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Abstract

The aim of this work is to apply the complex interpolation method to norms of n-tuples of operators in a
symmetrically-normed ideal Jφ ⊆ B(H) defined by a φ symmetric norming function (s.n.f.). The norms
considered define Finsler metrics in a certain manifold of positive operators, and can be regarded as weighted
φ-norms, the weight being a positive invertible operator.
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1. Introduction

Let B(H) denote the algebra of bounded operators acting on a complex and separable Hilbert
space H (with norm ‖ · ‖), Gl(H) the group of invertible elements of B(H) and Gl(H)+ the
set of all positive elements of Gl(H).

In a previous work [5], we studied the effect of the complex interpolation method on the p-
Schatten classes (the idea was motivated by [1]). These ideals belong to a larger class of ideals
called symmetrically-normed ideals. The aim of this work is to generalize the results [5] to this
larger class of ideals.
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By Calkin’s theorem (see, e.g. [9, Chapter 3, Th. 1.1]), if I is a two-sided ideal then

I ⊆ B0(H),

where B0(H) is the ideal of all compact operators in B(H). If X ∈ B0(H), we denote by
s(X) = {sj (X)}j∈N the sequence of singular values of X, decreasingly ordered:

sj (X) = inf{‖X − S‖: rank(S) � j}.
Note that sj (X) ↘ 0. There are other alternatives to describe the sequence s(X). For instance,

the sj (X)’s are the eigenvalues of |X| = (X∗X)1/2.
If φ is a symmetric norming function (the definition will be given below), we consider the

ideal of B(H)

Jφ = {X ∈ B0(H): ‖X‖φ < ∞},
where

‖X‖φ = φ(s(X)).

On Jφ we define the following norm associated with a ∈ Gl(H)+:

‖X‖φ,a :=‖a−1/2Xa−1/2‖φ = φ(s(a−1/2Xa−1/2)).

The use of this norm has a geometrical meaning which shall be explained later.
The material is organized as follows. In Section 2, we recall some basic facts about symmetric

norming functions and the corresponding symmetrically-normed ideals. Section 3 contains a brief
summary of the complex interpolation method. In Section 4, we apply this method and obtain that
the curve of interpolation coincides with the curve of weighted norms determined by the positive
invertible elements

γa,b(t) = a1/2(a−1/2ba−1/2)ta1/2.

In Section 5, we present an elementary interpolation argument to obtain Corach–Porta–Recht
type inequalities.

Finally, in Section 6 we present the geometrical meaning of the interpolating curve γa,b.

2. Symmetrically-normed ideals

We begin by recalling some facts concerning normed ideals (see [9]).
Let I be a proper two-sided ideal of B(H), it is well known that

B0,0(H) ⊆ I ⊆ B0(H),

where B0,0(H) is the ideal of finite rank operators.
I is a symmetrically-normed ideal if I is an ideal of B(H) and a Banach space with respect

to the norm ‖ · ‖I satisfying:

(1) ‖XT Y‖I � ‖X‖‖T ‖I‖Y‖ for T ∈ I and X, Y ∈ B(H),
(2) ‖X‖I = ‖X‖ if T is the rank one.

In particular, condition (1) implies that the norm ‖ · ‖I is unitarily invariant

‖UXV ∗‖I = ‖X‖I
for X ∈ I and any pair U,V of unitary operators.
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Let c0 and c0,0 be the spaces of sequences of real numbers defined by

c0 =
{
ξ = {ξi}: lim

i→∞ ξi = 0

}
and

c0,0 = {ξ = {ξi} ∈ c0: only finitely many ξi ’are nonzero},
respectively.

A function φ on c0,0 is said to be a symmetric norming function (s.n.f.) if it satisfies:

(1) φ is a norm on c0,0;
(2) φ({1, 0, 0, . . .}) = 1;
(3) φ({ξj }) = φ({|ξπ(j)|})) for any bijection π : N → N.

Two s.n. functions φ and ψ are equivalent if

sup
ξ∈c0,0

φ(ξ)

ψ(ξ)
< ∞ and sup

ξ∈c0,0

ψ(ξ)

φ(ξ)
< ∞.

Let us denote by cφ the set of all sequences ξ ∈ c0 for which

sup
n
φ(ξ (n)) < ∞,

where ξ (n) = {ξ1, ξ2, . . . , ξn, 0, 0, . . .}. We extend the domain of the function φ by putting, for
each ξ ∈ cφ

φ(ξ) = lim
n→∞φ(ξ

(n)).

If X ∈ B0(H) and φ is a symmetric norming function, let us denote

‖X‖φ = φ(s(X)).

There are two symmetrically-normed ideals [9, Th. 4.1] related to φ:

Jφ = {X ∈ B0(H): ‖X‖φ < ∞}
and J

(0)
φ the closure of B0,0(H)with respect to the norm ‖ · ‖φ . Note that J(0)

φ does not coincide
with Jφ in general. Both spaces coincide if and only if φ is a regular function, that is

lim
n→∞φ(ξn+1, ξn+2, . . .) = 0.

Let φ be a s.n. function. The function

φ′(η) = sup

{∑
i

ηiξi : ξ ∈ c0,0, ‖ξ‖φ � 1

}
makes sense for any η ∈ c0,0, and clearly is an s.n. function. The functionφ′ is called the conjugate
function of φ.

For any s.n. function φ one has (φ′)′ = φ, and if φ is not equivalent to φ1(ξ) = ∑
i |ξi |, one

has the following duality:

‖X‖φ′ = sup{|tr(XY)| : Y ∈ J
(0)
φ , ‖Y‖φ � 1}.
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For example for 1 � p < ∞, the functions

φp(ξ) =
(∑

i

|ξi |p
)1/p

and

φ∞(ξ) = max
i

|ξi |
give rise to

J
(0)
φ = Jφ = Bp(H),

where Bp(H) denotes the p-Schatten class.
From now on, we will assume that φ′ is not equivalent to φ1.

3. The complex interpolation method

We recall the construction of interpolation spaces, usually called the complex interpolation
method. We follow the notation used in [2] and we refer to [14,4] for details on the complex
interpolation method. From now on, we simply denote by J the ideal defined by φ.

A compatible couple of Banach spaces is a pair X = (X0, X1) of Banach spaces X0, X1 such
that both are continuously embedded in some Hausdorff topological vector space U. Observe that
for all a, b ∈ Gl(H)+ the Banach spaces (J, ‖ · ‖φ,a) and (J, ‖ · ‖φ,b) are compatible. We will
simply write this pair of spaces J when no confusion can arise.

If X0 and X1 are compatible, then one can form their sum X0 +X1 and their intersection
X0 ∩X1. The sum consists of all x ∈ U such that one can write x = y + z for some y ∈ X0 and
z ∈ X1.

Suppose thatX0 andX1 are compatible Banach spaces. ThenX0 ∩X1 is a Banach space with
its norm defined by

‖x‖X0∩X1 = max(‖x‖X0 , ‖x‖X1).

Moreover, X0 +X1 is also a Banach space with the norm

‖x‖X0+X1 = inf{‖y‖X0 + ‖z‖X1 : x = y + z, y ∈ X0, z ∈ X1}.
A Banach space X is said to be an intermediate space with respect to X if

X0 ∩X1 ⊂ X ⊂ X0 +X1

and both inclusions are continuous.
Given a compatible pair X = (X0, X1), one considers the space F(X) = F(X0, X1) of all

functions f defined in the strip

S = {z ∈ C: 0 � Re(z) � 1}
with values in X0 +X1, and having the following properties:

(1) f (z) is continuous and bounded in norm of X0 +X1 on the strip S.
(2) f (z) is analytic relative to the norm of X0 +X1 on S◦ = {z ∈ C: 0 < Re(z) < 1}.
(3) f (j + iy) assumes values in the spaceXj (j = 0, 1) and is continuous and bounded in the

norm of this space.
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One equips the vector space F(X) with the norm

‖f ‖F(X) = max

{
sup
y∈R

‖f (iy)‖X0 , sup
y∈R

‖f (1 + iy)‖X1

}
.

The space (F(X), ‖ ‖F(X)) is a Banach space.

For each 0 < t < 1 the complex interpolation space, associated with the couple X, X[t] =
(X0, X1)[t] is the set of all elements x ∈ X0 +X1 representable in the form x = f (t) for function
f ∈ F(X), equipped with the complex interpolation norm

‖x‖[t] = inf{‖f ‖F(X): f ∈ F(X), f (t) = x}.
The two main results of the theory are:

Theorem A. The space X[t] is a Banach space and an intermediate space with respect to X.

Theorem B. Let X and Ȳ two compatible couples. Assume that T is a linear operator from Xj
to Yj bounded by Mj , j = 0, 1. Then for t ∈ [0, 1]

‖T ‖X[t]→Y [t] � M1−t
0 Mt

1.

4. Geometric interpolation

In this section, we state the main result of this paper. First, we introduce the notation.
For n ∈ N, s � 1 and a ∈ Gl(H)+, let

J(n) = {(X0, . . . , Xn−1) : Xi ∈ J}
with the norm

‖(X0, . . . , Xn−1)‖φ,a;s = (‖X0‖sφ,a + · · · + ‖Xn−1‖sφ,a)1/s

and Cn with the norm

|(z0, . . . , zn−1)|s = (|z0|s + · · · + |zn−1|s)1/s .
We consider the action of Gl(H) on J(n), defined by

l:Gl(H)× J(n) −→ J(n), lg((X0, . . . , Xn−1)) = (gX0g
∗, . . . , gXn−1g

∗). (4.1)

From now on, we denote with J
(n)
φ,a;s the space J(n) endowed with the norm ‖(·, . . . , ·)‖φ,a;s .

Proposition 4.1. The norm inJ(n)
φ,a;s is invariant for the action of the group of invertible elements.

By this we mean that for each (X0, . . . , Xn−1) ∈ J(n), a ∈ Gl(H)+ and g ∈ Gl(H), we have

‖(X0, . . . , Xn−1)‖φ,a;s = ‖lg((X0, . . . , Xn−1))‖φ,gag∗;s .

Proof. It is sufficient to prove that s(a−1/2Xa−1/2) and s
(
(gag∗)− 1

2 gXg∗(gag∗)− 1
2

)
coincide.

For j ∈ N, we get
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sj

(
(gag∗)−

1
2 gXg∗(gag∗)−

1
2

)2 = λj ((gag
∗)−

1
2 gX∗g∗(gag∗)−

1
2 (gag∗)−

1
2

×gXg∗(gag∗)−
1
2 )

= λj

(
(gag∗)−

1
2 gX∗g∗(gag∗)−1gXg∗(gag∗)−

1
2

)
= λj

(
(gag∗)−

1
2 gX∗g∗(g∗)−1a−1g−1gXg∗(gag∗)−

1
2

)
= λj

(
(gag∗)−

1
2 gX∗a−1Xg∗(gag∗)−

1
2

)
= λj

(
(gag∗)−

1
2 gX∗a− 1

2 a− 1
2Xg∗(gag∗)−

1
2

)
= λj

(
a− 1

2Xg∗(gag∗)−
1
2 (gag∗)−

1
2 gX∗a− 1

2

)
= λj

(
a− 1

2Xg∗(gag∗)−1gX∗a− 1
2

)
= λj

(
a− 1

2Xa− 1
2 a− 1

2X∗a− 1
2

)
= sj

(
a− 1

2Xa− 1
2

)2
,

where λj (X) denotes the j th eigenvalue of X decreasingly ordered. �

Theorem 4.2. Let a, b ∈ Gl(H)+, 1 � s < ∞, n ∈ N and t ∈ (0, 1). Then

(J
(n)
φ,a;s ,J

(n)
φ,b;s)[t] = J

(n)
φ,γa,b(t);s .

Proof. Recall Hadamard’s classical three lines theorem [18, p. 33]:
Let f (z) be a Banach space-valued function, bounded and continuous on the strip S, analytic

in the interior, satisfying

‖f (z)‖X � M0 if Re(z) = 0

and

‖f (z)‖X � M1 if Re(z) = 1,

where ‖ · ‖X denotes the norm of the Banach space X. Then

‖f (z)‖X � M
1−Re(z)
0 M

Re(z)
1

for all z ∈ S.
In order to simplify, we will only consider the case n = 2. The proof below works for n-tuples

(n � 3) with obvious modifications.
By Proposition 4.1, we have that ‖(X1, X2)‖[t] is equal to the norm of a−1/2(X1, X2)a

−1/2

interpolated between the norms ‖(·, ·)‖φ,1;s and ‖(·, ·)‖φ,c;s . Consequently, it is sufficient to prove
our statement for these two norms.

The proof consists of showing that for all t ∈ (0, 1), ‖(X1, X2)‖[t] and ‖(X1, X2)‖φ,ct ;s coin-
cide in J(2).

Let t ∈ (0, 1) and (X1, X2) ∈ J(2) such that ‖(X1, X2)‖φ,ct ;s = 1, and define

f (z) = c
z
2 c−

t
2 (X1, X2)c

− t
2 c

z
2 = (f1(z), f2(z)).
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Then for each z ∈ S, f (z) ∈ J(2)

‖f (iy)‖φ,1;s = ‖c iy
2 c−

t
2 (X1, X2)c

− t
2 c

iy
2 ‖φ,1;s =

(
2∑
k=1

‖c iy
2 c−

t
2Xkc

− t
2 c

iy
2 ‖sφ,1

)1/s

� 1

and

‖f (1 + iy)‖φ,c;s =
(

2∑
k=1

‖c 1
2 c

iy
2 c−

t
2Xkc

− t
2 c

iy
2 c

1
2 ‖sφ,c

)1/s

� 1.

Since f (t) = (X1, X2) and f = (f1, f2) ∈ F(J(2)) we have ‖(X1, X2)‖[t] � 1. Thus we have
shown that

‖(X1, X2)‖[t] � ‖(X1, X2)‖φ,ct ;s .
To prove the converse inequality, let f = (f1, f2) ∈ F(J(2)); f (t) = (X1, X2) and k = 1, 2,

we consider Yk ∈ J
(0)
φ′ with ‖Yk‖φ′ � 1. Let

gk(z) = c−
z
2 Ykc

− z
2 .

Consider the function h: S → (C2, |(·, ·)|s),
h(z) = (tr(f1(z)g1(z)), tr(f2(z)g2(z))).

Since f (z) is analytic in S◦ and bounded in S as a J(2)-valued function, then h is analytic in S◦
and bounded in S, and

h(t) =
(

tr
(
c−

t
2X1c

− t
2 Y1

)
, tr
(
c−

t
2X2c

− t
2 Y2

))
.

By Hadamard’s three lines theorem, applied to h and the Banach space (C2, |(·, ·)|s), we have

|h(t)|s � max

{
sup
y∈R

|h(iy)|s , sup
y∈R

|h(1 + iy)|s
}
.

For j = 0, 1

sup
y∈R

|h(j + iy)|s = sup
y∈R

(
2∑
k=1

|tr(fk(j + iy)gk(j + iy))|s
)1/s

= sup
y∈R

(
2∑
k=1

|tr(c−j/2fk(j + iy)c−j/2gk(iy))|s
)1/s

� sup
y∈R

(
2∑
k=1

‖fk(j + iy)‖s
φ,cj

)1/s

� ‖f ‖F(J(2)),

then

‖X1‖sφ,ct + ‖X2‖sφ,ct = sup
‖Y2‖φ′�1,‖Y1‖φ′�1

{
|tr
(
c−

t
2X1c

− t
2 Y1

)
|s + |tr(c− t

2X2c
− t

2 Y2)|s
}

� sup
‖Y2‖φ′�1,‖Y1‖φ′�1

|h(t)|ss � ‖f ‖s
F(J(2))

.
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Since the previous inequality is valid for each f ∈ F(J(2)) with f (t) = (X1, X2), we have

‖(X1, X2)‖φ,ct ;s � ‖(X1, X2)‖[t]. �

In the special case n = s = 1 we obtain

Corollary 4.3. Given a, b ∈ Gl(H)+ we have for all t ∈ [0, 1]
(Jφ,a,Jφ,b)[t] = Jφ,γa,b(t)

.

Remark 4.4. Note that when a and b commute the curve is given by γa,b(t) = a1−t bt . The
previous corollary tells us that the interpolating space, Jφ,γa,b(t)

can be regarded as a weighted

Jφ space with weight a1−t bt (see [2, Th. 5.5.3]).

By Theorem B, we obtain the following result of interpolation:

Corollary 4.5. Let a, b, c, d ∈ Gl(H)+, s � 1, n ∈ N and T a linear operator such that the
norm of T is at most M0(between the spaces J(n)

φ,a;s and J
(n)
φ,b;s) and the norm of T is at most

M1 (between the spaces J(n)
φ,c;s and J

(n)
φ,d;s). Then, for all t ∈ [0, 1] we have

‖T (x)‖φ,γb,d (t);s � (M0)
1−tMt

1‖x‖φ,γa,c(t);s .

5. On the Corach–Porta–Recht inequality

In their work on the geometry of the space of self-adjoint invertible elements of a C∗-algebra,
Corach et al. proved in [6] that if S is invertible and self-adjoint in B(H), then for allX ∈ B(H)

‖SXS−1 + S−1XS‖ � 2‖X‖.
In [12], Kittaneh proved a more general version of the CPR inequality: for any norm ideal

(I, ‖ · ‖I) of B(H) and for all X ∈ I we have

2‖X‖I � ‖SXS−1 + S−1XS‖I. (5.1)

In [19], Seddik obtained the following inequality for any norm ideal I of B(H).

Theorem 5.1. For all X ∈ I

‖SXS−1 − S−1XS‖I � (‖S‖‖S−1‖ − 1)‖SXS−1 + S−1XS‖I. (5.2)

Recently, Larotonda in [16] obtained the following inequality for any norm ideal.

Theorem 5.2 [16, Corollary 28]. For all X ∈ I

‖SXS−1 − S−1XS‖I � ‖LT − RT ‖B(I)‖SXS−1 + S−1XS‖I, (5.3)

where T = log |S| and LT ,RT are the left and right multiplication representations of T in
B(I), LT (U) = T U and RT (U) = UT.

Here ‖P ‖B(I) denotes the norm of the linear operator P :I → I , that is

‖P ‖B(I) = sup{‖P(x)‖I: ‖x‖I = 1}.
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The bound in (5.3) is related to the theory of generalized derivations. If A,B ∈ B(H) let

δA,B :X → δA,B(X) :=AX −XB = LA(X)− RB(X).

The theory of generalized derivations has been extensively studied in the literature, see for
example [7]. In [20], Stampfli proved the following equality :

‖δA,B‖ = inf{‖A− λ‖ + ‖B − λ‖: λ ∈ C}. (5.4)

If (I, ‖ · ‖I) is a norm ideal in B(H) and X ∈ I, then for all λ ∈ C

‖δA,B(X)‖I = ‖(A− λ)X +X(B − λ)‖I � (‖A− λ‖ + ‖B − λ‖)‖X‖I. (5.5)

It follows from (5.4) that

‖δA,B‖B(I) � ‖δA,B‖.
From these facts we get

‖SXS−1 − S−1XS‖I � ‖LT − RT ‖B(I)‖SXS−1 + S−1XS‖I
= ‖δT ,T ‖B(I)‖SXS−1 + S−1XS‖I
� ‖δT ,T ‖‖SXS−1 + S−1XS‖I. (5.6)

From (5.6) and (5.2) we obtain that

‖SXS−1 − S−1XS‖I � min{‖δT ,T ‖, ‖S‖‖S−1‖ − 1}‖SXS−1 + S−1XS‖I.
Note that the bound in Theorem 5.2 is a refinement of (5.2). We start by recalling the next.

Corollary 5.3 [20, Corollary 1]. Let T be a normal operator. Then

‖δT ,T ‖ = sup{‖TX −XT ‖: T ∈ B(H) and ‖T ‖ = 1} = 2r(T ) = λmax(T )− λmin(T ),

where r(T ) is the radius of the spectrum of T .

First, we shall assume that S is positive. Then

‖δT ,T ‖ = λmax(T )− λmin(T ) = log(λmax(S))− log(λmin(S)) = log

(
λmax(S)

λmin(S)

)
,

therefore

‖S‖ = λmax(S) and ‖S−1‖ = 1

λmin(S)
.

So

‖δT ,T ‖ = log

(
λmax(S)

λmin(S)

)
<
λmax(S)

λmin(S)
− 1 = ‖S‖‖S−1‖ − 1.

Here we use the fact that log(t) < t − 1, for all t > 1.
In the general case (i.e. S invertible and self-adjoint) we have

‖δT ,T ‖ = log

(
λmax(|S|)
λmin(|S|)

)
< ‖|S|‖ ‖|S|−1‖ − 1 = ‖S‖ ‖S−1‖ − 1.

Now, we are ready to state the next



828 C. Conde / Linear Algebra and its Applications 429 (2008) 819–834

Theorem 5.4. Let I be a norm ideal, then for all X ∈ I

‖SXS−1 − S−1XS‖I � ‖δT ,T ‖‖SXS−1 + S−1XS‖I (5.7)

with T = log |S|.

Note that the inequality holds for any norm ideal I where the explicit bound ‖δT ,T ‖ depends
only on the operator S and the norm in B(H) and not on the given unitarily invariant norm.

Now, we shall apply Corollary 4.5 to the inequality obtained above. Consider

TJ,S :J −→ J TJ,S(X) = SXS−1 − S−1XS

and

RJ,S :J −→ J RJ,S(X) = SXS−1 + S−1XS.

From Corollary 4.5 and (5.7), we obtain

Corollary 5.5. For a, b ∈ Gl(H)+, X ∈ J and t ∈ [0, 1], we have

‖SXS−1 − S−1XS‖φ � 2μ‖δT ,T ‖‖a‖1−t‖b‖t‖X‖φ,γa,b(t), (5.8)

where μ = ‖S‖ ‖S−1‖.

Proof. We will denote by γ (t) = γa,b(t), when no confusion can arise. By (5.7) the norm of TJ,S
is at most 2μ‖δT ,T ‖‖a‖ when

TJ,S : (J, ‖ · ‖φ,a) −→ (J, ‖ · ‖φ)
and the norm of TJ,S is at most 2μ‖δT ,T ‖‖b‖ when

TJ,S : (J, ‖ · ‖φ,b) −→ (J, ‖ · ‖φ).
Therefore, using the complex interpolation, we obtain the following diagram of interpolation for
t ∈ [0, 1]:

By Corollary 4.5

‖TJ,S(X)‖φ � (2μ‖δT ,T ‖‖b‖)t (2μ‖δT ,T ‖‖a‖)1−t‖X‖φ,γ (t)
= 2μ‖δT ,T ‖‖a‖1−t‖b‖t‖X‖φ,γ (t). �

With a slight change in the previous proof, we get the inequality

‖SXS−1 + S−1XS‖φ � 2μ‖a‖1−t‖b‖t‖X‖φ,γa,b(t). (5.9)
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We need to consider the operatorRJ,S and the fact that the norm of this operator is at most 2μ‖a‖
when

RJ,S : (J, ‖ · ‖φ,a) −→ (J, ‖ · ‖φ).

Corollary 5.6. For X ∈ J and t ∈ [0, 1], we have

‖SXS−1 − S−1XS‖φ � 2μ‖δT ,T ‖ inf{‖a‖1−t‖b‖t‖X‖φ,γa,b(t): t ∈ [0, 1], a, b ∈ Gl(H)+}
and

2‖X‖φ � ‖SXS−1 + S−1XS‖φ
� 2μ inf{‖a‖1−t‖b‖t‖X‖φ,γa,b(t): t ∈ [0, 1], a, b ∈ Gl(H)+},

where μ = ‖S‖‖S−1‖.

Remark 5.7. In [5], we obtained Clarkson’s type inequality from 4.5 for the p-Schatten ideals
with 1 � p < ∞, i.e. with φ = φp.

6. The geometry of �1
J

In this section, we give a geometric context to what has been previously presented. More
precisely we prove that the curves γa,b are minimal curves of a Finsler geometry for a manifold
of positive and invertible operators.

6.1. Topological and differentiable structure of �1
J

Given a s.n. ideal Jφ , which we denote from now on J, we consider:

J̃ = {λ+X ∈ B(H): λ ∈ C, X ∈ J}.
There is a natural norm for this subspace

‖λ+X‖φ̃ = |λ| + ‖X‖φ.

Lemma 6.1. Let λ+X,μ+ Y ∈ J̃. Then

(1) ‖λ+X‖ � ‖λ+X‖φ̃ ,
(2) ‖(λ+X)(μ+ Y )‖φ̃ � ‖λ+X‖φ̃‖μ+ Y‖φ̃ .

In particular, (J̃,+, ·) is a Banach algebra.

Proof. One has the usual estimates

(1) ‖λ+X‖ � |λ| + ‖X‖ � |λ| + ‖X‖φ = ‖λ+X‖φ̃;
(2) ‖(λ+X)(μ+ Y )‖φ̃ = ‖λμ+ λY + μX +XY‖φ̃ = |λμ| + ‖λY + μX +XY‖φ

� |λ||μ| + |λ|‖Y‖φ + |μ|‖X‖φ + ‖XY‖φ
� |λ||μ| + |λ|‖Y‖φ + |μ|‖X‖φ + ‖X‖φ‖Y‖φ
= (|λ| + ‖X‖φ)(|μ| + ‖Y‖φ). �
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The self-adjoint part of J̃ is

J̃
sa = {λ+X ∈ J̃: (λ+X)∗ = λ+X}.

Remark 6.2. (1) (J̃, ‖ · ‖φ̃) is the minimal unitization of (J, ‖ · ‖φ).
(2) Note that the multiples of the identity λ1 and the operatorsX ∈ J are linearly independent.

Therefore

λ+X ∈ J̃
sa

if and only if λ ∈ R, X∗ = X.

Formally

J̃ = C ⊕ J, J̃
sa = R ⊕ Jsa,

where Jsa denotes the set of self-adjoint operators in J.

Inside J̃
sa

, we consider

�φ = {λ+X ∈ J̃: λ+X > 0} ⊂ Gl(H)+

and

�1
φ = {1 +X ∈ J̃: 1 +X > 0}.

Apparently �φ is an open subset of J̃
sa

, and therefore, a differentiable (analytic) submanifold.
The next step is to prove that �1

φ is a submanifold of �φ . For this purpose, we consider

θ : �φ → R, θ(λ+X) = λ.

Lemma 6.3. θ is a submersion.

Proof. It is sufficient to show that dθλ+X is surjective and ker(dθλ+X) is complemented [15, Th.
2.2].

Since J̃
sa

and R are Banach spaces and θ is a continuous linear map we get that dθλ+X = θ .
Apparently, dθλ+X is surjective and ker(dθλ+X) has codimension 1 and hence is comple-

mented. �

It follows that �1
φ is a submanifold, since �1

φ = θ−1({1}). These facts imply that, for 1 +X ∈
�1
φ , (T�1

φ)1+X identifies with Jsa.
If I is a Banach algebra and an ideal in the algebra B(H), then we denote by Gl(H,I) the

subset of Gl(H) consisting of those operators of the form 1 + a with a ∈ I, i.e.

Gl(H,I) = {1 + a ∈ Gl(H): a ∈ I} = {b ∈ Gl(H): b − 1 ∈ I}.
The standard examples are when I is the ideal of compact operators B0(H) – in which case

Gl(H, B0(H)) is the so-called Fredholm group of H – when I is the ideal of Hilbert–Schmidt
operators and when I is the ideal of trace class operators B1(H). The classical work here is [10].
There is a natural action of Gl(H,J) on �1

φ , defined analogously to l in (4.1):

l : Gl(H,J)× �1
φ −→ �1

φ, lg(1 +X) = g(1 +X)g∗. (6.1)

This action is clearly differentiable and transitive, since if 1 +X, 1 + Y ∈ �1
φ then

lr (1 +X) = (1 + Y )

for r = (1 + Y )
1
2 (1 +X)− 1

2 ∈ Gl(H,J).
If 1 + Y ∈ �1

φ , we define the length of a tangent vector X ∈ (T�1
φ)1+Y by

‖X‖φ,1+Y = ‖(1 + Y )−
1
2X(1 + Y )−

1
2 ‖φ = ‖l(1+Y )−1/2(X)‖φ.

By Proposition 4.1 the Finsler norm is invariant for the action of Gl(H,J).
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6.2. Minimal curves

In this section, we study the existence of minimal curves for the Finsler metric just de-
fined. The expression “minimal” is understood in terms of the length functional (or more gen-
erally q-energy functional). We prove that the interpolating curve γa,b joining a with b is
the minimun of the q-energy functional for q � 1. We observe that this curve looks formally
equal to the geodesic between positive definitive matrices (regarded as a symmetric space, see
[17]).

For a piecewise differentiable curve α: [0, 1] → �1
φ , one computes the length of the curve α

by

Lφ(α) =
∫ 1

0
‖α̇(t)‖φ,α(t) dt.

Proposition 6.4. Given a, b in �1
φ , the curve γa,b has length ‖ log(a− 1

2 ba− 1
2 )‖φ.

Proof. Since the group Gl(H,J) acts isometrically and transitively on �1
φ , it suffices to prove

the theorem for a = 1. Then

‖γ̇1,b(t)‖φ,γ1,b(t) = ‖ log(b)bt‖φ,bt = ‖bt/2 log(b)b−t/2‖φ = ‖ log(b)‖φ,
because log(b) and bt conmute for every t ∈ R. �

Definition 6.5. Let a, b ∈ �1
φ . We denote

�a,b = {α: [0, 1] → �1
φ :α is a C1 curve, α(0) = a and α(1) = b}.

As in classical differential geometry, we consider the geodesic distance between a and b (in
the Finsler metric) defined by

dφ(a, b) = inf{Lφ(α):α ∈ �a,b}.

The next step consists of showing that γa,b are short curves, i.e. if δ ∈ �a,b then

Lφ(γa,b) � Lφ(δ)

and hence

dφ(a, b) = ‖ log(a− 1
2 ba− 1

2 )‖φ.
The proof of this fact requires some preliminaries.

We begin with the following inequalities :

Lemma 6.6 [11]. Let A,B,X be Hilbert space operators with A,B � 0. For any unitarily
invariant norm ||| · ||| we have

|||A1/2XB1/2||| � ‖|
∫ 1

0
AtXB1−t dt‖| � 1

2
|||AX +XB|||. (6.2)

The proof of the next inequality, called by Bhatia (in the context of matrices) the exponential
metric increasing property, is based on a similar argument used in [3].
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Proposition 6.7. For all X, Y ∈ Jsa

‖Y‖φ � ‖e−X
2 dexpX(Y )e

−X
2 ‖φ,

where dexpX denotes the differential of the exponential map at X.

Proof. The proof is based on the inequality (6.2) and the well-known formula below:

dexpX(Y ) =
∫ 1

0
etXY e(1−t)X dt.

Let X, Y ∈ Jsa. Write Y = e
X
2 (e−X

2 Y e−X
2 )e

X
2 . Then using the inequalities (6.2) we obtain

‖Y‖φ �
∥∥∥∥∥
∫ 1

0
etX(e−X

2 Y e−X
2 )e(1−t)X dt

∥∥∥∥∥
φ

=
∥∥∥∥∥e−X

2

∫ 1

0
etXY e(1−t)X dte−X

2

∥∥∥∥∥
φ

= ‖e−X
2 dexpX(Y )e

−X
2 ‖φ.

This proves the proposition. �

We are now ready to prove the main result in this section.

Theorem 6.8. Let a, b ∈ �1
φ, then γa,b is the shortest curve joining them. So

dφ(a, b) = ‖ log(a− 1
2 ba− 1

2 )‖φ.

Proof. Since the group Gl(H,J) acts isometrically and transitively on �1
φ , it is sufficient to

prove the statement for a = 1. Then
γ1,b = bt = et log(b) and Lφ(γ1,b) = ‖ log(b)‖φ .
Let γ ∈ �1,b; so write γ (t) = eα(t) we get

‖γ (t)− 1
2 γ̇ (t)γ (t)−

1
2 ‖φ =

∥∥∥e− α(t)
2

(
eα(t)

)·
e− α(t)

2

∥∥∥
φ

=
∥∥∥e− α(t)

2 dexpα(t)(α̇(t))e
− α(t)

2

∥∥∥
φ

� ‖α̇(t)‖φ.
Finally

Lφ(γ )=
∫ 1

0
‖γ̇ (t)‖φ,γ (t)dt =

∫ 1

0
‖γ (t)− 1

2 γ̇ (t)γ (t)−
1
2 ‖φdt �

∫ 1

0
‖α̇(t)‖φdt

�
∥∥∥∥∥
∫ 1

0
α̇(t)dt

∥∥∥∥∥
φ

= ‖α(t)|10‖φ = ‖α(1)− α(0)‖φ = ‖ log(b)‖φ. �

Remark 6.9. The geometrical result described above can be translated to the language of the
operator entropy

S(a|b) = a1/2 log(a−1/2ba−1/2)a1/2

with a, b ∈ Gl(H)+ defined by Fujii and Kamei [8]. Then

dφ(a, b) = ‖S(a|b)‖φ,a
for a, b ∈ �1

φ .
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Corollary 6.10. Let a, b ∈ �1
φ be commuting operators. Then the exponential function maps the

line segment determined by log(a) and log(b) inJ isometrically to the geodesic γa,b. In particular,
‖ log(a)− log(b)‖φ = dφ(a, b).

In particular for all real numbers t, s and for all X ∈ J

‖tX − sX‖φ = dφ(e
tX, esX).

Thus the exponential map is distance-preserving on all rays through the origin in J.

Proposition 6.11. Given a, b ∈ �1
φ, g ∈ Gl(H,J) we get

(1) dφ(a, b) = dφ(a
−1, b−1).

(2) For all t ∈ R

dφ(a, γa,b) = |t | dφ(a, b).
(3) Invariance under the action by Gl(H,J)

dφ(a, b) = dφ(gag
∗, gbg∗).

Proof. (1) It is easy to see that S(a|b) = −a 1
2 log

(
a

1
2 b−1a

1
2

)
a

1
2 , as a consequence from

log(1/t) = − log(t). Then

dφ(a, b)= ‖ log(a− 1
2 ba− 1

2 )‖φ = ‖a− 1
2 S(a|b)a− 1

2 ‖φ
= ‖ − a− 1

2 a
1
2 log

(
a

1
2 b−1a

1
2

)
a− 1

2 a
1
2 ‖φ

= ‖ − log
(
a

1
2 b−1a

1
2

)
‖φ = dφ(a

−1, b−1).

(2) It is obvious that S(a|γa,b(t)) = tS(a|b), then

dφ(a, γa,b) = ‖a− 1
2 S(a|γa,b(t))a− 1

2 ‖φ = |t | ‖a− 1
2 S(a|b)a− 1

2 ‖φ = |t |dφ(a, b).
(3) Note that if γa,b is the geodesic joining a with b, then

‖gγ̇a,b(t)g∗‖φ,gγa,b(t)g∗ = ‖γ̇a,b(t)‖φ,γa,b(t). �

Definition 6.12. For a, b ∈ �1
φ , we call the midpoint of a and b, and we denote by m(a, b)

(following the notation used in [13]) to

m(a, b) :=γa,b(1/2).

By Proposition 6.11 and the last definition we have that:

(1) m(a, b) = γa,b(1/2) = γb,a(1/2) = m(b, a).

(2) dφ(a,m(a, b)) = 1
2dφ(a, b) = 1

2dφ(b, a) = dφ(b,m(b, a)).

Definition 6.13. For every q ∈ R − {0} we define the q-energy functional

Eq : �a,b → R+, Eq(α) :=
∫ 1

0
‖α̇(t)‖qφ,α(t)dt.
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Remark 6.14. (1) For q = 1 we obtain the length functional, and for q = 2 we obtain the energy
functional.

(2) For any curve α such that ‖α̇(t)‖φ,α(t) is constant we have

Eq(α) = (Lφ(α))
q = (E(α))

q
2 .

In Theorem 6.8, we proved that the curve between a and b minimizes the length functional.
This fact is valid also for the q-energy functional (associated with �a,b) for q ∈ (1,∞).

Proposition 6.15. Let a, b ∈ �1
φ and q ∈ [1,∞).Then the q-energy functional achieves its global

minimun dqφ(a, b) precisely at γa,b.

Proof. Now, let α ∈ �a,b and q ∈ (1,∞) then by Hölder’s inequality

(Lφ(α))
q =

(∫ 1

0
‖α̇(t)‖φ,α(t)dt

)q
�
∫ 1

0
‖α̇(t)‖qφ,α(t)dt = Eq(α).

On the other hand, (Lφ(γa,b))q = Eq(γa,b). This implies that

Eq(γa,b) = (Lφ(γa,b))
q � (Lφ(α))

q � Eq(α). �
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