6 ×
6 × 6 Monkhorst–Pack k-point mesh [10]. The electronic
wavefunctions were expanded in a plane-wave basis up
to 100 Ryd. Our calculations were carried out at the
resulting theoretical cubic lattice constant of 3.845 Å,
which is about 1.3% smaller than the experimental value
of 3.897 Å extrapolated to 0 K, in agreement with the
typical LDA underestimation found in previous studies.
Table 1 shows the phonon wavenumbers for the various
irreducible representations. The imaginary frequency of the t1g

mode, which involves octahedron rotation, indicates an AFD
instability at our particular LDA lattice parameter, while the
first t1u mode corresponding to the ferroelectric (FE) distortion
is stable. Our results are in good agreement with previous
theoretical [5] and experimental results [11]. However, there
are small differences among the lattice parameter values
used that affect the vibrational frequencies, consistent with
the structural instabilities in FE perovskites being strongly
dependent on the unit cell volume.

4 Certain commercial products are identified in this work for purposes of
clarity. Mention of such products does not constitute an endorsement by the
National Institute of Standards and Technology and does not indicate that they
are necessarily the best products for a given purpose.

From symmetry analysis, one can identify the modes
that can directly affect the Ti 3d orbitals through Jahn–Teller
distortions. We focus therefore on even-parity modes that
mainly involve change of the Ti–O bond length, such as the
a1g breathing mode and the eg modes, as opposed to the
t1g octahedron-rotation modes and t2g distortion modes. In
relation to Ti 1s-to-3d excitations, we specifically analyze the
local oxygen-octahedron vibrational effects, and so seek to
obtain the corresponding frequency spectra. For this purpose,
we borrow the short-range, ‘local-mode’ O–O interatomic
force constants (IFC) from [12] computed for BaTiO3 and
PbTiO3 and solve the constrained normal-mode problem to
obtain the frequencies. Our use of these IFCs for STO is
justified by the fact that they are almost independent of the A
(and, to a lesser degree B) sites in ABO3 perovskites.

For completeness, one should consider the sensitivity
of the present results to the choice of density functional
(LDA in this case). Tinte et al [13] found that use of a
generalized-gradient approximation (GGA) overestimates the
theoretical volume in STO and hardens the phonon frequencies
as compared to the LDA ones at the experimental volume.
In particular, the GGA stabilizes STO against ferroelectric
distortions. More recent electronic-structure calculations
in perovskites render similar results for a wide variety of
properties in the LDA and within a given GGA [14, 15].
Anyhow that does not affect the present results. Indeed, the
high-frequency eg local-mode oscillator should be qualitatively
unchanged when comparing LDA and GGA calculations.
We also expect that other aspects of the choice of density
functional that is used, including local dielectric screening
effects, should be robust with respect to that choice. These
screening effects describe how the charge density is affected
by a Ti 1s core hole and its concomitant potential disturbance.

Use of a functional like LDA + U [16], as compared to
the LDA, is not critical in the present study of STO. There is
nominally at most one 3d orbital occupied on the Ti site, and
this occurs only within the Bethe–Salpeter calculations, where
an electron does not have the self-interaction that typically
plagues LDA studies involving transition-metal and rare-earth
systems. However, it is clear that the present Bethe–Salpeter
approach will not work as well when there is a partially-filled
d or f shell in the ground state or when a system is strongly
correlated [17]. In such situations, it can be important to use
methods like LDA + U in ground-state calculations, perhaps
in combination with approaches such as dynamical mean-field
theory (DMFT) in order to better treat strong correlation and
multiply-excited many-body states [18].

3. Excited-state forces

When an electron is excited from a core level in a solid, it
leaves behind a core hole. The x-ray extinction coefficient can
be given by the expression, μ(ε) ∼ −Im〈0|O[ε + iγ (ε) −
H ]−1|0〉. This involves the electronic ground-state |0〉, light–
matter interaction O, and core-excited Hamiltonian H . H
includes realistic descriptions of electron core and band states,
as well as the electron–core hole interaction screened in a self-
consistent fashion [17, 19]. Here μ(ε) for excitation energy ε

is calculated by solving the Bethe–Salpeter equation (BSE),
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Figure 1. Calculated Ti K spectra for cubic SrTiO3. The top panels
shows spectra with all broadening effects except vibrational ones
(line with points) and all broadening effects (points). The bottom
panel shows a spectrum that includes vibrational broadening from the
model Hamiltonian around the Eg peak and a minimal degree of
other broadening effects for presentation purposes. The arrow shows
the center-of-mass of the Eg peak’s spectral weight.

which is the coupled equation of motion for the interacting
electron–hole pair. The parameter γ (ε) is included to account
for experimental resolution, core hole lifetime broadening
and intrinsic broadening of the electron band states that are
typically probed at a given excitation energy [22].

The excited-state total energy of the system in a given
atomic configuration specified by atomic coordinates Q is

E∗
tot(Q) = E0(Q) + �Eel(Q). (1)

This is the sum of the atom-configuration-dependent electronic
ground-state LDA total energy, E0(Q), and the change of
electronic energy between the final and initial state, �Eel(Q).
Thus, E0(Q) describes the shape of the ground-state Born–
Oppenheimer surface versus Q, whereas �Eel(Q) describes
the vertical separation of the ground- and excited-state surfaces
as a function of Q:

�Eel(Q) = [ECBM(Q) − EB(Q)] − EC(Q). (2)

This involves the 3d binding energy, EB(Q), given by the
first peak of the calculated absorption spectrum relative to the
conduction-band minimum, ECBM(Q). The initial-state energy
is the relative 1s binding energy, EC(Q). For this, we use the
approximation

EC(Q) = C + ELDA
local (Q) + [�Wc(Q) − �Vc]/2, (3)

where ELDA
local (Q) is the local Hartree plus exchange/correlation

potential at a Ti site obtained from the electronic ground-state
LDA calculations, and the [�Wc(Q) − �Vc]/2 term accounts
for the valence electrons’ contribution to the screening of the
core hole potential as described in [19]. Division by two arises
for familiar reasons related to linear-response arguments. C
is a large additive constant accounting for the remainder of
the Ti 1s binding energy. In this way we estimate the core-
level binding energy in a manner different from the formalism

x

y

z

x

y

z

Figure 2. Vibration eg modes, which we dub eg,3z2−r2 (left) and
eg,x2−y2 (right).

presented in [20] where the valence-hole binding energy is
computed using other approximations more appropriate to the
valence case.

We explore the excited-state Born–Oppenheimer surface
along selected directions that correspond to atomic config-
urations with displaced atoms following selected vibrational
modes. The eg modes appear to affect spectra by far the most
strongly, and we henceforth consider them only. While dis-
tortion along the a1g mode directly affects the various terms
in �Eel(Q) strongly, the effects appear to cancel. For sev-
eral configurations along the eg mode directions, we com-
pute E∗

tot(Q). The derivatives of E∗
tot(Q) with respect to the

mode amplitudes give the excited-state forces. For the BSE
calculations, we use norm-conserving pseudopotentials with
Ti 3s/3p/3d, Sr 4s/4p/4d, and O 2s/2p/3d states treated as va-
lence states and an 81 Ryd plane-wave cutoff. The full Bril-
louin zone is sampled at 512 k-points, which is well con-
verged. About 60 conduction bands are included when cal-
culating spectra. As in the earlier section, we use a 10 atom
supercell with two primitive units displaced along the [111] di-
rection with local oxygens displaced oppositely. We assume
the room temperature experimental lattice constant of 3.905 Å.
Further details are provided in [21].

4. Results

For cubic STO, figure 1 shows calculated x-ray absorption
spectra for excitation near the Ti K edge, assuming a
4971 eV separation between the Ti 1s level and conduction-
band minimum. We consider two equivalent combinations
of incident x-ray radiation propagation direction, q̂, and x-
ray electric-field direction, ê: (1) q̂ ‖ 110, ê ‖ 11̄0, and
(2) q̂ ‖ 101, ê ‖ 101̄. These combinations both allow
quadrupolar transitions of the Ti 1s electrons to the Ti 3d-
derived Eg unoccupied molecular orbitals. Three calculations
are shown. In panel (a), there is a spectrum that includes only
the broadening because of γ (ε), using a black line, in which the
arrow indicates the peak position before broadening. In panel
(b), there is a spectrum with only the vibrational broadening
of the Eg peak. We obtained this broadening with the model
Hamiltonian described in section 5. However, the γ -broadened
version of the full spectrum including the vibration broadening
is also shown using a red line in panel (a). The vibrational
broadening leads to a smaller peak height and larger peak
width, but is less pronounced when viewed in combination
with broadening because of γ (ε). The experimental spectrum
has been presented by Woicik et al [21].

When the six nearest oxygen atoms are displaced
following the eg,3z2−r2 and eg,x2−y2 vibrational modes (see
figure 2), the Eg peak varies as indicated in figures 3 and 4.
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Figure 3. Electronic Eg-derived peaks for distorted configurations
following the vibrational eg,3z2−r2 mode.
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Figure 4. Electronic Eg-derived peaks for distorted configurations
following the vibrational eg,x2−y2 mode.

In the eg,3z2−r2 mode, the apical oxygens move twice as much
as the in-plane ones, and there is a relative sign difference for
changes in the apical versus in-plane Ti–O distance. In the
eg,x2−y2 mode, the four in-plane oxygens move along the x
versus y directions inward or outward by equal but opposite
amounts. For normalized displacement patterns, the mode
amplitude is a scalar that can be represented by Qθ and Qε

for eg,3z2−r2 and eg,x2−y2 , respectively, following the notation
of [23]. Figure 3 (figure 4) shows the calculated spectra for
distorted configurations following the eg,3z2−r2 (eg,x2−y2 ) mode
for different displacement amplitudes. Undistorted cubic STO
corresponds to Qθ = Qε = 0. When an eg distortion of
the TiO6 octahedron is imposed, the degeneracy of the Eg-
derived electronic states is lifted. The new singly-degenerate
states have symmetries that depend on the distortion. For a
given q̂ and ê, the associated quadrupole-transition moments
determine the peak heights. As a check, we confirmed that
geometrical analysis predicts relative peak heights like those
shown in figures 3 and 4.

Figure 5. Excited-state Born–Oppenheimer surface along the
vibrational eg modes for different q̂ and ê directions.

There is only one parameter necessary to describe the E–
e electronic-vibrational coupling. Using the peak positions
and the results of performing LDA total energy and valence-
electron screening calculations, we obtain E∗

tot(Q) for each
configuration as described in section 3. We have also analyzed
spectra for the combinations, q̂ ‖ 100, ê ‖ 010, and q̂ ‖ 100,
ê ‖ 001. From this analysis we can observe how Ti 1s–3d T2g

transitions are affected by the eg modes. All excited-state total-
energy curves as a function of eg mode amplitudes are plotted
in figure 5, as such curves can be deduced from the apparent
positions of pre-edge absorption features.

Fitting the energy curve with a quadratic expansion in
the mode amplitude, for the Eg peaks we obtain a slope of

F = −2.3 eV Å
−1

evaluated at zero displacement. For the
T2g peaks, the energy curve is comparatively flat in the same
amplitude range, so we can neglect the eg-mode vibrational
effects on the T2g peaks and only consider the electronic
Eg states. This also leaves untreated the Ti–O6 relative
displacement, which can allow Ti 3d–4p hybridization and
strongly affect the spectrum [21].

5. Model Hamiltonian

To determine the vibration effects on spectra, we solve a
Hamiltonian that includes an electronic term accounting for the
Eg core hole exciton states, a vibrational term that describes
the eg vibrational Hamiltonian, and a coupling term between
the excitonic and vibrational states. This phenomenon is
described by the Jahn–Teller theorem5. As already noted,
structural distortions away from the cubic-symmetry Q =
0 nuclear configuration along the degenerate normal-mode
coordinates remove the degeneracy of core hole exciton levels.
In particular, the E–e Jahn–Teller problem [23, 24] is one of
the relatively simple cases that can be solved analytically in
the weak- and strong-coupling limits (i.e., small-F and large-
F). In this case, the coupling is of intermediate strength, so
a numerical solution is best. Hence, we briefly summarize
how one numerically solves the Jahn–Teller problem, which

5 The Jahn–Teller theorem states that, if a system has a spatially degenerate
electronic state and other appropriate conditions apply, the system will distort
in such a way as to remove the electronic degeneracy.
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is already well described elsewhere [23], and then present our
results.

In general, to solve a Jahn–Teller problem one can first
find the active coordinates or space of possible distortions
Q for the given f -fold degenerate electronic manifold. For
each state k in the manifold, the electronic wavefunction is
ξk(r, Q), where r indicates the electronic degrees of freedom.
Here, k can have one of two values, which we denote by the
symmetry of the core hole exciton wavefunction, k = 3z2 − r 2

or k = x2 − y2. The system’s full dynamics involve a
wavefunction 	(r, Q) = ∑

k χk(Q)ξk(r, Q). The expansion
coefficients {χk(Q)} depend only on Q. The electronic
wavefunction ξk(r, Q) is also Q-dependent. This was included
automatically in our BSE calculations, but to simplify the
model Hamiltonian, we assume ξk(r, Q) = ξk(r, 0). We can
then solve f (in this case, f = 2) coupled equations of the
form

[�Eel(Q = 0) + HQ + Evib(Q) − E]χk(Q)

+
∑

k′
Wkk′ (Q)χk′ (Q) = 0. (4)

HQ represents the kinetic energy of the TiO6 cage oxygen
nuclei, and Evib(Q) is the quadratic vibrational term that
describes the restoring force for the eg vibrational modes.
In the Ti 1s core hole excited state with the electron in the
Eg manifold of 3d states, Wkk′ (Q) describes the electronic-
vibrational coupling that modifies the shape of the Eg peak.
For small values of Q, we have

W3z2−r2,3z2−r2 ≈ F Qθ , (5)

Wx2−y2,x2−y2 ≈ −F Qθ , (6)

and
W3z2−r2,x2−y2 = Wx2−y2,3z2−r2 ≈ −F Qε . (7)

Retaining only this linear term is referred to as the E–e
problem.

The resulting coupled equations for this E–e problem have
an underlying symmetry, which ensures that the vibrationally
broadened spectrum is the same for any linear combination of
Eg core-excited states produced according to a combination
of q̂ and ê. Physically, the equations describe two
equivalent vibrational oscillators coupled to an otherwise
doubly-degenerate core hole excitonic system. They have
known analytical solutions only in the limiting cases of weak
and strong coupling, defined using the dimensionless ratio,
EJT/(h̄ω). For the linear E–e problem, the Jahn–Teller energy
EJT is defined as EJT = F2/(2μω2), where μ is the oxygen
ion mass. The values of F and ω documented in previous
sections imply EJT = 0.6158 eV and h̄ω = 0.0335 eV.
Elegant methods for numerical solution of equation (4) and
resulting spectra have been formulated [23, 24]. We have
used such methods and also confirmed their results by our own
numerical calculations using the Haydock recursion method
without exploiting symmetry to the same degree.

Figure 1(b) shows the energy spread of the Eg peak only
because of vibrational effects. However, figure 1(a) shows
that, once experimental and electronic lifetime widths are
included (with the black curve including only these effects), the

vibrational effects on the spectrum are less perceptible (with
the points including these effects as well). Thus, this work
quantifies vibrational effects and suggests that, for the Ti 1s
edge, the Jahn–Teller E–e broadening of the Eg peak is at most
weakly discerned.

6. Conclusion

In this work, we have used results obtained by others
and carried out our own calculations related to vibrational
properties of perovskites, the electron–core hole Bethe–
Salpeter equation, x-ray absorption spectroscopy, electronic-
vibrational coupling, and the E–e Jahn–Teller problem. These
findings have all been applied to the broadening of the Eg peak
in the Ti 1s near-edge spectrum in SrTiO3, though the results
should also be of interest for many other compounds. While
there is significant broadening of the Eg peak because of E–e
Jahn–Teller coupling, other broadening effects can obfuscate
this.

The role of the same Jahn–Teller coupling in the context
of a Ti L-edge calculation could be of particular interest,
because one has a smaller core hole width to consider and
the added complication of significant multiplet effects. It
should not be difficult to include all such effects and the
vibrational effects in a calculation that would differ from a
measured absorption spectrum chiefly because of the effects of
multi-electron excitations. Furthermore, the T1u ferroelectric
distortions involving the Ti being displaced with respect to
the O6 cage also remain to be considered in the case of the
Ti 1s edge, where 3d–4p hybridization can greatly enhance the
relatively large dipole character of the hybridized Eg peak.
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