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THE LOCAL FORM OF DOUBLY STOCHASTIC MAPS AND JOINT

MAJORIZATION IN II1 FACTORS

MARTÍN ARGERAMI AND PEDRO MASSEY

Dedicated to our families

Abstract. We find a description of the restriction of doubly stochastic maps to separable
abelian C∗-subalgebras of a II1 factor M. We use this local form of doubly stochastic maps to
develop a notion of joint majorization between n-tuples of mutually commuting self-adjoint
operators that extends those of Kamei (for single self-adjoint operators) and Hiai (for single
normal operators) in the II1 factor case. Several characterizations of this joint majorization
are obtained. As a byproduct we prove that any separable abelian C∗-subalgebra of M can
be embedded into a separable abelian C∗-subalgebra of M with diffuse spectral measure.

1. Introduction

Majorization between self-adjoint operators in finite factors was introduced by Kamei [18]
as an extension of Ando’s definition of majorization between self-adjoint matrices [4], a useful
tool in matrix theory. Later on, Hiai considered majorization in semifinite factors between self-
adjoint and normal operators [12, 13]. The reason why majorization has attracted the attention
of many researchers (see the discussion in [13] and the references therein) is that it provides
a rather subtle way to compare operators and occurs naturally in many contexts (for example
[5, 10, 11]). Recently, majorization has regained interest because of its relation with norm-closed
unitary orbits of self-adjoint operators and conditional expectations onto abelian subalgebras
[5, 6, 8, 11, 15, 16, 20, 22]. One of the goals of this paper (section 4) is to obtain an extension
of the notion of majorization between normal operators to that of joint majorization between
n-tuples of commuting self-adjoint operators in a II1 factor (such extension is achieved in [19]
for finite dimensional factors). In order to obtain characterizations of this extended notion we
describe the local form of a doubly stochastic map (DS), i.e. we get a family of particularly
well behaved DS maps that approximate the restriction of any DS map to separable abelian
C∗-subalgebras of a II1 factor (section 3). As a byproduct, we construct separable abelian
diffuse refinements of separable abelian C∗-subalgebras of a II1 factor M. This construction
seems to have interest on its own. Some of the techniques we use seem to be new, even in the
single element case.

So far we have restricted our attention to the II1 factor case because, on one hand, technical
aspects of the work become simpler and on the other hand, this is the context where majorization
has its full meaning. Since every finite von Neumann algebra acting on a separable Hilbert space
has a direct integral decomposition in terms of finite factors, the study of II1 factors provides
useful information about more general algebras.

The paper is organized as follows. In section 2 we recall some facts about abelian C∗-
subalgebras of a II1 factor. In section 3, after describing some technical results, we obtain a
description of the local structure of doubly stochastic maps. In section 4 we introduce and
develop the notion of joint majorization between finite abelian families of self-adjoint operators
in a II1 factor and we obtain several characterizations of this relation. Finally, in section 6 we
prove the results described in section 3.
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2 MARTÍN ARGERAMI AND PEDRO MASSEY

2. Preliminaries

Throughout the paper M will be a II1 factor with normalized faithful normal trace τ . The
C∗-subalgebras of M are always assumed unital. The subspace of self-adjoint elements of M
will be denoted by Msa, and we will consider abelian families (a1, . . . , an) = (ai)

n
i=1 in Msa,

that is finite families of mutually commuting self-adjoint operators in M. If (ai)
n
i=1 ⊆ Msa is

an abelian family then C∗(a1, . . . , an) denotes the (unital) separable abelian C∗-subalgebra of
M generated by the elements of the family. If A is an arbitrary abelian C∗-subalgebra of M
then Γ(A) denotes its space of characters, i.e. the set of *-homomorphisms γ : A → C, endowed
with the weak∗-topology. The set Γ(A) is a compact space and A ≃ C(Γ(A)), where C(Γ(A))
denotes the C∗-algebra of continuous functions on Γ(A).

2.1. Joint spectral measures and joint spectral distributions. As we will consider a
several-variable version of functional calculus, we state a few facts about it (see [23] for a different
description). Let ā = (ai)

n
i=1 be an abelian family in Msa. If A = C∗(a1, . . . , an), then Γ(A)

can be embedded in
∏n

i=1 σ(ai) ⊆ Rn. In fact, the map Φ : Γ(A) →
∏n

i=1 σ(ai) ⊆ Rn given
by Φ(γ) = (γ(a1), . . . , γ(an)) is a continuous injection and therefore Γ(A) is homeomorphic
to its image under this map; this image is called the joint spectrum of the family and we
denote it by σ(ā) ⊆

∏n

i=1 σ(ai). Note that A ≃ C(σ(ā)) as C∗-algebras. If f ∈ C(σ(ā)), there
exists a normal operator, denoted f(a1, . . . , an), that corresponds to f under the isomorphism
A ≃ C(σ(ā)). This association extends the usual one variable functional calculus.

If A ⊆ M is a separable C∗-subalgebra then Γ(A) is metrizable and the representation
C(Γ(A)) ≃ A ⊆ M induces a spectral measure EA [9, IX.1.14] that takes values on the lattice
P(M) of projections of M. Let µA be the (scalar) regular Borel measure on Γ(A) defined by

µA(∆) = τ(EA(∆)).

The regularity of µA follows from the fact that every open set is σ-compact [21, 2.18]. The map
Λ : L∞(Γ(A), µA) → M given by Λ(h) =

∫

Γ(A)
h dEA is a normal ∗-monomorphism (note that

in this case the weak∗ topology of L∞(Γ(A), µA), restricted to the unit ball, is metrizable) and
we have

(1) τ (Λ(h)) =

∫

Γ(A)

h dµA, ∀h ∈ L∞(Γ(A), µA).

We consider the von Neumann algebra L∞(A) := Λ(L∞(Γ(A), µA)) ⊆ M.
When A = C∗(a1, . . . , an), Eā := EA and µā := µA are the joint spectral measure and

joint spectral distribution of the abelian family ā and we denote by Λā : L∞(Γ(ā), µā) →
L∞(A) the normal isomorphism defined above. It is straightforward to verify that Λā(πi) = ai,
1 ≤ i ≤ n, and we write h(a1, . . . , an) := Λā(h). In the case of a single self-adjoint operator
a ∈ Msa the measure µa is the usual spectral distribution of a (see [8]), and it agrees with the
Brown measure of a.

In the particular case when x ∈ M is a normal operator, the real and imaginary parts of x
are mutually commuting self-adjoint elements of M. Identifying the complex plane with R2 in
the usual way, it is easy to see that the spectrum of x as a normal operator coincides with the
joint spectrum of the abelian pair (Re(x), Im(x)), and that the spectral measure of x coincides
with the joint spectral measure of (Re(x), Im(x)).

2.2. Comparison of measures and diffuse measures. We denote by M∼
+ (Rn) the set of all

regular finite positive Borel measures ν on Rn with
∫

‖ζ‖ dν(ζ) < ∞. We write ν(f) =
∫

Rn f dν,
for every ν ∈ M∼

+ (Rn) and every ν-integrable function f . In what follows, 1 denotes the constant

function and πi : R
n → R denotes the projection onto the ith coordinate.

Definition 2.1. We say that µ is majorized by ν, and we write µ ≺ ν, if for every µ1, . . . , µm ∈
M∼

+ (Rn) with
∑m

i=1 µi = µ there exist ν1, . . . , νm ∈ M∼
+ (Rn) such that

∑m

i=1 νi = ν, νi(1) =
µi(1) and νi(πj) = µi(πj) for 1 ≤ i ≤ m, 1 ≤ j ≤ n.
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The relation ≺ in Definition 2.1 does not seem to be called “majorization” in the literature,
but it will be a suitable name for us in the light of Theorem 4.5. If µ, ν ∈ M∼

+ (Rn) we shall
write ν ∼ µ whenever ν(1) = µ(1) and ν(πj) = µ(πj) for every 1 ≤ j ≤ n.

Theorem 2.2. [3, I.3.2] Let µ, ν ∈ M∼
+ (Rn). Then µ ≺ ν if and only if µ(f) ≤ ν(f) for every

continuous convex function f : Rn → R.

The next corollary is a direct consequence of Theorem 2.2 and the identity in equation (1).

Corollary 2.3. Let ā = (ai)
n
i=1, b̄ = (bi)

n
i=1 ⊂ Msa be two abelian families. Then µā ≺ µb̄ if

and only if τ(f(a1, . . . , an)) ≤ τ(f(b1, . . . , bn)) for every continuous convex function f : Rn →
R.

We end this section with the following elementary fact about diffuse (scalar) measures, i.e.
measures without atoms (recall that x is an atom of a measure µ if µ({x}) > 0).

Lemma 2.4. Let K ⊂ Rn be compact and let µ be a regular diffuse Borel probability measure
on K. Then for every α ∈ (0, 1) there exists a measurable set S ⊂ K such that µ(S) = α.

3. The local form of doubly stochastic maps

A linear map Φ : M → M is said to be doubly stochastic [12] if it is unital, positive,
and trace preserving. We denote the set of all doubly stochastic maps on M by DS(M).
Doubly stochastic maps play an important role in the theory of majorization between self-
adjoint operators (see for instance [1, 2, 12, 13]); thus, the study of their structure appears as
a natural topic here.

In what follows we introduce some terminology, we state Theorem 3.1, Proposition 3.2, and
Lemma 3.5 and then we use them to prove Theorem 3.6. The proofs of these results will be
presented at the end of the paper, in section 6. Although technical, they seem to have some
interest on their own.

LetA ⊆ M be an abelian C∗-subalgebra, and let EA and µA denote the spectral measure and
the spectral distribution of A as defined in section 2.1. If x ∈ Γ(A) is such that EA({x}) 6= 0, we
say that x is an atom for EA. The set of atoms of EA is denoted At(EA). Since µA = τ ◦EA, the
faithfulness of the trace implies that At(µA) =At(EA). We say that A is diffuse if At(EA) = ∅.
The following theorem states that spectral measures of a separableA can be refined in a coherent
way.

Theorem 3.1. Let A ⊆ M be a separable abelian C∗-subalgebra. Then there exists a ∈ Msa

such that C∗(A, a) is abelian and diffuse.

Since the atoms of EA are in correspondence with the set of minimal projections of L∞(A),

Theorem 3.1 provides a way to embed A into a separable C∗-subalgebra Ã = C∗(A, a) such

that L∞(Ã) has no minimal projections (see Remark 6.3 for further discussion).

Proposition 3.2. Let B ⊂ M be a separable, diffuse, and abelian C∗-subalgebra. Then there
exists an unbounded set M ⊆ N such that for every m ∈ M there exist k = k(m) partitions of

the unity {qt,mi }mi=1 ⊆ B′ ∩ M, 1 ≤ t ≤ k, with τ(qt,mi ) = 1/m (1 ≤ i ≤ m, 1 ≤ t ≤ k), and

such that for each b ∈ B, if we let βt,m
i = mτ(b qt,mi ), then

(2) lim
m→∞

∥

∥

∥

∥

∥

b−
1

k

k
∑

t=1

(

m
∑

i=1

βt,m
i qt,mi

)∥

∥

∥

∥

∥

= 0.

Remark 3.3. For fixed m and partitions of the unity {qti}
m
i=1 1 ≤ t ≤ k, the linear map

b 7→
1

k

k
∑

t=1

(

m
∑

i=1

mτ(b qti) q
t
i

)
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is a contraction with respect to the operator norm.

We denote by D(M) the convex semigroup D(M) = conv{Adu : u ∈ U(M)}.

Lemma 3.4. Let {pi}mi=1, {qi}
m
i=1 ⊆ M be partitions of the unity such that τ(pi) = τ(qi) =

1
m
,

and let T ∈ DS(M). Then there exists ρ ∈ D(M) such that if β1, . . . , βm ∈ R and αi =
m
∑m

j=1 βjτ(T (qj) pi) for 1 ≤ i ≤ m, we have

(3)
m
∑

i=1

αipi = ρ

(

m
∑

i=1

βi qi

)

.

Proof. Let γi,j = mτ(T (qj) pi) ≥ 0; it is then straightforward to verify that (γi,j) ∈ Rm×m is
a doubly stochastic matrix and, moreover, that αi =

∑m

j=1 γi,j βj for every i = 1, . . . ,m. By

Birkhoff’s theorem the doubly stochastic matrix (γi,j) can be written as a convex combination
of permutation matrices, i.e. (γi,j) =

∑

σ∈Sm
ησPσ, where ησ ≥ 0,

∑

σ∈Sm
ησ = 1 and Pσ is the

m×m permutation matrix induced by σ ∈ Sm. Then we have

(4) αi =

m
∑

j=1

γi,j βj =
∑

σ∈Sm

ησ βσ(i) 1 ≤ i ≤ m.

The fact that M is a II1 factor and that the elements of the partitions {pi}i, {qi}i have the
same trace guarantees the existence of unitaries uσ such that uσ qσ(i) (uσ)

∗ = pi, 1 ≤ i ≤ m,
for every σ ∈ Sm. Indeed, if σ ∈ Sm, the equalities, τ(qσ(i)) = τ(pi) imply that there exist
partial isometries vi,σ ∈ M such that vi,σv

∗
i,σ = pi and v∗i,σvi,σ = qσ(i) for i = 1, . . . ,m.

Then uσ =
∑m

i=1 vi,σ ∈ M are the required unitaries. Using equation (4), and letting ρ(· ) =
∑

σ∈Sm
ησ uσ (· )u∗

σ,

m
∑

i=1

αi pi =
m
∑

i=1

(

∑

σ∈Sm

ησ βσ(i)

)

pi =
∑

σ∈Sm

ησ

(

m
∑

i=1

βσ(i) uσ qσ(i) u
∗
σ

)

=
∑

σ∈Sm

ησ uσ

(

m
∑

i=1

βi qi

)

u∗
σ = ρ

(

m
∑

i=1

βi qi

)

. �

Lemma 3.5. Let B ⊂ M be a separable C∗-subalgebra, and let {pi}mi=1 ⊆ B ′∩M be a partition
of the unity. Then there exists a sequence {ρi}i∈N ⊂ D(M) such that for every b ∈ B, if we let
βi(b) = τ(b pi)/τ(pi), then

lim
j→∞

∥

∥

∥

∥

∥

ρj(b)−
m
∑

i=1

βi(b)pi

∥

∥

∥

∥

∥

= 0.

Theorem 3.6. Let A, B ⊆ M be separable abelian C∗-subalgebras and let T ∈ DS(M). Let
S be the operator subsystem of B given by S = T−1(A) ∩ B. Then there exists a sequence
(ρr)r∈N ⊆ D(M) such that limr→∞ ‖T (b)− ρr(b)‖ = 0 for every b ∈ S.

Proof. First, note that we just have to prove the theorem for separable diffuse abelian C∗-
subalgebras of M; indeed, assume it holds for such algebras and let A, B ⊆ M be arbitrary
separable abelian C∗-subalgebras. Then, by Theorem 3.1 there exist separable diffuse abelian
subalgebras Ã and B̃ of M such that A ⊆ Ã and B ⊆ B̃. Thus we get a sequence {ρr}r∈N ⊆ D
such that limr→∞ ‖T (b)− ρr(b)‖ = 0, for every b ∈ T−1(A) ∩ B ⊆ T−1(Ã) ∩ B̃. So we assume
that A and B are diffuse.

By Proposition 3.2, there exists an unbounded set M ⊆ N and, for each m ∈ M, k(m)

partitions of the unity {qj,mi }mi=1 ⊆ B ′ ∩ M and {pj,mi }mi=1 ⊆ A ′ ∩ M (in order to simplify
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the notation we avoid the supra-index m and write qji , p
j
i ), 1 ≤ j ≤ k, such that for every

b ∈ T (A)−1 ∩ B and every r ∈ N, there exists m0(r, b) ∈ M such that if m ≥ m0 we have

(5)

∥

∥

∥

∥

∥

∥

b−
1

k

k
∑

j=1

(

m
∑

i=1

βj
i q

j
i

)

∥

∥

∥

∥

∥

∥

<
1

r

and

(6)

∥

∥

∥

∥

∥

∥

T (b)−
1

k

k
∑

j=1

(

m
∑

i=1

αj
ip

j
i

)

∥

∥

∥

∥

∥

∥

<
1

r

where βj
i = mτ(b qji ), α

j
i = mτ(T (b) pji ), τ(p

j
i ) = τ(qji ) = 1/m, (from the construction of such

partitions it is evident that we can assume that both have the same unbounded set M and the
same k(m) for every m ∈ M). Fix b ∈ B. Since ‖T ‖ = 1, it follows from equation (5) that

(7)

∥

∥

∥

∥

∥

∥

T (b)−
1

k

k
∑

j=1

(

m
∑

i=1

βj
i T (q

j
i )

)

∥

∥

∥

∥

∥

∥

≤
1

r
.

Applying to (7) the fact that the linear map in Remark 3.3 is linear and contractive (with {pji}i
as the partitions of the unity), we get

(8)

∥

∥

∥

∥

∥

∥

1

k

k
∑

j=1

m
∑

i=1

αj
i p

j
i −

1

k2

k
∑

j=1

(

k
∑

t=1

m
∑

i=1

αj, t
i p t

i

)

∥

∥

∥

∥

∥

∥

≤
1

r
,

where αj, t
i = m

∑m

l=1 β
j
l τ(T (q

j
l )p

t
i ), and αj

i as defined above. By Lemma 3.4 there exists
ρmj, t ∈ D(M) such that

(9)

m
∑

i=1

αj, t
i p t

i = ρmj, t

(

m
∑

l=1

βj
l q

j
l

)

, 1 ≤ j, t ≤ k.

Using (6), (8), and (9) we get

(10)

∥

∥

∥

∥

∥

∥

T (b)−
1

k2

k
∑

j=1

k
∑

t=1

ρmj, t

(

m
∑

l=1

βj
l q

j
l

)

∥

∥

∥

∥

∥

∥

≤
2

r
,

By Lemma 3.5 there exist sequences (ρ̃jn)n∈N ⊆ D(M), 1 ≤ j ≤ k, independent of b, such that
for every r ∈ N there exists n0 = n0(r, b) such that if n ≥ n0 then

(11)

∥

∥

∥

∥

∥

m
∑

l=1

βj
l q

j
l − ρ̃jn(b)

∥

∥

∥

∥

∥

≤
1

r
, 1 ≤ j ≤ k.

From (10) and (11), together with the fact that each ρ ∈ D(M) is contractive we get, for every
n ≥ n0(r, b)

(12)

∥

∥

∥

∥

∥

∥

T (b)−
1

k2

k
∑

j=1

k
∑

t=1

ρmj, t(ρ̃
j
n(b))

∥

∥

∥

∥

∥

∥

≤
3

r
,

Consider a dense countable subset {b1, b2, . . .} of B. Now define n(r), m(r) as n(r) = max{n0(r, b1), . . . , n0(r, br)}

and m(r) = max{m0(r, b1), . . . ,m0(r, br)} and let ρr := 1
k2

∑k

j=1

∑k

t=1 ρ
m(r)
j, t ◦ ρ̃j

n(r) ∈ D(M),

where k = k(m(r)). Then, from the previous calculations, we see that ‖T (bj) − ρr(bj)‖ < 3/r
whenever 1 ≤ j ≤ r. Let b ∈ B, and ǫ > 0. Then there exists l ∈ N such that ‖b− bl‖ < ǫ/3. If
r > max{l, 9/ǫ}, then ‖T (bl)− ρr(bl)‖ < ǫ/3, and so ‖T (b)− ρr(b)‖ ≤ ǫ. �
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Corollary 3.7. Let T ∈ DS(M) and let (ai)
n
i=1, (bi)

n
i=1 ⊆ Msa be abelian families such that

T (bi) = ai for 1 ≤ i ≤ n. Then there exists a sequence (ρr)r∈N ⊆ D such that for 1 ≤ i ≤ n
limr→∞ ‖ai − ρr(bi)‖ = 0.

Proof. Consider A = C∗(a1, . . . , an) and B = C∗(b1, . . . , bn), which are separable abelian C∗-
subalgebras of M. Applying Theorem 3.6 to this algebras we get a sequence (ρr)r∈N ⊆ D such
that limr→∞ ‖T (b)− ρr(b)‖ = 0 for every b ∈ T−1(A)∩B. By our choice, bi ∈ T−1(A)∩B and

so ‖T (bi)− ρr(bi)‖ = ‖ai − ρr(bi)‖
r
−→ 0. �

4. Doubly stochastic kernels and joint majorization

We begin by introducing doubly stochastic kernels, which are a natural generalization of
doubly stochastic matrices. We shall use them to define joint majorization in analogy with [19].

Definition 4.1. Let (X,µX), (Y, µY ) be two probability spaces. A positive unital linear map
ν : L∞(Y, µY ) → L∞(X,µX) is said to be a doubly stochastic kernel if

∫

X
ν(1∆) dµX =

µY (∆), for every µY -measurable set ∆ ⊆ Y .

Doubly stochastic kernels between probability spaces are norm continuous and normal.

Example 4.2. Let X and Y be compact spaces and let µX and µY be regular Borel prob-
ability measures in X and Y respectively. Consider D ∈ L1(µX × µY ) and let ν(f)(x) =
∫

Y
D(x, y) f(y) dµY (y). Then ν : L∞(X,µX) → L∞(Y, µY ) is a doubly stochastic kernel if and

only if D(x, y) ≥ 0 (µX × µY )-a.e. and
∫

X
D(x, y) dµX(x) = 1 µY -a.e,

∫

Y
D(x, y) dµY (y) = 1

µX -a.e. In particular, if µX = µY is a measure with finite support {xi}mi=1 and such that
µX({xi}) = 1

m
for 1 ≤ i ≤ m then D is a doubly stochastic kernel if and only if the matrix

(D(xi, xj))i, j is an m×m doubly stochastic matrix.

Proposition 4.3. Let ā = (ai)
n
i=1, b̄ = (bi)

n
i=1 ⊆ Msa be abelian families. Then the following

statements are equivalent:

(1) There exists T ∈ DS(M) such that T (bi) = ai, 1 ≤ i ≤ n.
(2) There exists a doubly stochastic kernel ν : L∞(σ(b̄), µb̄) → L∞(σ(ā), µā) such that

ν(πi) = πi, 1 ≤ i ≤ n.

Proof. Assume that T (bi) = ai, 1 ≤ i ≤ n, with T ∈ DS(M). Let A = C∗(a1, . . . , an), B =
C∗(b1, . . . , bn). As M is a finite von Neumann algebra, there exists a conditional expectation
PA : M → L∞(A) that commutes with τ . Then ν = Λ−1

ā ◦ PA ◦ T ◦ Λb̄ is the desired
doubly stochastic kernel. Conversely, let us assume the existence of ν as in 2. Let PB :
M → L∞(B) be the conditional expectation onto L∞(B) that commutes with τ . Then define
T = Λā ◦ ν ◦ Λ−1

b̄
◦ PB ∈ DS(M). Clearly T (bi) = ai, 1 ≤ i ≤ n. �

Definition 4.4. Let ā = (ai)
n
i=1, b̄ = (bi)

n
i=1 be two abelian families in Msa. We say that

ā is jointly majorized by b̄ (and we write ā ≺ b̄) if there exists a doubly stochastic kernel
ν : L∞(σ(b̄), µb̄) → L∞(σ(ā), µā) such that ν(πi) = πi, 1 ≤ i ≤ n.

If (x1, . . . , xn) is a finite family in M, let UM(x1, . . . , xn) denote the joint unitary orbit

of the family with respect to the unitary group UM of M, i.e.

UM(x1, . . . , xn) = {(u∗x1u, . . . , u
∗xnu) : u ∈ UM}.

We shall also consider the convex hull of the unitary orbit of a family (xi)
n
i=1,

conv(UM(xi)
n
i=1) = {(ρ(xi))

n
i=1, ρ ∈ D}.

We denote by conv(UM(xi)
n
i=1), conv

w(UM(xi)
n
i=1) and conv1(UM(xi)

n
i=1) the respective clo-

sures in the coordinate-wise norm topology, coordinate-wise weak operator topology, and coordinate-
wise L1 topology.
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Theorem 4.5. Let ā = (ai)
n
i=1, b̄ = (bi)

n
i=1 be abelian families in Msa. Then the following

statements are equivalent:

(1) ā is jointly majorized by b̄.
(2) ā ∈ conv(UM(b̄)).
(3) ā ∈ conv 1(UM(b̄)).
(4) ā ∈ convw(UM(b̄)).
(5) µā ≺ µb̄.
(6) There exists a completely positive map T ∈ DS(M) such that ai = T (bi), 1 ≤ i ≤ n.
(7) There exists T ∈ DS(M) such that ai = T (bi), 1 ≤ i ≤ n.
(8) τ(f(a1, . . . , an)) ≤ τ(f(b1, . . . , bn)) for every continuous convex function f : Rn → R.

Remark 4.6. Let x ∈ M be a normal operator. Recall (see the last paragraph of section 2.1)
that there is a natural way to identify the usual spectral measure of x with that of the abelian
pair (Re(x), Im(x)). If T ∈ DS(M), then since T is positive T (x) = y if and only if T (Re(x)) =
Re(y) and T (Im(x)) = Im(y). From these facts and Theorem 4.5, we see that if x, y ∈ M are
normal operators then x ≺ y in the sense of [13] if and only if (Re(x), Im(x)) ≺ (Re(y), Im(y))
in the sense of Definition 4.4.

Let PN denote the trace preserving conditional expectation onto the abelian von Neumann
subalgebra N ⊆ M. Using Theorem 4.5 we can then obtain a generalization of Theorem 7.2 in
[8].

Corollary 4.7. Let N ⊆ M be an abelian von Neumann subalgebra and let (bi)
n
i=1 ⊆ Msa be

an abelian family. Then (PN (bi))
n
i=1 ≺ (bi)

n
i=1.

In the remainder of the section we prove the implications needed to prove Theorem 4.5. The
single variable case of the following lemma can be found in [13].

Lemma 4.8. Let ā = (ai)
n
i=1, b̄ = (bi)

n
i=1 ⊆ Msa be abelian families. If ā ∈ convw(UM(b̄))

then there exists a completely positive T ∈ DS(M) such that ai = T (bi), 1 ≤ i ≤ n.

Proof. Let {(bj1, . . . , b
j
n)}j∈J ⊆ conv(UM(b1, . . . , bn)) such that bji

weakly
−−−−→

j
ai, 1 ≤ i ≤ n. Then

there exists a sequence (ρj)j∈J ⊆ D such that (bj1, . . . , b
j
n) = (ρj(b1), . . . , ρj(bn)), for every

j ∈ J . Note that ρj is a completely positive doubly stochastic map and the net {ρj}j∈J is
norm bounded. Therefore this net has an accumulation point in the BW topology [7], i.e. there
exists a subnet (which we still call {ρj}j∈J ) and a completely positive map T : M → M such

that ρj(x)
weakly
−−−−→

j
T (x) if x ∈ M. By normality of the trace, T is trace preserving, positive and

unital. Since ρj(bi) = bji
weakly
−−−−→

j
ai, we have T (bi) = ai, 1 ≤ i ≤ n. �

Lemma 4.9. Let ā = (ai)
n
i=1, b̄ = (bi)

n
i=1 ⊆ Msa be abelian families. If ā ≺ b̄, then µā ≺ µb̄.

Proof. By hypothesis, ā ≺ b̄; that is, there exists a doubly stochastic kernel ν : L∞(σ(b̄), µb̄) →
L∞(σ(ā), µā) such that ν(πi) = πi, 1 ≤ i ≤ n. Let ν1, . . . , νm ∈ M∼

+ (Rn) with
∑m

j=1 νj = µā.

Define measures ν ′
j by ν′j(∆) = νj(ν(1∆)). By continuity of ν, ν′j(f) = νj(ν(f)) for every

f ∈ L∞(σ(b̄), µb̄). So ν ′
j(πi) = νj(ν(πi)) = νj(πi), 1 ≤ i ≤ n and 1 ≤ j ≤ m, and similarly

νj(1) = ν ′
j(1), so that νj ∼ ν ′

j , for 1 ≤ j ≤ m. Finally,
∑m

j=1 ν
′
j(∆) =

∑m

j=1 νj(ν(1∆)) =

µā(ν(1∆)) = µb̄(∆). Therefore
∑m

j=1 ν
′
j = µb̄. We conclude that µā ≺ µb̄. �

Lemma 4.10. Let ā = (ai)
n
i=1, b̄ = (bi)

n
i=1 ⊂ Msa be abelian families. If µā ≺ µb̄, then there

exists T ∈ DS(M) such that T (bi) = ai, 1 ≤ i ≤ n.



8 MARTÍN ARGERAMI AND PEDRO MASSEY

Proof. By compactness, we can consider partitions {∆r
j}

m(r)
j=1 of σ(ā) with diam(∆r

j) < 1/r
for every 1 ≤ j ≤ m. Fix points xr

1, . . . , x
r
m(r) with xr

j ∈ ∆r
j and define measures µr

j by

µr
j(· ) = µā(· ∩∆r

j). Then clearly
∑

j µ
r
j = µā. As µā ≺ µb̄ by hypothesis, there exist measures

νrj with νrj ∼ µr
j and

∑

j ν
r
j = µb̄. Let grj be the Radon-Nikodym derivatives grj = dνrj /dµb̄.

Note that
∑

j g
r
j = 1 (µb̄ − a.e.). Define a function Dr : σ(ā)× σ(b̄) → R by

Dr(s, t) =

m(r)
∑

j=1

grj (t)

µa(∆r
j)

1∆r
j
(s).

We will use the kernels Dr to approximate T . Let us define νr : L∞(σ(b̄), µb̄) → L∞(σ(ā), µā)
by

νr(b)(s) =

∫

σ(b̄)

b(t)Dr(s, t) dµb̄(t).

The map νr can be seen to be doubly stochastic using the equivalence µr
j ∼ νrj . By Proposition

4.3 there is an associated sequence {Tr}r ⊂ DS(M) such that Tr(bi) =
∫

σ(ā)
νr(πi) dEā ∈

L∞(A), 1 ≤ i ≤ n. The bounded net {Tr}r∈N has a subnet {Tk}k∈K that converges to
a cluster point T ∈ DS(M) in the BW topology. Since this subnet is bounded, T (bi) =
w- limk∈K Tk(bi) ∈ L∞(A). We claim that T (bi) = ai, 1 ≤ i ≤ n. To see this, since the net
{Tk(bi)}k∈K is bounded, we just have to prove that

lim
k

τ(xTk(bi)) = τ(xai), 1 ≤ i ≤ n, ∀x ∈ A.

Equivalently, we have to show that for every continuous function f ∈ C(σ(ā)) and every i =
1, . . . , n,

lim
k

∫

σ(ā)

f(s)

(

∫

σ(b̄)

Dk(s, t)πi(t) dµb̄(t)

)

dµā(s) =

∫

σ(ā)

f(s)πi(s) dµā(s).

This can be seen by a standard approximation argument, using the uniform continuity of f ,
the fact that the diameters of ∆r

j tend to 0 as r increases, and the equivalence µr
j ∼ νrj . �

Proof of Theorem 4.5. Proposition 4.3 shows the equivalence (7)⇔(1) and Corollary 3.7 is
(7)⇒(2). The implication (2)⇒ (3)⇒(4) is trivial. Lemma 4.8 shows that (4)⇒(6), and it is
clear that (6)⇒(7). Lemmas 4.9, 4.10 and Proposition 4.3 prove the equivalence (5)⇔(1). So
we have that (1)-(7) are equivalent. Finally, Corollary 2.3 shows that (5)⇔(8). �

5. Joint unitary orbits of abelian families in Msa

Given families ā = (ai)
n
i=1, b̄ = (bi)

n
i=1 ⊆ M, we say that ā and b̄ are jointly approximately

unitarily equivalent in M if ā ∈ UM(b̄), that is if there exists a sequence of unitary operators
(un)n∈N ⊆ M such that limn→∞ ‖unbiu

∗
n − ai‖ = 0 for every i = 1 . . . , n. It is clear that this is

an equivalence relation. Moreover, if ā and b̄ are jointly approximately unitarily equivalent in
M then ā is an abelian family if and only if b̄ is. In [8] a characterization of this equivalence
relation between selfadjoint operators is obtained, in terms of the spectral distributions. The
following results exhibits a list of characterizations of this relation for abelian families in Msa.

Theorem 5.1. Let ā = (ai)
n
i=1 and b̄ = (bi)

n
i=1 ⊂ Msa be abelian families. Then the following

statements are equivalent:

(1) ā and b̄ are jointly approximately unitary equivalent in M.
(2) ā ≺ b̄ and b̄ ≺ ā
(3) µā = µb̄

(4) τ(f(a1, . . . , an)) = τ(f(b1, . . . , bn)) for every continuous convex function f : Rn → R.
(5) τ(f(a1, . . . , an)) = τ(f(b1, . . . , bn)) for every continuous function f : Rn → R.
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Proof. By Theorem 4.5 we have (1)⇒(2) and (2)⇔(4). Moreover, (4) is equivalent to µā(f) =
µb̄(f) for every convex function f . Then µā(f) = µb̄(f) for every continuous function f [3,
Proposition I.1.1], and this in turn implies that µā = µb̄. Therefore, (4)⇒(5)⇒(3). Again,
by Theorem 4.5 (3)⇒(2) and so (2)-(5) are equivalent. Finally, we prove that (3)⇒(1). If we
assume that µā = µb̄ then, σ(ā) = supp µā = supp µb̄ = σ(b̄) and for every Borel set ∆ in σ(ā)
we have

(13) τ(Eā(∆)) = µā(1∆) = µb̄(1∆) = τ(Eb̄(∆)).

Let ǫ > 0. By compactness, choose B1, . . . , Bm to be a finite disjoint covering of σ(ā) = σ(b̄)
such that there are points xj ∈ Bj with the property that |πi(λ) − πi(xj)| < ǫ/2 for every
λ ∈ Bj , 1 ≤ i ≤ n, 1 ≤ j ≤ m. Then we get, using the Spectral Theorem,

∥

∥

∥

∥

∥

∥

ai −
m
∑

j=1

πi(xj)Eā(Bj)

∥

∥

∥

∥

∥

∥

<
ǫ

2
,

∥

∥

∥

∥

∥

∥

bi −
m
∑

j=1

πi(xj)Eb̄(Bj)

∥

∥

∥

∥

∥

∥

<
ǫ

2

for i = 1, . . . , n. From equation (13) we get that τ(Eā(Bj)) = τ(Eb̄(Bj)) for every j = 1, . . . ,m.
As in the proof of Lemma 3.4, we get a unitary wǫ ∈ U(M) such that w∗

ǫEb̄(Bj)wǫ = Eā(Bj)
for every j. Then

w∗
ǫ





m
∑

j=1

πi(xj)Eb̄(Bj)



wǫ =

m
∑

j=1

πi(xj)Eā(Bj).

Finally, for every i we have

‖w∗
ǫ biwǫ − ai‖ ≤

∥

∥

∥

∥

∥

∥

w∗
ǫ



bi −
m
∑

j=1

πi(xj)Eb̄(Bj)



wǫ

∥

∥

∥

∥

∥

∥

+
ǫ

2
< ǫ. �

Corollary 5.2. Let Θ be an automorphism of M. Then Θ|A is approximately inner for each
separable abelian C∗ subalgebra A ⊂ M.

Proof. The uniqueness of the trace guarantees that Θ is trace-preserving. Being multiplicative,
the range of an abelian set will be again abelian. So Θ is a DS map that takes an abelian
family in M into another. Consider a countable dense subset {ai} of A, and use Theorem 5.1
to obtain unitaries un for each finite subset {a1, . . . , an}. An ǫ/3 argument shows then that the
sequence {Adun} approximates Θ in all of A. �

Given x̄ = (xi)
n
i=1 ⊆ M we denote by UM(x̄)

s
the closure in the coordinate-wise strong

operator topology. An immediate consequence of Theorem 5.1 is that the norm closure of the
unitary orbit of a selfadjoint abelian family in a II1 factor is strongly closed. This generalizes
[8, Theorem 5.4] and [22, Theorem 8.12(1)]:

Corollary 5.3. Let ā = (ai)
n
i=1 ⊆ Msa be an abelian family. Then UM(ā)

‖ ‖
= UM(ā)

s
.

Proof. Let b̄ = (bi)
n
i=1 ∈ UM(ā)

s
. There exists a net (bj1, . . . , b

j
n)j∈J ⊆ UM(ā) such that bji

converges strongly to bi for each i = 1, . . . , n. Let f : Rn → R be a continuous function. Then
τ(f(bj1, . . . , b

j
n)) = τ(f(a1, . . . , an)) for every j. Using [23, Lemma II.4.3] we conclude that

τ(f(b1, . . . , bn)) = τ(f(a1, . . . , an)). So (5) of Theorem 5.1 implies that b̄ ∈ UM(ā). The other
inclusion is trivial. �

6. Some technical results

In this section we prove the results presented at the beginning of section 3. First, we show
that any separable abelian C∗-subalgebra of M can be embedded into a separable diffuse
abelian C∗-subalgebra. Then, we prove some approximation results that hold for separable
diffuse abelian C∗ subalgebras of M.
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6.1. Refinements of spectral measures. We begin by recalling some elementary facts about
inclusions of abelian C∗ algebras. IfA ⊆ B are unital C∗-algebras, then the function Φ : Γ(B) →
Γ(A) given by Φ(γ) = γ|A is a continuous surjection onto Γ(A). If we assume further that
A ⊆ B ⊆ M are separable and that EA, EB denote their spectral measures, then EA = EB◦Φ

−1

and µA = µB ◦ Φ−1.
Note that At(µA) =At(EA) where At(EA) is the set of atoms of the spectral measure EA

(see the beginning of section 3). Let
∑

x∈At(EA) µA({x}) be the total atomic mass of EA.

Since µA is finite, the total atomic mass is bounded and thus, the set of atoms is countable set.

Lemma 6.1. With the notation above, if x ∈ At(EB) then Φ(x) ∈ At(EA), and the total atomic
mass of B is smaller that the total atomic mass of A.

Proof. Let x ∈ At(EB) and note that 0 6= µB({x}) ≤ µB(Φ
−1(Φ({x}))) = µA(Φ({x})), so

Φ(x) ∈ At(EA) = At(µA). We consider the equivalence relation in At(EB) induced by Φ, i.e.
x ∼ y if Φ(x) = Φ(y). If Q ∈ Q := At(EB)/ ∼ is such that Φ(x) = xQ for every x ∈ Q,
then using that Q is countable we get

∑

x∈Q µB({x}) = µB(Q) ≤ µB(Φ
−1({xQ})) = µA({xQ}).

Therefore
∑

x∈At(EB)

µB({x}) =
∑

Q∈Q

∑

x∈Q

µB({x}) ≤
∑

Q∈Q

µA(xQ) ≤
∑

x∈At(EA)

µA({x}).

�

Proposition 6.2. With the notations above, let x0 ∈ Γ(A) be an atom of EA and let α, β ∈ R

with 0 < α < β. Then there exists a ∈ A′ ∩ Msa with [α, β] ⊆ σ(a) ⊆ [α, β] ∪ {0}, P
R(a) =

EA({x0}), and such that EB has no atoms in the fibre Φ−1(x0), where B = C∗(A, a) ⊂ M.

Proof. Let p = EA({x0}) and consider a masa A ⊂ M such that p ∈ A. Then pA is a masa
in the II1 factor pMp, where the trace is τp = 1

τ(p) τ . It is well known that there exists a

countably generated, non-atomic von Neumann subalgebra B of pA such that there is a von
Neumann algebra isomorphism Φ : L∞([0, 1],m) → B, with m the Lebesgue measure on [0, 1],

and with τp(Φ(f)) =
∫ 1

0 f dm. Put ã = Φ(id); it is clear that ã has no atoms in its spectrum
with the exception of 0, and that Eã({0}) = 1 − p, σ(a) = [0, 1]. Let a = (β − α)ã + α p, so
[α, β] ⊆ σ(a) ⊆ [α, β]∪{0}, P

R(a) = p = EA({x0}). As p is a minimal projection in L∞(A), we

have pb = pbp = λbp for every b ∈ A and so ab = apb = λbpa = bpa = ba. Thus a ∈ A′ ∩M.
Let B = C∗(A, a) and let Φ : Γ(B) → Γ(A), Ψ : Γ(B) → Γ(C∗(a)) be the continuous

surjections induced by the inclusions A ⊆ B and C∗(a) ⊆ B. Note that the restriction Ψ|Φ−1(x0)

is injective. Indeed, let x, y ∈ Φ−1(x0) be such that Ψ(x) = Ψ(y), i.e. the restriction of the
characters to C∗(a) coincide. Since Φ(x) = Φ(y) (= x0), the characters also coincide on A and
therefore are equal as characters in B, since B is generated by A and C∗(a).

On the other hand, if x ∈ Γ(B) is such that x(a) 6= 0, then Φ(x) = x0. Indeed, assume that
Φ(x) 6= x0. Let f ∈ C(Γ(A)) with f(Φ(x)) = 0 and f(x0) = 1. So f ◦ Φ ≥ 1Φ−1(x0). But then

∫

Γ(B)

f ◦ Φ dEB ≥

∫

Γ(B)

1Φ−1(x0) dEB = EB(Φ
−1(x0) = EA({x0}) = p.

Note that if 0 ∈ σ(a) then it is an isolated point, so in any case we have p ∈ C∗(a) ⊆ B. Then
0 = f ◦ Φ(x) ≥ x(p) ≥ 0, so x(p) = 0. Since 0 ≤ a ≤ β p, x(a) = 0 and the claim follows.

Now let z ∈ Φ−1(x0). If z(a) 6= 0, from the first part of the proof we deduce that Ψ−1(Ψ(z)) =
{z}. Therefore EB({z}) = Ea({Ψ(z})) = 0, since Ψ(z)(a) 6= 0 and At(Ea) ⊆ {0}. If z(a) = 0,
then

{z} = Φ−1(x0) \ {x ∈ Φ−1(x0) : x(a) 6= 0}
= Φ−1(x0) \Ψ−1({x ∈ Γ(C∗(a)) : x(a) 6= 0})

and

EB(Ψ
−1({x ∈ Γ(C∗(a)) : x(a) 6= 0})) = Ea({x ∈ Γ(C∗(a)) : x(a) 6= 0})

= EA({x0}) = EB(Φ
−1(x0)).
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From this we conclude that EB({z}) = 0. �

Proof of Theorem 3.1. Recall that the set At(EA) of atoms of EA is a (possibly infinite)
countable set. If At(EA) = ∅ then EA is already diffuse and we are done. Otherwise, let
us enumerate At(EA) = {xi : 1 ≤ i ≤ r}, where r ∈ N ∪ {∞}. For 1 ≤ i ≤ r, let Ii =

[1 + 1
2n , 1 +

1
2n−1 ]. Then Ii ∩

⋃

1≤i6=j≤r Ij = ∅ and
⋃r

i=1 Ii ⊆ [1, 2]. For each i = 1, . . . , r there

exists, by Proposition 6.2, ai ∈ A′∩Msa such that P
R(ai)

= EA({xi}), Ii ⊆ σ(ai) ⊆ Ii∪{0}, and

such that EAi
has no atoms in the fibre Φ−1

i (xi), where Φi : Γ(Ai) → A denotes the continuous
surjection induced by the inclusion A ⊆ Ai := C∗(A, ai). Let a =

∑r

i=1 ai ∈ A′ ∩Msa (this
sum converges because the ranges of the operators ai are orthogonal and ‖ai‖ ≤ 2 for every i).
Then B := C∗(A, a) is an abelian subalgebra of M.

We claim that the spectral measure EB of B has no atoms. Indeed, first note that 1Ii ∈
C(∪1≤j≤rIj) is a continuous function (because the distance between the sets Ii and ∪i6=jIj is
positive); then, since 1Ii(a) = ai, it follows that Ai ⊂ B for every i = 1, . . . , r. Assume now that
x ∈ At(Γ(B)) and let Φ : Γ(B) → Γ(A) be as before. By Lemma 6.1 there exists i ∈ {1, . . . , r}
such that Φ(x) = xi ∈ At(EA) . Since Φ = Φi ◦Ψi, where Ψi : Γ(B) → Γ(Ai) is the surjection
induced by the inclusion Ai ⊆ B, we conclude that Ψi(x) ∈ Φ−1

i (xi) is an atom of the measure
EAi

, again by Lemma 6.1. But this last assertion is a contradiction because by construction
there are no atoms in the fibre Φ−1

i (xi) by construction. �

Remark 6.3. Given an abelian C∗ subalgebra A ⊂ M, a direct way to find an abelian C∗-
subalgebra A ⊆ Ã ⊂ M with diffuse spectral measure is to consider a masa in M that contains
A. The additional information we obtain from Theorem 3.1 is that Ã can be chosen separable
(as a C∗-algebra) whenever A is separable. When this is the case, the character space of Ã is
metrizable, a fact that is crucial for our calculations.

6.2. Discrete approximations in separable diffuse abelian algebras. Given a compact
metric space it is always possible to find, using uniform continuity, discrete uniform approxima-
tions of continuous functions by linear combinations of characteristic functions of certain sets
{Qi}mi=1. But if we consider a measure on this space and we require equal measures for these
sets, there might not be any good uniform approximation based on characteristic functions
(even for measures of compact support in the real line). Proposition 3.2 is an intermediate
solution to this problem. It was inspired by the proof of [13, Lemma 4.1].

Proof of Proposition 3.2. The space Γ(B) is a metrizable compact topological space, so we
consider a metric d in Γ(B) inducing its topology. Let r ∈ N; by compactness, there exists

a partition {Q̃i}
k0

i=1 of Γ(B) with diamd(Q̃i) < 1
r
and

∑k0

i=1 µB(Q̃i) = 1. Let m = m(r) be

such that 1/m ≤ min{µB(Q̃j)
2 : 1 ≤ j ≤ k0}. Then for 1 ≤ j ≤ k0 there exists kj ∈ N

such that µB(Q̃j) = kj/m + δj with 0 ≤ δj < 1/m. If we let k̃ = k̃(r) = minj{kj} then

k̃ ≥ max{µB(Q̃j)
−1 − 1, 1 ≤ j ≤ k0}.

For t = 1, . . . , k0, choose k̃ partitions {Q̃t
j,s}

kj

s=0 of each Q̃j (1 ≤ t ≤ k̃), with µB(Q̃
t
j,s) = 1/m

if 1 ≤ s ≤ kj and µB(Q̃
t
j,0) = δj , in such a way that Q̃t

j,0 ⊂ Q̃1
j, t, 2 ≤ t ≤ k̃. Note that we can

always make such a choice: using Lemma 2.4 choose Q̃t
j,0 ⊆ Q̃1

j, t with µB(Q̃
t
j,0) = δj < 1/m, and

then take a partition {Q̃t
j,s}

kj

s=1 of Q̃j \ Q̃t
j,0 using again Lemma 2.4 (note that µB(Q̃j \ Q̃t

j,0) =

kj/m). By this choice, Q̃t
j,0 ∩ Q̃t ′

j,0 = ∅ if t 6= t ′.

For each t = 1, . . . , k̃, let Q̃t
0,0 = ∪k0

j=1 Q̃
t
j,0. Then µB(Q̃

t
0,0) = 1 −

∑

j kj/m = (m −
∑k0

j=1 kj)/m. Finally, make partitions of each set Q̃t
0,0 into n1 = m−

∑

j kj subsets {Q̃t
i}

n1

i=1 of

measure 1/m. By re-labeling the k̃ partitions {Q̃t
j,s}j, s ∪ {Q̃t

i}i, we end up with k̃ partitions

{Qt,m
i }mi=1, for 1 ≤ t ≤ k̃, such that:

1. µB(Q
t,m
i ) = 1/m, for every i ∈ {1, . . . ,m}, t ∈ {1, . . . , k̃};
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2. diamd(Q
t,m
i ) ≤ 1/r, if i > n1;

3. if 1 ≤ i, i ′ ≤ n1 then Qt,m
i ∩Qt ′,m

i ′ = ∅ if i 6= i ′ or t 6= t ′.

Note that the construction of the k partitions {Qt,m
i }mi=1 was done in such a way that the

subsets that do not have small diameters are disjoint, even for different partitions.
Let M = {m(r), r ≥ 1} and for every m = m(r) ∈ M let k(m) = k̃(r) as defined above and,

for i, t,m, let qt,mi = EB(Q
t,m
i ). The set M is unbounded because the measure µB being diffuse

makes limr→∞ m(r) = ∞, and so limr→∞ k̃(r) = ∞. For each t = 1, . . . , k, {qt,mi }mi=1 ⊂ B′∩M
is a partition of the unity.

Let b ∈ B, ǫ > 0, and let f ∈ C(Γ(B)) be such that b =
∫

Γ(B)
f dEB. Then, by compactness,

there exists δ > 0 such that if Q ⊆ Γ(B) with diamd(Q) < δ then diam(f(Q)) < ǫ. Let r ∈ N

be such that 1/r < δ and 2‖b‖/k(r) ≤ ǫ; let m = m(r) ∈ M, and let βt,m
i = mτ(b qt,mi ) =

m
∫

Q
t,m

i

f dµB. Properties 1-3 translate then into

1’. τ(qt,mi ) = 1/m, for every i ∈ {1, . . . ,m}, t ∈ {1, . . . , k};

2’. if i > n1, then |f(x)− βt,m
i | ≤ ǫ, ∀x ∈ Qt,m

i ;

3’. if 1 ≤ i, i ′ ≤ n1 then qt,mi ⊥ qt
′,m

i ′ if i 6= i ′ or t 6= t ′.

Therefore we have
∥

∥

∥

∥

∥

b−
1

k

k
∑

t=1

m
∑

i=1

βt,m
i qt,mi

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

1

k

k
∑

t=1

(

b −
m
∑

i=1

βt,m
i qt,mi

)∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

1

k

k
∑

t=1

m
∑

i=1

∫

Q
t,m

i

(b − βt,m
i ) dEB

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

1

k

k
∑

t=1

n1
∑

i=1

∫

Q
t,m

i

(f − βt,m
i ) dEB

∥

∥

∥

∥

∥

+ ǫ

≤

∥

∥

∥

∥

∥

2 ‖b‖

k

k
∑

t=1

n1
∑

i=1

qt,mi

∥

∥

∥

∥

∥

+ ǫ =
2‖b‖

k
+ ǫ ≤ 2ǫ

where the first inequality is a consequence of 2’ and the last equality follows from 3’. �

Proof of Lemma 3.5. Fix a norm dense subset B = (bj)j∈N ⊆ B. In the construction leading to
Dixmier’s Theorem, a previous result [17, 8.3.4] asserts that for each j, there exists a sequence

{ρnj }n∈N ⊆ D(M) such that for every 1 ≤ h ≤ j, ‖ρnj (bh) − τ(bh) I‖
n
−→ 0. For each j ∈ N, let

n0 = n0(j) ∈ N be such that if n ≥ n0 then ‖ρnj (bh) − τ(bh) I‖ ≤ 1/j for 1 ≤ h ≤ j. If we let

ρj = ρ
n0(j)
j for j ∈ N, we get ‖ρj(bh) − τ(bh) I‖

j
−→ 0 for every h ∈ N. Since (bj)j∈N is norm

dense in B we have limj ‖ρj(b)− τ(b) I‖ = 0 for every b ∈ B.
For every i = 1, . . . ,m, consider the factor piMpi with (normalized) trace τi(pix) = τ(xpi)/τ(pi) .

By the Dixmier approximation property mentioned in the first paragraph, applied to the sepa-
rable C∗-subalgebra piB of the finite factor piMpi, there exists a sequence {ρij}j∈N ∈ D(piMpi)

such that limj→∞ ‖ρij(pib)− τi(pib)pi‖ = 0, for every b ∈ B.
For each ρ ∈ D(piMpi), we can consider an extension ρ̃ ∈ D(M) as follows: if ρ(pib) =

∑k

h=1 λh uh b u
∗
h, with uh ∈ U(piMpi), define ρ̃ ∈ D(M) by ρ̃(b) =

∑k

h=1 λh ũh b ũ
∗
h, where

ũh = uh + (1− pi) ∈ U(M). If 1 ≤ i ≤ m set ρj =
∏m

i=1 ρ̃
i
j for j ≥ 1. It is easy to verify that

if 1 ≤ i ≤ m then ρj(b pi) = ρ̃ i
j (b pi) for every b ∈ B. Then, if b ∈ B,

∥

∥

∥

∥

∥

ρj(b)−
m
∑

i=1

βi(b)pi

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

m
∑

i=1

ρ̃ i
j (b pi)− τi(b pi)pi

∥

∥

∥

∥

∥

−−−→
j→∞

0. �
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