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Hepatitis C virus (HCV) represents a major worldwide public health problem. The search for the key molecular biomarkers
that may provide insight on the basis of the differences in disease progression, severity, and response to therapy is crucial for
understanding the natural history of HCV, for estimating the burden of infection and for developing preventive interventions.
Initially, molecular epidemiology studies have focused on studying the viral genetic diversity (genotypes, genetic variants, specific
nucleotide and amino acid substitutions). However, the clinical heterogeneities of HCV infection and the imperfect predictability
of the response to treatment have suggested the need to search for host genetic biomarkers. This led to the discovery of genetic
polymorphisms playing a major role in the evolution of infection, as well as in treatment response and adverse effects, such as
IL-28B, ITPA, and IP-10. As a consequence, nowadays the focus of molecular epidemiology studies has turned from the viral to the
human genome. This paper will cover recent reports on the subject describing the most relevant viral as well as host genetic risk
factors analyzed by past and current HCV molecular epidemiology studies.

1. Introduction

HCV represents a major health problem with approximately
3% of the world population—that is, more than 170
million people—infected. While only 20–30% of individuals
exposed to HCV recover spontaneously, the remaining 70–
80% develop chronic HCV infection (CHC) [1]. Moreover,
3–11% of those people will develop liver cirrhosis (LC)
within 20 years [2], with associated risks of liver failure
and hepatocellular carcinoma (HCC) [3] which are the
leading indications of liver transplantation in industrialized
countries [4]. The socioeconomic impact of HCV infection
is therefore tremendous and the burden of the disease
is expected to increase around the world as the disease
progresses in patients who contracted HCV years ago.

Since the discovery of HCV more than 20 years ago [5],
epidemiological studies have described complex patterns of
infection concerning not only the worldwide prevalence of
this virus but also its clinical presentation and its therapeutic
response.

HCV presents highly variable local prevalence rates
between countries and within countries [6]; for example, in
Argentina the overall prevalence of HCV infection is close to
2%, but higher rates have been reported in different small
rural communities (5.7–4.9%) [7, 8].

The outcome of HCV infection is—as previously
stated—heterogeneous ranging from an asymptomatic self-
limiting infection to LC and HCC. Recent studies have
concluded that this difference appears to be dependent on
the route of transmission and other host and viral related
characteristics [9–12].

The current standard of care (SOC) for CHC is based on
the combination of pegylated interferon-alfa (PEG-IFN) and
ribavirin (RBV) for 24 or 48 weeks. A sustained virological
response (SVR), defined by having undetectable serum HCV
RNA 24 weeks after cessation of treatment, is associated with
permanent cure in more than 99% of cases [13]. However,
therapy is expensive and is associated with numerous
side effects [14], which reduces its effectiveness in many
cases (e.g., dialysis and HIV-infected patients, transplant
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recipients, etc.) [15], and sometimes requires dose reduction
and premature treatment discontinuation, thus decreasing
the rate of success. In addition to its limited efficacy, response
to therapy is also variable and viral and host characteristics
can influence whether patients achieve a SVR.

The search for the key molecular biomarkers that may
provide insight on the basis of the differences in disease
progression, severity, and response to therapy is crucial for
understanding the natural history of HCV, for estimating
the burden of infection, and for developing preventive
interventions.

In this regard, molecular epidemiology studies have first
focused on identifying and measuring viral risk factors by
analysis of HCV genetic diversity. As these failed to explain
a large proportion of the variability, the existence of host
genetic risk factors for HCV infection had been strongly
suggested [10, 11]. However, little progress could be made
in their identification.

Recently, the completion of the Human Genome Project
has led to the beginning of a new era of scientific research,
including a revolutionary approach: the genome-wide asso-
ciation study (GWAS) which uses high-throughput genotyp-
ing technology usually for SNPs, ranging from 300,000 to
900,000 SNPs in each sample. Through these studies genetic
factors strongly associated with disease susceptibility and
drug response among HCV-infected patients were finally
detected [16]. As a consequence, nowadays the focus of
molecular epidemiology studies has turned from the viral to
the human genome.

The aim of this paper is to describe the most relevant
viral as well as host genetic risk factors analyzed by past and
current HCV molecular epidemiology studies.

2. Molecular Epidemiology of
HCV Genetic Diversity and Its Clinical
and Therapeutic Implications

Hepatitis C virus (HCV) is an enveloped RNA virus which
contains a single-stranded, positive strand RNA molecule
of approximately 9600 nucleotides [17]. Following the
determination of the viral nucleotide and amino acid
sequences [18], it was reported that different isolates of
HCV as well as sequences isolated from each individual
show substantial nucleotide sequence variation distributed
throughout the genome [19, 20]. The HCV genome contains
both highly conserved and highly variable regions; for
example, regions encoding the envelope proteins are the
most variable, whereas the 5′noncoding region (NCR) is the
most conserved with minor heterogeneity [21]. For these
reasons, several researchers have considered the 5′ NCR to
be the region of choice for viral detection.

Sequence analysis performed on isolates from different
geographical areas around the world has revealed that it is
possible to classify HCV into six different genotypes, labelled
with numbers (1 to 6) [21]. Moreover, a seventh genotype
was recently reported [22]. The degree of sequence variation
between genotypes of HCV is similar to that observed
between variants of other viruses, such as the serotypes of

the flavivirus, dengue virus, or between poliovirus types
1, 2 and, 3. HCV genotypes are further divided into
multiple epidemiologically distinct subtypes—named with
letters—due to the difference in the nucleotide sequence of
the subgenomic regions such as core/E1 and NS5B (non-
structural 5B) [23].

Molecular epidemiological studies have shown that HCV
genotypes display significant differences in their global
distribution and prevalence. Genotypes 1, 2, and 3 are
widely distributed throughout the USA, Europe, Australia,
and East Asia (Japan, Taiwan, Thailand, and China), whereas
geographical distributions of other genotypes are more
restricted [24–26]. Genotype 4 is largely confined to the
Middle East, Egypt, and Central Africa. Genotypes 5 and
6 prevail in South Africa and Southeast Asia, respectively
[24, 25, 27], and genotype 7 is found predominantly in
central Africa [22]. Thus, genotyping has become a useful
method to determine the source of HCV transmission in an
infected localized population.

Many risk factors for disease progression and develop-
ment of HCC have been reported, such as male gender, age
at infection, diabetes, hepatic fibrosis (particularly cirrhosis),
and greater degrees of hepatic inflammation, iron overload,
steatosis, coinfection with HBV, alcohol abuse, smoking, and
obesity [28–31]. On the basis of the observation that for
most RNA viruses the existence of considerable sequence
differences between serotypes has remarkably little effect on
the phenotype of a virus, there would be no logical reason to
suspect the existence of major differences between genotypes
of HCV in their clinical course or disease associations. How-
ever, several cross-sectional studies—where the frequencies
of infection with different genotypes are compared among
patients with different disease outcomes—have concluded
that HCV genotypes may be related to disease progression.

Although these studies have frequently produced contra-
dictory results, it is generally agreed that genotype 1b may
be associated with more severe liver disease than infection
with other genotypes [32–36]. There is also a greater con-
sensus that infection with genotype 1b predisposes towards
the development of HCC [32, 35, 37–39], with only a
few negative or contrary reports [40, 41]. Regarding liver
transplantation in HCV-infected patients, genotype 1b is
also associated with a higher rate of active disease after
transplantation and graft destruction [42, 43].

Of the estimated 170 million HCV cases in the world,
over 50% occur among injection drug users (IDUs) [44].
Thus, IDUs are considered to be the main risk group
for HCV infection and act as a reservoir for this blood-
borne virus. Several reports have demonstrated a statisti-
cally significant relationship between HCV genotype 3, the
injecting drug abuse, and a younger age of infection [45–49].
Moreover, by comparing patients infected with genotype 3
and those infected with other genotypes, numerous groups
have revealed an association between this genotype and
hepatic steatosis [50–55], and a severe histopathological
manifestation of CHC which can improve after achieving
SVR with the antiviral treatment [56–58].

In addition to their clinical importance as predictors
of disease progression, HCV genotypes also offer essential
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information to those providing or receiving treatment.
Present data strongly indicate that HCV genotype is the
key determinant of response to IFN-alpha-based treatment
regimens [59–62].

The actual SOC therapy, in a patient with hepatitis C,
yields a sustained response in approximately 55% of the
cases. Patients with genotypes 1 and 4 generally exhibit
a poorer response to IFN-based therapy than those with
genotypes 2 and 3, probably due to slower viral kinetics
[63]. HCV genotype 5 appears to be an easily treatable
virus, with response rates compatible with those of genotypes
2 and 3 after a 48-week course of therapy [61, 62].
Treatment response in genotype 6 HCV patients may be at
an intermediate level between that observed in genotype 1
and genotypes 2 and 3.

In patients with HCV genotypes 2 or 3, the SVR rates
reach 80–95%, while with genotype 1, patients achieve SVR
rates in only 54–65% of the cases [64–68]. Finally, response
rates for genotype 4 are higher than those for genotype 1, but
lower than those for genotype 3 (approximately 65%).

Interestingly, several studies have demonstrated that the
chance to respond to IFN treatment is also related to
the baseline viral load. While patients with a high viral
load (>800 000 UI/mL) are less sensitive to the treatment,
patients with a low viral load (<800 000 UI/mL) respond
better to therapy [69]. Thus, patients with genotype 1, low
baseline viral load, and rapid virological response (HCV
RNA negative in serum after 4 weeks of treatment) may be
treated for 24 weeks, while patients with genotype 3, high
baseline viral load, and without rapid virological response
may require 48 weeks of treatment.

Interestingly, during its replication, HCV has the partic-
ularity to generate genetic variants, which exhibit 10% of
nucleotide divergence among them. Thus, sensitivity to HCV
therapy can be variable due to the emergence of variants with
mutations that confer a different sensibility to the treatment.

In this regard, specific nucleotide and amino acid
substitutions in the viral genome have been reported to be
correlated with the effect of both IFN therapy and PEG-
IFN plus ribavirin combination therapy. Two amino acid
regions of NS5A have been described and are thought to
play a role in response to IFN treatment: (1) IFN sensitivity-
determining region (ISDR) [70, 71] and (2) IFN/RBV
resistance-determining region (IRRDR) [72]. The outcome
of IFN therapy is related to the total number of amino acid
substitutions in these regions. Recently, others mutations—
within core (amino acid 70 and 91), E2 (PePHD), NS5A
(PKRBD and variable region 3)—have been implicated in
influencing the response to IFN therapy in patients infected
with genotype 1 of HCV [73–76].

3. Molecular Epidemiology of HCV-Related
Single-Nucleotide Polymorphisms (SNPs) in
the Human Genome and Their Clinical and
Therapeutic Implications

After the beginning of the genomic era, studies of human
genetics have been expected to alter clinical management

for many diseases, including infectious diseases. Yet, to date,
there are few examples of the use of such information
in routine clinical practice. One of the most promising
examples is the case of HCV.

Responsiveness to HCV therapy depends not only on
viral factors but also on host factors. Older age, male
sex, cirrhosis, steatosis, insulin resistance, diabetes, African
American ethnicity, and weight (BMI) are all events asso-
ciated to poor response to PEG-IFN plus RBV treatment
[77, 78]. Comorbidities such as HIV and/or HBV coin-
fection, excess alcohol intake, and drug use are generally
associated with lower SVR rates [79]. It seems that cannabis
receptor stimulation is associated with lower response to IFN
treatment [80]. Moreover, it has been recently reported that
patients with a history of depression who were not receiving
antidepressants and active intravenous drug users are more
likely to fail treatment for HCV genotype 2 or 3 and will need
additional support [81].

Initially, candidate gene approaches had been adopted to
identify host factors related to HCV therapy response, SNPs,
copy number variation (CNV), or insertion/deletion of genes
[82–84]. However, these approaches could latently find weak
associations and show significant differences because only
one or a limited number of SNPs or gene loci are detected
in candidate genes.

In 2009–2010, on the basis of the GWAS, four inde-
pendent groups assessed the role of genetic variation on
response to PEG-IFN plus RBV combination therapy for
CHC patients infected with genotype 1 [85–88]. Although
different ethnicities (European, African American, Hispanic,
Australian, and Japanese) have been compared in these
studies, the conclusive finding was—in all cases—that poly-
morphisms in or near the IL-28B gene, also known as IFN-
3λ, on chromosome 19 strongly determined the outcome of
HCV therapy.

Ge et al. identified a genetic polymorphism (rs12979860)
in the IL-28B gene [86]. Individuals with the CC genotype
showed the significant association with an approximately
twofold change in response to PEG-IFN plus RBV treatment
compared with those with the TT genotype, both among
patients of European ancestry and African Americans. An
important finding in this study is the strong correlation
between being a carrier of this SNP and SVR rates in
diverse ethnic groups, which is significantly more frequent
in European (53–85%) and Asian populations (90%) than in
African-Americans (23–55%). This SNP could finally explain
much of the recognized ethnic disparity between African
Americans and Europeans in treatment response rates.

On the other hand, Suppiah et al. and Tanaka et al.
revealed the strong association of particular haplotypes of
SNP rs8099917 (8 kb upstream of IL-28B) with SVR in
the European and Japanese population infected with HCV
genotype 1 and treated with PEG-IFN plus RBV therapy
[85, 87]. Homozygotes for the risk allele (rs8099917 G-allele)
showed 2-fold higher risk of treatment failure than that of
major allele homozygotes.

In the fourth GWAS that was published on the response
to HCV therapy, Rauch et al. studied Swiss patients infected
with HCV genotype 1, 2, 3, or 4 [88]. The strongest
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association with treatment failure was also found with
rs8099917. Interestingly, this SNP was not associated with
the response to PEG-IFN plus RBV therapy in genotype 2
or 3 patients. The contribution of host factors to genotype 2
or 3 clearance would be low because HCV genotype 2 or 3
is likely to be eliminated by the standard therapy compared
with genotype 1.

In contrast, Kawaoka et al. revealed that for Japanese
patients treated with PEG-IFN plus RBV, rs8099917, and
viral load were independent predictive factors for SVR
in genotype 2b but not in genotype 2a. Conversely, in
patients treated with interferon monotherapy, viral load and
rs8099917 were independent predictive factors for SVR in
genotype 2a but not in genotype 2b [89]. Moreover, Sarrazin
et al. reported a significant association of the CC genotype
of rs12979860 with SVR in European patients infected with
HCV genotypes 2 and 3 [90].

For HCV-infected patients with end-stage chronic liver
disease, orthotopic liver transplantation (OLT) is currently
the treatment of choice [91]. Several reports have shown
that post-OLT patient and graft survival are significantly
negatively affected by HCV recurrence after OLT [92, 93].
This can be mitigated by achievement of an SVR with PEG-
IFN plus RBV therapy [94]. However, many patients cannot
tolerate curative doses or do not respond to therapy [93–95].
Therefore, as it would be ideal to be able to predict which
patients would benefit from PEG-IFN plus RBV therapy for
recurrent HCV, it was recently reported that variants of the
SNPs in or around the IL-28B gene from liver donors are also
strongly associated to the degree of graft inflammation and
the response to therapy of HCV-infected liver recipients [96–
98].

In addition to IL-28B SNPs, other host molecular pre-
dictors of response to PEG-IFN plus RBV therapy have been
documented. Human leukocyte antigen (HLA) and killer
cell immunoglobulin-like receptors (KIRs) are highly poly-
morphic genetic loci whose gene proteins interact with each
other. HLA-C molecules present ligands for KIR2DL recep-
tors, with a functionally relevant dimorphism determining
KIR specificity: for example, HLA-C group 1 (HLAC1)
alleles, identified by Ser77/Asp80 of the HLA-C alpha 1
domain, are ligands for the inhibitory receptors KIR2DL2
and KIR2DL3 and the activating receptor KIR2DS2 [99,
100]. KIR2DL3 and its ligand, HLA-C1, have been associated
with an increased likelihood of spontaneous [101–103]
and treatment-induced HCV clearance [102, 103]. This
association is attributed to differential natural killer (NK)
cell activation and function in the context of this KIR/HLA
interaction [104]. In a recent cross-sectional study, Suppiah
et al. concluded that IL28-B, HLA-C, and KIR variants
additively predict response to therapy in CHC European
patients [105].

Furthermore, interferon-gamma inducible protein
10 kDa (IP-10 or CXCL10) is a chemotactic CXC chemokine
produced by a variety of cells, including hepatocytes
[106, 107]. IP-10 targets the CXCR3 receptor and attracts T
lymphocytes, NK cells, and monocytes to sites of infection
[107–109]. Levels of IP-10 at onset of therapy are reportedly
elevated in patients infected with HCV of genotypes 1 or 4

who do not achieve SVR [110]. In difficult-to-treat genotype-
1-infected HCV patients, cut-off levels of IP-10 in plasma
of 150 pg/mL (approximately equal to 2 standard deviations
above the mean IP-10 level of HCV seronegative blood
donors) and 600 pg/mL have yielded positive and negative
predictive values for SVR of 71% and 100%, respectively
[111]. IP-10 in plasma is mirrored by intrahepatic IP-10
mRNA and strongly predicts the HCV RNA decline during
the first days (“first phase decline”) during IFN/RBV therapy
for all HCV genotypes [112]. According to recent reports,
the assessment of both pretreatment IP-10 and IL28-B SNPs
augments the prediction of the first phase decline in HCV
RNA and, therefore, final therapeutic outcome [113, 114].

As previously stated, in addition to its limited efficacy,
SOC therapy is expensive and is associated with numerous
side effects. In particular, anemia is a very common adverse
effect of HCV combination treatment caused by RBV-
induced hemolysis and IFN-related bone marrow toxicity.
RBV-induced hemolytic anemia (HA) is usually reversible
and dose related [115, 116], but may require significant
dose reductions possibly affecting efficacy, and is a cause
of withdrawal from therapy in 10–14% of patients [64,
117–120]. Several risk factors for RBV-induced HA have
been identified, for example, age, female gender, dose and
plasma concentration of RBV, baseline hemoglobin and
platelets, and haptoglobin phenotype [121–124]. However,
the severity of RBV-induced HA shows great variability
among individuals, suggesting that the genetic background
may exert a profound influence on the clinical expression of
this adverse effect.

With the aim to detect predictor biomarkers that could
evaluate possible risks over benefits from currently available
treatment and thus avoid these side effects in patients who
will not be helped by the treatment, as well as reduce the
substantial cost of the treatment, recent studies indicated that
genetic variants leading to inosine triphosphatase (ITPase)
deficiency, a benign red cell enzymopathy [125], protect
against hemolytic anemia in CHC patients receiving RBV.
In an American GWAS, a strong association was shown
between hemoglobin reduction after 4 weeks of treatment
and SNP rs6051702 [126]. The association was explained
by two known functional variants in the ITPA gene, located
on chromosome 20 and encoding for inosine triphosphatase
(ITPase). The two variants, a missense polymorphism in
exon 2 (g.3141842C>A, P32T; rs1127354) and a splice-
altering SNP located in the second intron (g.8838A>C,
rs7270101), result in reduced enzyme activity: homozygosity
for the P32T mutation leads to undetectable ITPase activity,
accumulation of its substrate ITP in erythrocytes, and
increased toxicity of purine analogue drugs [125, 127–131].
Conversely, reduced ITPase activity may be protective from
RBV-induced hemolysis through the competition of ITP
with RBV-TP [127, 132].

The same results obtained by Fellay et al. [126] were
reported by Thompson et al. [133], who documented as well
a strong association between ITPase deficiency and lower
frequency of RBV-induced HA over the complete 48-week
therapeutic course for patients infected with HCV genotype
1. Of note, ITPA variants did not affect treatment response.
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Recent results by the same group analyzed patients infected
with HCV genotypes 2 and 3, showing that ITPA variants
are protective against treatment-related anemia, but are not
related to the rate of SVR [134]. Among Japanese patients,
only the SNP rs1127354 was strongly associated with the
incidence and severity of RBV-induced HA [135, 136].

In addition to their role as predictors of PEG-IFN
plus treatment response, the SNPs in or around the IL-
28B gene are also associated with spontaneous clearance of
HCV infection. Thomas et al. reported a strong association
of rs12979860 with spontaneous recovery found in HCV-
infected European and African American individuals [137].
This association was independent of coinfection with HIV,
type of HCV transmission, and history of HBV infection.
Moreover, Rauch et al. revealed the host factor associated
with spontaneous clearance of HCV was rs8099917, indepen-
dently of HIV coinfection [88].

As in HCV infection an inappropriate ratio of pro-
inflammatory and anti-inflammatory cytokines may deter-
mine the different outcomes of the infection (viral clearance
or persistence), polymorphisms in regulatory regions of
cytokine genes were studied. As a consequence, it was
recently reported that genetic polymorphisms in the pro-
moter region of interleukin-10 (IL-10) are possible predic-
tors of not only the spontaneous favourable outcome of
HCV infection but also of the progression of liver fibrosis
[138, 139].

Of note, the relationship between different levels of
hepatic steatosis in patients infected with genotype 3 and
host genetic SNPs was identified, suggesting that a small
difference in host genetic factors may result in differ-
ent outcomes of the disease with the same pathogen.
Zampino et al. revealed that the presence of T allele in
the −493G/T polymorphism of microsomal triglyceride
transfer protein (MTP) gene reduces the activity of this key
enzyme of assembly/secretion of lipoproteins and predis-
poses patients infected with HCV genotype 3 to develop
higher degree of fatty liver accumulation [140]. Moreover,
the SNP rs738409 of adiponutrin/patatin-like phospholipase
domain-containing 3 (PNPLA3), which encodes for the
I148M protein variant, has been recognized as a determinant
of liver fat content. In HCV infection, it also influences
steatosis development and is independently associated with
cirrhosis and other steatosis-related clinical outcomes, such
as lack of response to antiviral treatment and possibly HCC
[141].

4. Future Perspectives

Over the past few years, a great progress has been made
in understanding the heterogeneous disease progression and
treatment response in HCV infection. In the clinical practice,
physicians will soon be able to offer to infected patients a
tailor-made medicine by combining the screening of both
viral and host molecular biomarkers.

The unprecedented increase in the spread of HCV
documented during the 20th century has resulted in the
wave of increased HCV-related morbidity and mortality that

we are now facing. Moreover, over the next 10 years the
incidence of complications of CHC will not decline because
most patients remain undiagnosed.

Decisions on public health issues such as HCV screening,
prevention measures, and early treatment have the potential
to reduce the overall morbidity and mortality. However,
these depend on reliable epidemiological data, which is still
scarce.

Therefore, local and/or regional molecular epidemiology
studies concerning the viral and the newly reported host-
related aspects of infection are urgently needed.
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