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Abstract

We prove a contractive version of the Schur–Horn theorem for submajorization in II1 factors that com-
plements some previous results on the Schur–Horn theorem within this context. We obtain a reformulation
of a conjecture of Arveson and Kadison regarding a strong version of the Schur–Horn theorem in II1 factors
in terms of submajorization and contractive orbits of positive operators.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Vector and matrix majorization theory play an important role in matrix analysis, mostly as
tools in the study of general (convex) inequalities, unitarily invariant norm inequalities, geometry,
and problems related with the description of the diagonals of matrix representations of a linear
operator [1,2,4,12]. Some historical aspects of the theory of majorization are mentioned in [3,5].
The Schur–Horn theorem, coined in the papers [8,15], is probably the most remarkable among
the many characterizations known for these notions (see the precise statement of the theorem
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after Proposition 2.3). It is thus natural to search for analogues of this result in contexts where
majorization theory has been extended [5–7,10,13]. Among these analogues let us mention the
work of Neumann [13] for selfadjoint operators in B(H), the refinements of Kadison [11] in the
case of projectors in B(H), and the recent work [5].

The fact that II1 factors share many structural properties with the algebra of linear operators
acting on C

n makes them a natural context in which to extend majorization. In [5], Arveson and
Kadison posed a (strong) version of the Schur–Horn theorem for II1 factors as a problem and
proved related results. As a first step toward settling the Arveson–Kadison problem, the authors
have proven in [3] a weaker version, related with the point of view developed in [13]. In this note
we obtain a weak contractive version of submajorization within II1 factors in the spirit of [3]
(Theorem 3.4). We also obtain an equivalent reformulation of the Arveson–Kadison problem
(Theorem 4.1) using a characterization of spectral dominance and submajorization (Proposi-
tion 3.1).

2. Preliminaries

Throughout the paper M denotes a II1 factor with normalized faithful normal trace τ . We
denote by Msa, M+, UM, the sets of selfadjoint, positive, and unitary elements of M. Given
a ∈ Msa we denote its spectral measure by pa . The characteristic function of the set Δ is denoted
by 1Δ. We denote integration with respect to Lebesgue measure by dt .

Besides the usual operator norm in M, we consider the Schatten norm induced by the trace,
‖x‖1 = τ(|x|). As we will be always dealing with bounded sets in a II1 factor, we can profit
from the fact that the topology induced by the Schatten norm agrees with the σ -strong operator
topology. Because of this we will express our results in terms of σ -strong closures although our
computations are based on estimates for the Schatten norm. For X ⊂ M, we shall denote by X

and Xσ -sot the respective closures in the norm topology and in the σ -strong operator topology.
For any set K , coK denotes its convex hull.

2.1. Spectral scale and spectral preorders

The spectral scale [14] of a ∈Msa is defined by

λa(t) = min
{
s ∈ R: τ

(
pa(s,∞)

)
� t

}
, t ∈ [0,1).

The function λa : [0,1) → R is non-increasing and right-continuous. The map a �→ λa is contin-
uous both with respect to ‖ · ‖ and ‖ · ‖1, since [14]

‖λa − λb‖∞ � ‖a − b‖, ‖λa − λb‖1 � ‖a − b‖1, a, b ∈ Msa, (1)

where the norms on the left are those of L∞([0,1], dt) and L1([0,1], dt), respectively. A useful
property of the spectral scale is that we can use it to recover the trace, in the following sense:

τ(a) =
1∫

0

λa(t) dt. (2)

The unitary orbit of a ∈Msa is the set UM(a) = {u∗au: u ∈ UM}. It is straightforward from
the definition of the spectral scale that if b ∈ UM(a), then λa = λb . By the continuity (1), λb = λa

for any b in the ‖ · ‖1-closure or the ‖ · ‖-closure of the unitary orbit of a ∈ Msa. A converse of
this fact was proven by Kamei. We summarize this information for future reference:
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Theorem 2.1. ([9]) If a ∈Msa, then

UM(a) = UM(a)σ -sot = {
b ∈Msa: λa = λb

}
.

Let a, b ∈ Msa. We say that a is spectrally dominated by b, written a � b, if any of the
following (equivalent) statements holds:

(i) λa(t) � λb(t), for all t ∈ [0,1].
(ii) τ(pa(t,∞)) � τ(pb(t,∞)), for all t .

We say that a is submajorized by b, written a ≺w b, if

s∫

0

λa(t) dt �
s∫

0

λb(t) dt, for every s ∈ [0,1).

If in addition τ(a) = τ(b), then we say that a is majorized by b, written a ≺ b.

Remark 2.2. Let a, b ∈ Msa. It is known [14] that

(i) if a � b, then a � b. Thus, using this and (2),

a � b ⇒ a � b ⇒ a ≺w b ⇒ τ(a) � τ(b);
(ii) if v ∈ M is a contraction (‖v‖ � 1), then v∗av � a.

If N ⊂ M is a von Neumann subalgebra and b ∈ Msa, we denote by ΩN (b) and ΘN (b) the
sets of elements in N sa that are, respectively, majorized and submajorized by b, i.e.,

ΩN (b) = {
a ∈ N sa: a ≺ b

}
, ΘN (b) = {

a ∈ N sa: a ≺w b
}
.

The following result was proven in [3].

Proposition 2.3. Let b ∈ Bsa, where B ⊂ M is a diffuse abelian von Neumann subalgebra. Then
there exists a spectral resolution {e(t)}t∈[0,1] ⊂ B with τ(e(t)) = t , for every t ∈ [0,1], and such
that

b =
1∫

0

λb(t) de(t).

The classical Schur–Horn theorem states that if N is a type In factor, D ⊂ N is a masa, ED is
the canonical projection onto D, and b ∈N sa, then

ED
(
UN (b)

) = ΩD(b).

In [3], the authors proved the following related result for II1 factors.

Theorem 2.4. Let A ⊂ M be a diffuse abelian von Neumann subalgebra and let b ∈Msa. Then

EA
(
UM(b)

)
σ -sot = ΩA(b). (3)
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3. A contractive version of the Schur–Horn theorem

Given x ∈ M we shall consider its contractive orbit CM(x), namely

CM(x) := {
v∗xv: v ∈M, ‖v‖ � 1

}
.

Using the results quoted in Section 2, we prove the following characterization of submajoriza-
tion and spectral dominance.

Proposition 3.1. Let a, b ∈ M+. Then

(i) a ≺w b if and only if there exists c ∈ M+ such that a ≺ c � b. Moreover, if B ⊂ M is a
diffuse abelian von Neumann subalgebra such that b ∈ B+, we can choose c ∈ B+.

(ii) a � b if and only if a ∈ CM(b).

Proof. (i) Assume first that a ≺w b and, without loss of generality, assume that b ∈ B for a
diffuse abelian subalgebra B ⊆ M. Let {e(t)}t∈[0,1] ⊆ B be a spectral resolution as in Proposi-
tion 2.3. Since the function g(s) := ∫ s

0 λb(t) dt is continuous and a ≺w b, there exists s0 ∈ [0,1]
such that τ(a) = g(s0). Thus, if we let c = ∫ s0

0 λb(t) de(t), it is straightforward to verify that
λc(t) = 1[0,s0]λb(t) for t ∈ [0,1). From this it follows that a ≺ c. It is also clear that c ∈ B and
that c � b. Conversely, if there exists c ∈ M+ such that a ≺ c � b, then a ≺w c and c ≺w b, and
so by transitivity we get a ≺w b.

(ii) Let a, b ∈ M+ with a � b. Let B be a diffuse abelian subalgebra with b ∈ B, and let
{e(t)}t∈[0,1] ⊆ B be as before. By hypothesis 0 � λa � λb , so in particular {λb = 0} ⊆ {λa = 0}.
Thus the function f = 1{λb �=0} · λa/λb is well defined, 0 � f � 1, and f · λb = λa . Therefore,

v = ∫ 1
0 f (t)1/2 de(t) ∈ B is a contraction such that

v∗bv =
1∫

0

λa(t) de(t) and thus λv∗bv = λa.

By Theorem 2.1 it follows that a ∈ UM(v∗bv) ⊂ CM(b). To see the converse, let a ∈ CM(b).
Then a � b since, by (ii) in Remark 2.2, v∗bv � b for any contraction v ∈ M, and by (1) the
spectral scale is uniformly continuous with respect to the operator norm. �

In [6, Theorem 3.1], Hiai shows that, for b ∈M+, {a ∈M+: a � b} = CM(b)σ -sot. So, from
Proposition 3.1, we obtain

Corollary 3.2. If b ∈ M+, then CM(b)σ -sot = CM(b).

Lemma 3.3. Let N ⊂ M be a von Neumann subalgebra and let EN be the trace preserving
conditional expectation onto N . Then, for any b ∈ M+,

(i) ‖EN (b)‖1 � ‖b‖1.

(ii) EN (CM(b))σ -sot ⊂ ΘN (b) ∩N+.

Proof. (i) is proved in [3]. To see (ii) note that by Remark 2.2, for every v ∈ M such that
‖v‖ � 1, v∗bv � b; by Theorem 2.2 in [3], EN (v∗bv) ≺ v∗bv. So by transitivity EN (v∗bv) ∈
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ΘN (b) ∩ N+. If (an)n∈N ⊂ EN (CM(b)) is such that limn→∞ ‖an − a‖1 = 0 for some a ∈ N ,
then necessarily a ∈N+. By the previous argument we have that an ≺w b for every n. Therefore,
by (1),

s∫

0

λa(t) dt = lim
n→∞

s∫

0

λan(t) dt �
s∫

0

λb(t) dt

and so a ≺w b. �
Next we prove our main result, which complements Theorem 2.4 in the case of sub-

majorization and contractive orbits.

Theorem 3.4. Let A ⊂ M be a diffuse abelian von Neumann subalgebra of M and let b ∈ M+.
Then

EA
(
CM(b)

)
σ -sot = ΘA(b) ∩A+. (4)

Proof. By (ii) in Lemma 3.3, EA(CM(b))σ -sot ⊂ ΘA(b) ∩A+. To prove the other inclusion, let
a ∈ A+ be such that a ≺w b. By (i) in Proposition 3.1 there exists c ∈ M+ such that a ≺ c � b.
By Theorem 2.4,

a ∈ EA
(
UM(c)

)
σ -sot. (5)

Note that, since c � b, c � b (Remark 2.2). Thus, by (ii) in Proposition 3.1,

c ∈ CM(b). (6)

Let ε > 0. By (5) and (6) there exist u ∈ UM and a contraction v ∈ M such that ‖a −
EA(u∗cu)‖1 � ε and ‖c − v∗bv‖ � ε. Therefore,∥∥EA

(
u∗cu

) − EA
(
(vu)∗b(vu)

)∥∥
1 = ∥∥EA

(
u∗(c − v∗bv

)
u
)∥∥

1 � ε,

since ‖x‖1 � ‖x‖ and EA ◦ Adu is a ‖ · ‖1-contraction (Lemma 3.3). Thus
∥∥a − EA

(
(vu)∗b(vu)

)∥∥
1 �

∥∥a − EA
(
u∗cu

)∥∥
1

+ ∥∥EA
(
u∗cu

) − EA
(
(vu)∗b(vu)

)∥∥
1

� 2ε.

As ε was arbitrary, we get a ∈ EA(CM(b))σ -sot, as desired. �
Corollary 3.5. For each b ∈ M+, the set EA(CM(b))σ -sot is convex and σ -weakly compact.

Proof. By (3) in Theorem 2.5 of [6],

ΘM(b) = co
(
CM(b)

)
σ -sot. (7)

The right-hand side is bounded, convex, and σ -strongly closed, so it is σ -weakly closed and thus
compact. Then

ΘA(b) ∩A+ = ΘM(b) ∩A+ = co
(
CM(b)

)
σ -sot ∩A+

is convex and σ -weakly compact. By Theorem 3.4, we are done. �
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Remark 3.6. For any b ∈ M+, the property of EA(CM(b))σ -sot being convex is essentially
equivalent to Theorem 3.4. Indeed, assuming EA(CM(b))σ -sot to be convex and using (7),

ΘA(b) ∩A+ ⊂ EA
(
co

(
CM(b)

)
σ -sot) ⊂ EA

(
co

(
CM(b)

))
σ -sot

= coEA
((
CM(b)

))
σ -sot = EA

(
CM(b)

)
σ -sot,

where we have used that EA is ‖ · ‖1-continuous (by (i) in Lemma 3.3). The reverse inclusion is
given by (ii) in Lemma 3.3.

4. A reformulation of the Arveson–Kadison problem

Let A ⊂ M be a masa and b ∈M+. In [5], Arveson and Kadison pose the problem of whether

EA
(
UM(b)

) = ΩA(b). (8)

Similarly, with regard to the results of the present paper, it is natural to ask whether

EA
(
CM(b)

) = ΘA(b) ∩A+. (9)

It turns out that the two problems are equivalent, even in the broader class of diffuse abelian
subalgebras.

Theorem 4.1. Let A ⊂ M be a diffuse abelian subalgebra. Then the following statements are
equivalent:

(i) ∀b ∈Msa, EA(UM(b)) = ΩA(b);
(ii) ∀b ∈M+, EA(CM(b)) = ΘA(b) ∩A+.

Proof. Using arguments similar to those in Lemma 3.3 we can prove that for b ∈ Msa,
EA(UM(b)) ⊂ ΩA(b). If b ∈M+, using the norm-continuity of EA and Lemma 3.3,

EA
(
CM(b)

) ⊂ EA
(
CM(b)

) ⊂ EA
(
CM(b)

)
σ -sot ⊂ ΘA(b) ∩A+.

(i) ⇒ (ii). Let a ∈ ΘA(b) ∩ A+, b ∈ M+. Since A is diffuse and abelian, by Proposi-
tion 2.3 there exists an spectral resolution of the identity {e(t)}t∈[0,1] ⊆ A such that τ(e(t)) = t

for t ∈ [0,1] and such that a = ∫ 1
0 λa(t) de(t). Consider the operator b′ = ∫ 1

0 λb(t) de(t). It is
straightforward to verify that λb′ = λb so that, by Theorem 2.1, UM(b) = UM(b′). From this
last fact it follows that CM(b) = CM(b′), and so after replacing b by b′ we can assume that
b ∈ A. By Proposition 3.1 there exists c ∈ A+ such that a ≺ c � b and by hypothesis we get
a ∈ EA(UM(c)). Again by Proposition 3.1, since c � b implies c � b, we get c ∈ CM(b). Then
UM(c) ⊂ CM(b), so we have a ∈ EA(CM(b)).

(ii) ⇒ (i). Let b ∈ Msa, a ∈ ΩA(b). Since λb+αI = λb + α, then a ≺ b if and only if
a + α ≺ b + α. Hence, ΩA(b + αI) = ΩA(b) + αI , and it is clear that EA(UM(b + αI)) =
EA(UM(b)) + αI . Thus, we can assume without loss of generality that a, b ∈ M+. The fol-
lowing argument was inspired by the proof of Theorem 4.1 in [5]. Since in particular a ∈
ΘA(b) ∩ A+, by hypothesis there exist c ∈ M+ and a sequence (vn)n∈N ⊂ M with ‖vn‖ � 1,
n ∈ N, such that

lim
n→∞

∥∥v∗
nbvn − c

∥∥ = 0 and EA(c) = a. (10)

So τ(c) = τ(a) = τ(b). Let p = pb(0,‖b‖].
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Claim. limn→∞ ‖p − |v∗
np|‖1 = 0.

Since M is a finite factor, the partial isometry in the polar decomposition of v∗
np can be

extended to a unitary un: so v∗
np = un|v∗

np|. Thus∥∥v∗
nbvn − unbu∗

n

∥∥
1 = ∥∥v∗

npb
(
v∗
np

)∗ − unbu∗
n

∥∥
1

= ∥∥un

∣∣v∗
np

∣∣b∣∣v∗
np

∣∣u∗
n − unbu∗

n

∥∥
1

= ∥∥∣∣v∗
np

∣∣b∣∣pv∗
n

∣∣ − b
∥∥

1

�
∥∥(∣∣v∗

np
∣∣ − p

)
b
∣∣v∗

np
∣∣∥∥

1 + ∥∥b
(∣∣v∗

np
∣∣ − p

)∥∥
1

�
∥∥∣∣v∗

np
∣∣ − p

∥∥
1

∥∥b
∣∣v∗

np
∣∣∥∥ + ‖b‖∥∥∣∣v∗

np
∣∣ − p

∥∥
1

� 2‖b‖∥∥∣∣v∗
np

∣∣ − p
∥∥

1 −→
n

0.

By (10) and the inequalities above, limn ‖c − unbu∗
n‖1 = 0, and so c ∈ UM(b)σ -sot. Using

Theorem 2.1,

a = EA(c) ∈ EA
(
UM(b)σ -sot) = EA

(
UM(b)

)
.

Proof of the claim. Since ‖vn‖ � 1, pvnv
∗
np � p, and so |v∗

np| � p. Then by (10),

0 � lim
n

τ
((

1 − vnv
∗
n

)
b
) = lim

n
τ
(
b − v∗

nbvn

)
= lim

n
τ
(
c − v∗

nbvn

)
� lim

n

∥∥c − v∗
nbvn

∥∥ = 0.

Let ε > 0. Since b(b + δ)−1 ↗ p strongly when δ → 0 and

0 � τ
((

1 − vnv
∗
n

)(
p − b(b + δ)−1)) � τ

(
p − b(b + δ)−1),

we can choose δ such that τ((1−vnv
∗
n)p) � ε + τ((1−vnv

∗
n)b(b+ δ)−1) for every n ∈ N. Then,

choosing n such that τ((1 − vnv
∗
n)b) � ‖(b + δ)−1‖−1ε, we obtain

0 � τ
((

1 − vnv
∗
n

)
p
)
� ε + τ

((
1 − vnv

∗
n

)
b(b + δ)−1)

= ε + τ
((

1 − vnv
∗
n

)1/2
b1/2(b + δ)−1b1/2(1 − vnv

∗
n

)1/2)
� ε + ∥∥(b + δ)−1

∥∥τ
((

1 − vnv
∗
n

)
b
)
� 2ε.

Therefore, limn τ ((1 − vnv
∗
n)p) = 0. For any x ∈ M+ with ‖x‖ � 1, x − x2 = x(1 − x) =

x1/2(1 − x)x1/2 � 0. Since ‖v∗
np‖ � 1, we conclude that |v∗

np|2 � |v∗
np|, and so

∥∥p − ∣∣v∗
np

∣∣∥∥
1 = τ

(
p − ∣∣v∗

np
∣∣) � τ

(
p − ∣∣v∗

np
∣∣2)

= τ
(
p − pvnv

∗
np

) = τ
((

1 − vnv
∗
n

)
p
) → 0. �

We finish with the following remark concerning the relation between our main result and the
problem (9). The characterization in Theorem 3.4 of the positive operators in a diffuse abelian
subalgebra A majorized by a fixed b ∈ M+ is weaker than that posed in (9), since in general
(using Corollary 3.2)

EA
(
CM(b)

) = EA
(
CM(b)σ -sot) ⊂ EA

(
CM(b)

)
σ -sot. (11)

By Theorems 3.4 and 4.1, an affirmative answer to the Arveson–Kadison problem would imply
equality in (11) and, conversely, equality in (11) would settle the Arveson–Kadison problem
affirmatively.
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