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Abstract

Pre-flight design assessment and validation of navigation systems require emulating data acquired by a range of different
hypothetical configurations of onboard sensors with different quality standards and/or sampling time specifications. A proper
validation procedure requires the emulated data to be available at arbitrarily specified sampling times and for different hypothetical
test-trajectories. The problem thus formulated entails obtaining, for the different case studies, closed solutions of the nonlinear
kinematics equations as explicit functions of time. The method proposed is based on constructing a subset of the solutions
of the kinematics equations contained in a vector spline functional space whose order may be arbitrarily specified. Particular
consideration is devoted to the solutions of the attitude quaternion. The method is illustrated with experimental data obtained
during a sub-orbital flight of the VS30 vehicle of the Brazilian Space Agency.
© 2006 Published by Elsevier Ltd.
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1. Introduction

Design and validation of navigation systems require
pre-flight cost-benefit ratio evaluation of competing
configurations involving the measurement system, the
complexity and performance of the involved navigation
algorithms and required onboard computing resources.
The process calls for emulating the data delivered by
the measurement system aboard a vehicle moving along
a hypothetical test-trajectory. Since measurements’
sampling times are critical for the overall navigation
system’s performance, it is highly desirable to be able
to arbitrarily specify the sampling times of the emu-
lated sensors. Only a closed solution of the nonlinear
kinematical equations will enable this possibility.

∗ Corresponding author. Tel./fax: +54 011 4331 0074.
E-mail address: mespana@conae.gov.ar (M. España).
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Throughout this paper, any set of “sufficiently
differentiable” vector functions of time, P(t) : R →
R3, V (t) : R → R3, a(t) : R → R3, q(t) : R → R4

and �(t) : R → R3 which, if taken, respectively, as
the position, velocity, linear acceleration, quaternion
attitude and angular rate in a given coordinate system,
satisfy the kinematics equations are called consistent
kinematical magnitudes (or briefly, consistent magni-
tudes). When taken altogether, this set will be called a
consistent trajectory. Given any consistent trajectory of
explicit functions of time, the kinematical magnitudes
and the specific force experienced by the vehicle may
be evaluated at arbitrary sampling times (via usage of
a position dependent gravitational model [1]). These
samples are processed by the sensors’ models (inertial
or external aiding sensors for integrated navigation con-
figurations) to produce the simulated sampled data en-
tering the navigation algorithm. Consistent trajectories
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are essential for the evaluation of the numeric perfor-
mance of navigation algorithms. Indeed, inconsistent
data would induce artificial errors on the navigation al-
gorithm thus distorting its performance assessment.

The purpose of this paper is to present a method for
synthesizing consistent trajectories as explicit functions
of time. It consists in constructing a subset of solu-
tions of the kinematics equations contained in a vec-
tor splines functional space with arbitrarily specified
order. The navigation system validation procedure that
ensues does not require a physical model of the vehi-
cle. Actually, what challenges the navigation system’s
effectiveness is the dynamic evolution of the kinemat-
ics variables along a specific trajectory but not the ve-
hicle that it travels through. In order to exploit prior
information concerning typical or pre-designed trajec-
tories, the method starts off from “coarse initial data”
including the initial conditions (position, velocity and
attitude) and samples of position, velocity, attitude and
angular rate describing, more or less roughly, a vehi-
cle’s trajectory. These data are usually available as (a)
samples acquired during a previous flight experiment
of a particular vehicle; (b) a nominal or theoretical test
trajectory (e.g. issued from an optimal guidance prob-
lem); (c) data provided by a simulated vehicle.

Section 5 illustrates the proposed method using mea-
sured data obtained during the sub-orbital flight of a
VS30 Brazilian Space Agency rocket.

2. Piecewise polynomial functions and B-splines

This paragraph introduces B-splines theory basic
notions, required later, as applied to function approxi-
mation.

Definition 1 (De Boor [2]). Given the strictly growing
sequence {t}T �(ti)i=1,...,T in R and the sequence of
polynomials {P }T −1�(Pi)i=1,...,T −1 of order (degree+
1) k, a piecewise polynomial function (ppf), of order
k over the sequence {t}T is a function f : R → R,
satisfying

f (x)�
{

P1(x), x < t1,

Pi(x), ti �x < ti+1
PT +1(x), x� tT .

∀i = 1, . . . , T − 1,

(1)

In practice, the domain of definition of f is limited to the
interval [t1, tT ]. In the sequel, Pk,{t} denotes the set of
all the ppf of order k defined over the sequence {t}T . As
shown in Ref. [2], Pk,{t} is a vector space of dimension
k × (T − 1).

Definition 2 (De Boor [2]). Given a “sufficiently
differentiable” function g : R → R and a non-
decreasing sequence {�}n+k�(�i )i=1,...,n+k in R the
family (�i ) of divided differences associated with g is
defined as

for i = 1, . . . , n, �0({�}, i, g)�g(�i ) ∀�i ;

for i = 1, . . . , n − 1,

�1({�}, i, g)�
{ �0({�},i+1,g)−�0({�},i,g)

�i+1−�i
, �i �= �i+1,

g′(�i )/1!, �i = �i+1;
...

for i = 1, . . . , n − k,

�k({�}, i, g)

�
{ �k−1({�},i+1,g)−�k−1({�},i,g)

�i+k−�i
, �i �= �i+k,

g(k)(�i )/k!, �i = �i+k.
(2)

Definition 3 (De Boor [2]). (B-splines functions over
a sequence). Given the non-decreasing sequence {�}n+k

the ith normalized B-spline function of order k is defined
as

Bi,k,{�}(x)�(�i+k − �i )�k({�}, i, gx)

∀x ∈ R for i = 1 . . . , n, (3)

where

gx(y)�
{

(y − x)k−1, y�x,

0, y < x.

From the above definitions, the following property of
the B-spline functions ensues [2]:

Bi(x) = 0 ∀x /∈ [�i , �i+k]; only Bi−k+1,

Bi−k+2, . . . , Bi are non-zero for x ∈ [�i , �i+k]. (4)

As shown in Ref. [2], the j th derivative Djf (j < k)

of f ∈ Pk,{t}, obtained by differentiating j -times each
of the elements of the sequence {P }T −1, is also a ppf.

Notation. Given a sequence of non-negative integers
{�}T �(�i )i=1,...,T with �i �k, the set of polynomials of
order k over the sequence {t}T with �i the first discon-
tinuous derivative at ti is denoted as

Pk,{t},{�}�{f ∈ Pk,{t} : jumpti
Djf = 0;

j = 1, . . . , �i − 1}, (5)

where jump�f �f (�+) − f (�−). As shown in Ref.
[2], Pk,{t},{�} is a vector subspace of Pk,{t} with
n� dim(Pk,{t},{�}) = k × (T − 1) −∑T −1

i=2 �i . The next
theorem gives a basis for the subspace Pk,{t},{�}.
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Theorem 1 (Schoemberg and Curry [3]). Given (a) a
strictly growing sequence {t}T in R; (b) a sequence of
non-negative integers {�}T with �1=�T =0 and �i < k ∀i,
(c) the non-decreasing sequence {�}n+k in R, satisfying

(i) �1 = �2 = · · · = �k = t1, (6)

(ii) �
1+∑j−1

r=1 (k−�r )
= · · · = �∑j

r=1(k−�r )
= tj ,

j = 2, . . . , T − 1, (7)

(iii) tT = �n+1 = · · · = �n+k . (8)

The sequence of B-spline functions of order k for

n = k × (T − 1) − ∑T −1
i=2 �i , defined over the

sequence {�}n+k according to Eqs. (2) and (3),
namely (Bi,k,{�})i=1,...,n, is a basis of the subspace
Pk,{t},{�} over the interval [�k, �n+1] ⊇ [t1, tT ], so
that, for some {�}n real, any ppf h ∈ Pk,{t},{�} may
be expressed as

h =
n∑

i=1

�iBi,k,{�}(x). (9)

Notice that condition (ii) implies that ti is replicated
k − �i times within the sequence {�}n+k .

2.1. Approximation of m-vector functions with
m-vector splines of order k

Given the order k of an m-vector pp-expansion and
the following assumptions on the initial data:

(i) A set of values of a vector function g : R →
Rm and of its first � derivatives evaluated, re-
spectively, over non-decreasing sequences in R:
{�}N, {�1}N1 , . . . , {��}N� .

(ii) m strictly growing sequences {t l}Tl
, for l =

1, . . . , m (each characterizing a set Pk,tl defined as
in (1)) delimiting Tl−1 adjacent intervals [t li , t li+1]
in R, satisfying (a) t l1 � min{�1, �1

1, . . . , �
�
1 }; (b)

the {t l}Tl
include those time instants at which any

derivative (of order < k) of the l-component is
discontinuous; (c) at least k distinct �j ∈ {�}N are
included in each interval [t li , t li+1].

(iii) m non-negative integer sequences {vl}T , with
�l
i < k; �l

1 = �l
T = 0, indicating the lowest dis-

continuous derivative order of the l-component
(l = 1, . . . , m) of the approximating pp vector
function at instant t li .

Based on sequences {t l}Tl
, {vl}T , for l = 1 to m, intro-

duce the l-indexed sequences {�l}n(l)+k chosen, accord-

ing to Eqs. (6)–(8) of Theorem 1 with n(l) = k × (Tl −
1)−∑T −1

i=2 �i and denote with Bl

i,k,{�l} the corresponding

basis generating Pk,{t l},{�l}.

Problem 1. Determine the m-vector ppf f̂ : R → Rm

with components f̂ l ∈ Pk,{t l},{�l} for l =1, . . . , m, min-
imizing the distance:

dist(f, g)�

⎛
⎝ N∑

i=1

|f(�i ) − g(�i )|2wi +
N1∑
j=1

|f ′(�1
j )

− g′(�1
j )|2w1

j + · · · +
N�∑
k=1

|f (�)(��
k )

−g(�)(��
k )|2w�

k

⎞
⎠

1/2

. (10)

Remarks. | · | denotes the standard Euclidian norm of
an m-vector. The weights wi > 0, ws

j �0, s =1, . . . , �,
reflect the relative importance assigned to the errors
of the vector function and its derivatives. As usual,
for measured “initial data”, the weights correspond to
the inverse of error variances. The order k of the ap-
proximating polynomials is chosen according to the
“smoothness” sought for the approximating pp vector
function (a high k may induce undesired oscillations in
the approximating solution). If for any i and l, �l

i > 1 the

first derivative of the l-component of f̂ will be contin-
uous at ti . Non-decreasing sequences {��}N� allow us-
age of simultaneous measurements—possibly acquired
by different sensors. Including more than k different �j

within [t li , t li+1] has a filtering effect on the original data
over that interval. An efficient data compression could
be achieved through a careful selection of those inter-
vals. Even though very much involved notationwise, co-
ordinate dependent values of the order k, the sequences
{�j }N and the weights ws

j may also be considered.

Solution of Problem 1. We first define the scalar
functions: l = 1, . . . , m; f l, hl ∈ Pk,{t l},{�l} : 〈, 〉l :
Pk.{t l},{�l} × Pk.{t l},{�l} → R:

〈f l, hl〉l�
N∑

i=1

f l(�i )h
l(�i )wi

+
N1∑
j=1

f l(1)

(�1
j )h

l(1)

(�1
j )w

1
j + · · ·

+
N�∑
k=1

f l(�)

(��
k )hl(�)

(��
k )w

�
k . (11)
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As a direct consequence of Schoenberg and Withney’s
Theorem [2] and assumption (ii-c), it may be shown
that (11) is an inner product of the n(l)-dimensional
space Pk.{t l},{�l}. Moreover, with (11), the objective (10)
is rewritten as

dist(f, g) =
(∑

l

〈f l − gl, f l − gl〉l
)1/2

�‖f − g‖

(12)

and Problem 1 restated as the following optimization
problem for the given “initial data”:

f̂ = [f̂ 1 · · · f̂ m]T = argmin
f̂ l∈P

k,tl ,vl

{‖f − g‖}. (13)

Following Theorem 1, the solution to Problem 1 is an
m-vector ppf f̂ with components f̂ l =∑n(l)

i=1 �l
iB

l

i,k,{�l},
where, for each l=1, . . . , m, the �l

i , i=1, . . . , n(l), are
the unique solutions of the following normal equation
formulated in terms of the product (11):

〈Bl

j,k,{�l}, g
l〉l =

n(l)∑
i=1

〈Bl

j,k,{�l}, B
l

i,k,{�l}〉l�
l
i ,

j = 1, . . . , n(l), l = 1, . . . , m. (14)

Proof hint. Notice that since Eq. (12) involves a sum
of positive and independent terms, the minimization of
each term assures the minimization of Eq. (12). On
the other hand, from standard Hilbert space arguments,
the function f̂ l ∈ Pk.{t l},{�l} that best approximates

gl satisfies 〈f̂ l − gl, Bl

i,k,{�l}〉l = 0 (for l = 1, . . . , m)

and condition (14) follows using f̂ l =∑n(l)
i=1 �l

iB
l

i,k,{�l}.
Moreover, for each l = 1, . . . , m, the matrices [mij ]l =
[〈Bl

j,k,{�}l , B
l

j,k,{�}l 〉l] are positive definite since by def-

inition the set {Bl

j,k,{�}l }n(l)is a basis of the 〈, 〉l-inner

product space Pk.{t l},{�l}. This guarantees the existence
and uniqueness of the solution of Eq. (14).

Remark. From the Property P1 above (4), one has that,
for |i−j |�k, 〈Bi, Bj 〉l =mi,j =0, therefore, M=[mij ]
is a “striped” matrix. This fact with the positiveness of
M allows an efficient numeric solution of system (14)
(e.g. Cholesky’ factorization [4].)

The results presented thus far are now applied to
the synthesis of explicit functions of time consistent
trajectories.

3. Synthesis of consistent position, velocity,
acceleration and specific force

The synthesis procedure consists in determining a
twice-differentiable vector ppf for the position in iner-
tial coordinates. Velocity and acceleration are then ob-
tained by successive differentiation. The specific force is
subsequently calculated by subtracting the gravitational
force—evaluated using a position dependent gravita-
tional model—from the acceleration vector.

Problem PV. For a given order k and the following
initial data:

• R3− samples of position, velocity and acceleration in
inertial frame: {P̃}N , {Ṽ}N1

{Ã}N2
specified or mea-

sured (possibly noise corrupted), respectively, at the
times: {�}N , {�′}N1

and {�2}N2
;

• R3-sequences: {�2
p}N , {�2

v}N2
and {�2

a}N3
of position

velocity and acceleration measurements’ uncertain-
ties (measurement’s error variances);

• user defined non-decreasing sequences of times {t l}T l

for l = 1, 2, 3 (may be coincident) satisfying (ii) of
Problem 1;

• non-negative integer sequences {vl}T , for l = 1, 2, 3,
satisfying (iii) of Problem 1 (e.g. 2��l

i �k ∀i implies
continuous velocity),

find the vector ppf P̂(t)�[P̂ 1 P̂ 2 P̂ 3]T ∈ R3 minimiz-
ing the distance

dist(P̂, P̃)�

⎛
⎝ N∑

i=1

|P̂(�i ) − P̃i |2wp
i +

N1∑
j=1

|P̂′(�1
j )

−Ṽj |2wv
j +

N2∑
r=1

|P̂(2)(�2
r ) − Ãr |2wa

r

)1/2

,

w
p
i > 0, wv

j �0, wa
r �0. (15)

Solution of Problem PV. Under the conditions re-
quired by Theorem 1 and Problem 1, the solution P̂(t)

to problem (15) is

P̂ l(t) =
n(l)∑
i=1

�l
iB

l

i,k,{�l}, l = 1, 2, 3, (16)

where n(l) = k(T − 1) −∑T −1
i=2 �l

i and �l�[�l
1 �l

2 . . .

�l
n]T ∈ Rn corresponds to the unique solutions of the

system of equations

〈Bl

j,k,{�l}, P̃
l〉 =

n(l)∑
i=1

〈Bl

j,k,{�l}, B
l

i,k,{�l}〉�
l
i ,

j = 1, . . . , n, l = 1, 2, 3. (17)
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Fig. 1. Position data in inertial frame of VS30 vehicle and the
selected partition for the pp functions.

The B-spline functions Bl

j,k,{�l} defined over the se-

quences {�l} are defined as in Theorem 1 (Eqs. (6)–(8)).

Remarks. Weight in Eq. (15) are chosen as ws
i =

1/(�s
i )

2; s = p, v, a, with (�s
i )

2; s = p, v, a, respec-
tively, the specified uncertainties or measurement error
variances of the position, velocity and acceleration
for l = 1, 2, 3. The velocity and acceleration ppf are
obtained by successive derivations of the ppf P̂ l(t), so-
lution of Eq. (16). The velocity’s continuity is assured
by the condition: 1 < �i �k ∀i.

4. Synthesis of consistent attitude and angular rate
vectors

Problem �q. Generate a consistent time explicit pair
of functions (qi

b(t), �b
ib(t)) of attitude quaternion and

Fig. 2. Velocity data in inertial frame of the VS30 vehicle and the
selected partition for the pp functions.

angular rate, with the vehicle’s initial quaternion and
angular rate samples measured (possibly noise cor-
rupted) or pre-specified at arbitrary discrete times, as
initial data. The procedure is subdivided into three
sub-problems, solved successively.

Problem �. For a given order k and the following ini-
tial data:

• R3-samples of body angular rate: �̃ = (�̃i )i=1,...,N

(possibly noise corrupted measurements) in iner-
tial frame, evaluated on the non-decreasing time
sequence: (�i )i=1,...,N ;

• the R3-sequence (�2
�i

)i=1,...,N of uncertainties (er-
ror measurements’ variances) of the available angular
rate data;

• user defined non-decreasing sequences of times {t l}T l

for l = 1, 2, 3 (may be coincident) satisfying (ii) of
Problem 1;
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Fig. 3. Measured position and synthesized position in inertial frame
of the VS30 vehicle.

• non-negative integer sequences {vl}T , for l = 1, 2, 3,
satisfying (iii) of Problem 1. In general, �l

i > 0 except
when an abrupt change in �(t) is explicitly assumed
at time ti in which case �l

i = 0 is adopted,

find those elements �̂(t)�[�̂1 �̂2 �̂3]T ∈ R3 minimiz-
ing the distance

dist(�̂, �̃)�
(

N∑
i=1

|�̂(�i )−�̃i |2w�
i

)1/2

, w�
i >0. (18)

Solution of Problem �. Under the conditions estab-
lished by Theorem 1 and Problem 1, the solution �̂(t)

to Eq. (18) is

�̂l
(t) =

n(l)∑
i=1

�l
iB

l

i,k,{�l} (l = 1, 2, 3), (19)

Fig. 4. Synthesized acceleration in inertial frame.

with n(l)=k(T −1)−∑T −1
i=2 �l

i and �l�[�l
1 �l

2 . . . �l
n]T

∈ Rn corresponds to the unique solutions of the system
of equations

〈Bl

j,k,{�l}, �̃
l〉 =

n(l)∑
i=1

〈Bl

j,k,{�l}, B
l

i,k,{�l}〉�
l
i ,

j = 1, . . . , n, l = 1, 2, 3. (20)

The B-spline functions Bl

j,k,{�l} defined over the se-

quence (�l
i )i=1,...,n+k are defined as in Theorem 1 (Eqs.

(6)–(8)).

Problem q1. Given the initial quaternion qi
b(0) and the

ppf �̂(t) (Eq. (19)), calculate the sequence of quater-
nions (q̃j)j=1,...,M ∈ H (the unitary sphere in R4) by
numerically integrating the kinematic (21) over a strictly
growing sequence of times {�̃}N�(�̃j )i=1,...,N .

˙̃q = 1

2
q̃ ◦

[
�̂
0

]
, q̃(0) = qi

b(0). (21)
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Fig. 5. Inertial angular velocity data and synthesized angular velocity in body frame.

In practice, this sequence coincides with the integration
intervals of a variable step numerical integration algo-
rithm, thus assuring a sampling sequence in accordance
with the local dynamic of the kinematical equations.
The tolerance parameter of the integration method is
used to trade among precision and data compression.

Problem q2. Interpolate the pairs ((q̃j ); (�̃j ))j=1,...,M ,
resulting from Problem q1, with a differentiable explicit
function of time q(t) : R → H whereby, a consis-
tent couple (q(t), �(t)) of explicit functions of time are
readily obtained by introducing q(t) and its derivative
q̇(t) into the kinematic (21) and solving for �(t).

Solution of Problem q2. A cubic spline (see for
instance [5]) is used to interpolate the couples
((q̃l

j ), (�̃
l
j ))j=1,...,M for l = 1, 2, 3, 4 (see for instance

[1]). The result: q̄(t)�[q̄1(t) q̄2(t) q̄3(t) q̄4(t)]T is
a ppf at least three times differentiable passing over
the points (q̃)i=1,...,M ∈ H at instants (�̃j )j=1,...,M .

We now define the projection along the radius vector in
R4 : P : R4 → H as

P(q)�
{

q/‖q‖ q ∈ R4 if q �= 0,

0 if q = 0,

together with the composition of functions q(t)�
P ◦ q̄(t). Clearly, since q̄(�i ) = q̃i ∈ H and P is a pro-
jection over H, q(�i ) = P(q̄(�i)) = q̃i, thus, q(t) is an
interpolating function over H of the data (q̃)i=1,...,M .
Moreover, except for the practically irrelevant case
q̄ = 0, q̇(t) may be explicitly evaluated at any time t ,
with

q̇(t) = 1

‖q̄(t)‖ (I − q̄(t)q̄(t)T) ˙̄q(t) for q �= 0 (22)

obtained differentiating with respect to time the expres-
sion q = P(q̄) = q̄/‖q̄‖. This solves Problem q2.

Solution of Problem �q. With the quaternion qi
b(t)=

q(t) together with its derivative q̇(t) (22), both
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solutions of Problem q2, an explicit expression of the
consistent angular rate �b

ib(t)=�(t) is readily obtained
for any time t by solving Eq. (21) so as to obtain[
�b

ib(t)

0

]
= 2q(t)∗ ◦ q̇(t) ∀t . (23)

5. Experimental results

Figs. 1 and 2 show, respectively, position and velocity
data (acquired by radar) in an inertial frame of a VS30
sound rocket trajectory. The sequence {�}N corresponds
to a sampling period of 0.1 s. The vertical lines indicate
the {t}T sequence chosen so as to better reflect abrupt
changes in the acceleration occurring at the inflection
points of the curve.

In Fig. 3, the experimental data are compared with the
almost coincident spline function Pi (t) of order k = 4,
solution of problem PV. Since no reliable velocity and
acceleration data were available, wv

j =wa
r =0 was set in

Eq. (15). The synthesized vehicle’s inertial acceleration
ai (t) (=P̈i (t)) is shown in Fig. 4.

While the thrust is active, during approximately the
first 20 s of flight, four canted fins in the back spin up
the vehicle along its longitudinal x-axis from zero to ap-
proximately 3 rps. This motion allows for a distribution
of environmental pitching moments leading to residual
attitude rate in the y–z body axis. Fig. 5 displays the
initial data [�̃}N , {�}N ] of the angular rate vector in
body coordinates, measured in flight, and the function
�b

ib(t), solution of problem �q (Eq. (23)). The user de-
fined sequence {t}T , indicated with vertical lines in the
figure, is chosen so as to fulfill Shannon’s condition for
the fundamental frequency of oscillations visible mainly
on the y–z body axis. Notice that higher frequencies
are being filtered out. Should these higher frequencies
need to be included in the final synthesized (consis-
tent) �b

ib(t) solution, shorter time intervals within the
{t}T have to be chosen. In order to assure sharp cor-
ners in �b

ib(t), occurring at times t1 =61 s, t2 =66 s due

Fig. 6. Specific force in the axial direction.

to the de-spinning maneuver, these two time instants
are included in the sequence with �1 = �2 = 1. The
synthesized specific force in body axis fb(t), shown in
Fig. 6, is determined through

fb(t) = qb
i (t) ◦ (ai (t) − gi (Pi (t)), (24)

where the attitude quaternion function qi
b(t)=P(q̄(t)),

solution of the Problem �q, and a gravitation position
dependent model gi (Pi ) have been used.

6. Conclusions

Pre-flight design assessment and validation of navi-
gation systems require emulating data possibly acquired
by a range of potential configurations of onboard sen-
sors with diverse quality standards, arbitrary sampling
times and for a variety of hypothetical test-trajectories.
The problem, thus formulated, entails obtaining for
the different case studies, closed solutions of the non-
linear kinematics differential equations. Consistent
sampled data derived from these trajectories are partic-
ularly relevant for the validation of strap-down naviga-
tion systems. Indeed, inconsistent data induce artificial
errors into the navigation algorithm thus impairing the
whole system’s validation process. Coarse initial data,
indicative of desired passage points, sampled velocities
and attitude quaternion of a hypothetical vehicle’s tra-
jectory are the inputs to the method. Via embedding the
solutions of the kinematics equations into a B-spline
functional space with arbitrary order, the method pro-
vides time explicit functions consistent trajectories.
As valuable byproducts, the method can filter noisy
sampled measurements, allows the user to decide the
degree of compression of ensuing data and makes it
possible to represent discontinuities on higher deriva-
tives of the kinematics variables such as those arising
during launchers’ take off, fast de-spinning maneuvers
or abrupt deceleration during atmospheric reentry.
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