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1. Introduction

Let (B(H), ‖.‖) be the C∗-algebra of all bounded linear operators on a complex Hilbert spaceHwith

the usual norm.We denote by Gl(H) the group of invertible elements of B(H) and by U(H) the unitary
operators.

In [8],Nakamotoproved that abounded linearoperatorX onH isnormal if andonly if‖XY − YX‖2 =
‖X∗Y − YX∗‖2 for every Y ∈ B2(H) (Hilbert–Schmidt class).

In [2], Corach et al. proved that if S is invertible and selfadjoint in B(H), then for all X ∈ B(H)

‖SXS−1 + S−1XS‖ � 2‖X‖, (1)
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this inequality is called in the literature as CPR inequality. For sake of simplicitywe denote byΦS(X) =
SXS−1 + S−1XS. In [9], Seddik obtained the following characterization: an invertible S is a non zero

complex multiple of some selfadjoint operator if and only if ‖ΦS(X)‖ � 2‖X‖ for all X ∈ B(H), i.e. the
author characterizes the operators S for which the CPR inequality holds.

In [5], Kittaneh proved that if R, S, X are operators in B(H) such that R and S are invertible and I is

a norm ideal then

‖R∗XS−1 + R−1XS∗‖I � 2‖X‖I . (2)

The author proves this inequality as a consequence of the arithmetic–geometric mean inequality (for

different proofs and several applications of this inequality the reader is referred to [1,4,7]) that states

‖AA∗X + XBB∗‖I � 2‖A∗XB‖I , (3)

for every A, B, X ∈ B(H).
If S = R is an invertible selfadjoint operator in B(H) the inequality (2) implies (1) in any normed

ideal I, more exactly: for all X ∈ I we have

2‖X‖I � ‖ΦS(X)‖I . (4)

In [6], the authors to ask whether the same characterization obtained by Seddik is true for other

unitarily invariant norm. They proved that S is necessarily a normal operator if 2‖X‖I � ‖ΦS(X)‖I for

all X ∈ B(H), with rank one (see Corollary 2.2).

The objective of this work, motivated by Theorem 2.1 and Corollary 2.2 in [6], is to obtain a charac-

terization of normal invertible operators in B(H) (or some subclass of them) using unitarily invariant

norms.

2. Preliminaries

We recall that I is a norm ideal of B(H) if I is a two-sided ideal of B(H) and a Banach space with

respect to the norm ‖.‖I satisfying:

1. ‖XTY‖I � ‖X‖‖T‖I‖Y‖ for T ∈ I and X , Y ∈ B(H),
2. ‖X‖I = ‖X‖ if X is the rank one.

In particular, condition 1. implies that the norm‖.‖I is unitarily invariant, that is‖UXV∗‖I = ‖X‖I
for X ∈ I and anyU, V ∈ U(H). If I is a proper two-sided ideal of B(H), it is well-known that B0,0(H) ⊆
I ⊆ B0(H), where B0,0(H) is the ideal of finite rank operators and B0(H) the set of compact operators.

The most known examples of norm ideals of B(H) are the called p-Schatten class with p� 1

defined by Bp(H) = {X ∈ B0(H) : {sj(X)} ∈ lp}, where {sj(X)} denotes the sequence of singular val-

ues of X , rearranged such that s1(X) � s2(X) � · · · with multiplicies counted, with norm given by

‖X‖p = (
∑

sj(X)p)1/p. When p = ∞, the norm ‖.‖∞ coincides with the usual norm ‖X‖ = s1(X).
For a complete account of the theory of unitarily invariant norms the reader is referred to [3].

For sake of completness, we recall the following statement of Magajna et al. in [6] that we will use

in the following section.

Theorem 2.1. Let A, B ∈ B(H) be positive invertible operators. Then the inequality

‖AXA−1‖ + ‖B−1XB‖ � 2‖X‖, (5)

holds for all operators X ∈ B(H) of rank 1 if and only if B = f (A), where f : σ(A) → σ(B) is a strictly

increasing positive continuous function satisfying

f (s)

t
�

f (t) − f (s)

t − s
�

f (t)

s
, (6)

for all s < t in the spectrum of A. In particular, for two unitarily equivalent operators A and B, (5) implies

that A = B. Each function f satisfying (6) is differentiable at any interior point of σ(A) and if σ(A) is an
interval, then f is of the form f (t) = ct for some constant c.
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Note that if X ∈ I is the rank 1, by condition 2. we get

‖AXA−1‖I + ‖B−1XB‖I = ‖AXA−1‖ + ‖B−1XB‖,
and if futhermore A = B = S ∈ Gl(H) satisfies the inequality (4), we get

‖SXS−1‖I + ‖S−1XS‖I � ‖SXS−1 + S−1XS‖I � 2‖X‖I ,

then by Corollary 2.2 in [6], S is necessarily a normal operator.

Now, we ask which are all invertible operators S that hold the inequality

‖SXS−1‖I + ‖S−1XS‖I � 2‖X‖I

for every X ∈ I.

3. Main results

Theorem 3.1. Let S ∈ Gl(H) and I a norm ideal. Then the following conditions are equivalent:
1. S is normal,

2. ‖SXS−1‖I + ‖S−1XS‖I = ‖S∗XS−1‖I + ‖S−1XS∗‖I for every X ∈ I,
3. ‖SXS−1‖I + ‖S−1XS‖I � ‖S∗XS−1‖I + ‖S−1XS∗‖I for every X ∈ I,
4. ‖SXS−1‖I + ‖S−1XS‖I � 2‖X‖I for every X ∈ I,
5. ‖SXS−1‖I + ‖S−1XS‖I � 2‖X‖I for every X ∈ I, with rank 1.

Proof. 1. ⇒ 2. By hypothesis, the polar decomposition of S is S = PU = UP with P positive and U ∈
U(H), then

‖SXS−1‖I + ‖S−1XS‖I = ‖UPXS−1‖I + ‖S−1XPU‖I = ‖PXS−1‖I + ‖S−1XP‖I

= ‖U∗PXS−1‖I + ‖S−1XPU∗‖I = ‖S∗XS−1‖I + ‖S−1XS∗‖I .

2. ⇒ 3. The implication is trivial.

3. ⇒ 4. Let X ∈ I, then

‖SXS−1‖I + ‖S−1XS‖I � ‖S∗XS−1 + S−1XS∗‖I = ‖PU∗XP−1U∗ + P−1U∗XPU∗‖I

= ‖PU∗XP−1 + P−1U∗XP‖I = ‖ΦP(U
∗X)‖I � 2‖X‖I

in the last inequality we use (4).

4. ⇒ 5. The implication is trivial.

5. ⇒ 1. We consider X ∈ I with rank 1, A = (S∗S)1/2 and B = (SS∗)1/2, then
‖AXA−1‖I + ‖B−1XB‖I = ‖UAXA−1U∗‖I + ‖U∗B−1XBU‖I � 2‖X‖I ,

where S = UA and S∗ = U∗B. Since A and B are unitarily equivalent, we have by Theorem 2.1 in [6]

that A = B, hence S is normal. �

Remark 3.2. The previous theorem is a generalization of Proposition 5 in [10].

Specializing the previous theorem to the Hilbert–Schmidt class and using the Nakamoto’s charac-

terization of normal operators we obtain the following statement.

Corollary 3.3. If S ∈ Gl(H) the following conditions are equivalent:
1. S is normal,

2. ‖SXS−1‖2 + ‖S−1XS‖2 = ‖S∗XS−1‖2 + ‖S−1XS∗‖2 for every X ∈ B2(H),
3. ‖SXS−1‖2 + ‖S−1XS‖2 � 2‖X‖2 for every X ∈ B2(H),
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4. ‖SXS−1‖2 + ‖S−1XS‖2 � 2‖X‖2 for every X ∈ B2(H), with rank 1,

5. ‖SX − XS‖2 = ‖S∗X − XS∗‖2 for every X ∈ B2(H).

Now, we shall characterize another subclass of normal operators. The following characterization of

the nonzero complex multiple of selfadjoint operators is easily deduced (see [6], Theorem 2.5). More

precisely,

Proposition 3.4. Let S ∈ Gl(H) and I a norm ideal. Then the following conditions are equivalent

1. γ S is selfadjoint for some γ ∈ C − {0},
2. inf t>0 ‖tSXS−1 + 1

t
S−1XS‖I = inf r>0 ‖rS∗XS−1 + 1

r
S−1XS∗‖I for every X ∈ I,

3. inf t>0 ‖tSXS−1 + 1
t
S−1XS‖I � inf r>0 ‖rS∗XS−1 + 1

r
S−1XS∗‖I for every X ∈ I,

4. inf t>0 ‖tSXS−1 + 1
t
S−1XS‖I � 2‖X‖I for every X ∈ I, with rank 1.

Proof. The implications 1. ⇒ 2. and 2. ⇒ 3. are trivial.

3. ⇒ 4. From the polar decomposition of S = UP = QU with P,Q > 0 and U ∈ U(H), we get for

every X ∈ I with rank one

inf
t>0

‖tSXS−1 + 1

t
S−1XS‖I � inf

r>0
‖rS∗XS−1 + 1

r
S−1XS∗‖I

= inf
r>0

‖rPU∗XP−1U∗ + 1

r
P−1U∗XPU∗‖I

= inf
r>0

‖rP(U∗X)P−1 + 1

r
P−1(U∗X)P‖I � 2‖X‖I

in the last inequality we use the inequality (2).

4. ⇒ 1. The implication follows of [6]. �
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