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For a general class of gas models — which includes discrete and continuous Gibbsian
models as well as contour or polymer ensembles — we determine a diluteness condition
that implies: (1) uniqueness of the infinite-volume equilibrium measure; (2) stability
of this measure under perturbations of parameters and discretization schemes, and (3)
existence of a coupled perfect-simulation scheme for the infinite-volume measure together

with its perturbations and discretizations. Some of these results have previously been
obtained through methods based on cluster expansions. In contrast, our treatment is
purely probabilistic and its diluteness condition is weaker than existing convergence
conditions for cluster expansions.
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1. Introduction

Phase transitions in statistical mechanics are often studied through sequences
of models involving convergent sequences of parameters. The analysis is usually
“towards a target”: properties of the target model are inferred from properties
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of models in the sequence. For instance, sequences of models with asymptotically
vanishing fields can be used to show first order phase transitions for the zero-field
model. In the same spirit, transitions in continuum-space models are often studied
through limits of models on lattices with decreasing mesh.

In this paper, we treat the opposite — “from the target” — point of view. We
investigate conditions under which properties of a target model are inherited by
models obtained by perturbing parameters (e.g., fields or fugacities) or the configu-
ration space itself (e.g., through discretizations). While our treatment is general, our
basic motivation came from target models in the continuum, for which we wished
to address two types of issues:

Faithfulness of simulation schemes: Simulation of continuum models requires
unavoidable discretizations. It is tacitly understood that using sufficiently refined
discretizations leads to trustable determinations of phase diagrams. Still, one may
wonder if this is always the case. The question involves, in fact, a previous issue: How
should the discretization be performed? The natural choice would be to discretize
the model (both configuration space and interactions) and sample from the Gibbs
measure in the discrete system. An alternative, however, would be to sample the
discretized version of the actual continuum measure. These approaches are quite
likely not equivalent in general, as it is known that coarse-graining may lead to
non-Gibbsianness, see, e.g., [28].

Universality: Stability of the continuum equilibrium measure under discretizations
should imply the irrelevance in the discretized systems of interaction terms which
disappear in the continuum limit. This includes, for instance, hard-core exclusions
involving events with zero probability in the continuum (see the thin rods model in
Sec. 2.3.5 below or the cell gas models in [21], for example). In this sense, stability
can be interpreted as the continuum model acting as a fixed point for a “univer-
sality class” that contains a whole family of discrete systems. Some aspects of this
were studied in [21], where stability of the pressure and correlation functions under
suitable discretizations was established for a particular class of gas models.

Our treatment is geared towards general gas models, that is systems involving
families of geometrical objects — possibly with further decorations such as color
or spin — distributed on some underlying space. This distribution is assumed to
be, while on bounded volumes, absolutely continuous with respect to a basic “free”
Poisson process. Our approach uses only general properties of this density with
respect to the “free measure”, and hence it is applicable to general point processes
not necessarily endowed with a Gibbsian description. In particular, it applies to
the contour ensembles used to describe low-temperature phases, starting with the
well-known Peierls contours.

The results reported below hold for models satisfying an appropriate dilution
condition which physically corresponds to gaseous phases. This dilution condition
leads to objects typically clustering into finite islands separated by percolating
empty space. In particular, our condition implies uniqueness of the infinite-volume
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point process or Gibbs measure. In the Gibbsian setting, our requirement leads nat-
urally to models at high temperature or low fugacity. However, the generality of our
approach makes the technique relevant also for low-temperature (or condensation)
regimes in which typical configurations can be described by diluted contours. This
generality will be exploited in a forthcoming paper; in the present paper, we focus
on stability issues within the uniqueness regime.

Our main result establishes that whenever a target model satisfies this dilution
condition all sufficiently small perturbations of it also admit exactly one consistent
infinite-volume measure which, furthermore, is a slight perturbation of the measure
in the target model. Stability results of this type are typically supposed to be
well-known but are rarely available in the literature. In fact, formal proofs are in
general rather technical and require the adaptation of well but not widely known
techniques such as cluster expansions or Pirogov–Sinai theory. These adaptations
can be delicate and require considerable effort. Our intention is to provide a general
approach that can be used as a “black-box” taking care of the technicalities once the
dilution condition is verified. In addition, our approach has a number of advantages
in comparison with usual ad hoc expansion-based treatments:

• The dilution condition amounts to a strong form of uniqueness that is, however,
weaker than the condition associated to the validity of cluster expansion methods
and therefore applies to a wider range of systems. This extension comes at a cost:
roughly speaking, our condition implies only the continuity of the unique measure
with respect to slight perturbations in the parameters of the model, whereas the
convergence of cluster expansions leads to analytic dependences.

• Our approach yields a coupled perfect simulation algorithm, that is an algorithm
yielding simultaneously exact samples of the infinite-volume equilibrium measures
(restricted to a finite volume) of target and approximating models.

• This coupled algorithm leads to the almost sure convergence of the samples above,
and thus to the weak convergence of the equilibrium measures of perturbed mod-
els towards that of the target model.

We believe that our results are quite natural and easy to apply, as we illus-
trate through a number of examples. Nevertheless, our presentation is not devoid
of technical details. In particular, in Sec. 2 we present a careful account of the
general setup for gas models (which is used indistinctly for discrete and continuum
systems) followed by the precise definition of “approximation” operations (i.e. per-
turbations of the configuration space). Also, in Sec. 5, we discuss with some detail
the ancestor algorithm which constitutes the main tool of our analysis. This algo-
rithm — introduced 15 years ago as a substitute for cluster expansions in [6] —
reconstructs configurations through a (time-backwards) oriented percolation model
of space-time “cylinders”, i.e. objects in the gas model which live for a certain period
of time. This ancestor algorithm succeeds — implying uniqueness and space-time
mixing of the infinite-volume measure — if these cylinders do not percolate. Such a
condition is naturally suited for stability studies, because finite cylinder clusters are
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robust under perturbations. Our dilution condition is crafted to ensure, in general
terms, the lack of percolation for cylinders associated to the target model. This lack
of percolation is then inherited by the perturbed models, whose cylinder clusters
become in one-to-one correspondence with those of the target model as the strength
of the perturbation vanishes.

2. The Basic Setup

2.1. Configuration space

We start by describing the general measure-theoretical setup. The definitions aim
at a general configuration space on an underlying space of locations. Whenever the
latter is discrete, we call the model in question a lattice system, although other type
of systems also fit into this framework.

2.1.1. Particle configurations and configuration space

We consider two locally compact complete separable metric spaces: a location space
(S, dS) and a space of animals (G, dG). A countable S is often called a lattice and
a finite G is interpreted as a set of colors or spins. The product space S ×G is also
locally compact complete and separable if endowed with the metric d = dS + dG.
For convenience, we shall call an element (x, γ) ∈ S × G a particle and denote it
simply by γx. We interpret it as an animal γ positioned at location x.

The general definition of configuration space requires special care. For our pur-
poses, it will be convenient to adopt the general framework of point processes
featured in [15]. In this framework, configurations are identified with locally finite
measures on S × G obtained as a superposition of delta-measures signaling the
presence of particles.

Notation 2.1. Given a metric space (X, d) we denote:

• By BX the class of all Borel subsets of (X, d).
• By B0

X the set of elements of BX with compact closure.

We recall that a set B ∈ BX is locally finite if for every B′ ∈ B0
X the set B ∩B′

is finite. Also, a measure ξ on (X,BX) is called a Radon measure if ξ(B) < +∞ for
every B ∈ B0

X . Configurations correspond to particular Radon measures supported
on locally finite sets.

Definition 2.2. A Radon measure ξ on (S × G,BS×G) is said to be a particle
configuration if ξ(B) ∈ N0 for every B ∈ B0

S×G.

The following proposition states that a particle configuration can be actually
identified with a locally finite collection of particles, in which particles may appear
more than once.
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Proposition 2.3 ([15, Lemma 2.1]). A measure ξ on S × G is a particle con-
figuration if and only if there exist a locally finite set 〈ξ〉 ⊆ S × G and a map
mξ : 〈ξ〉 → N such that

ξ =
∑

γx∈〈ξ〉
mξ(γx)δγx (2.1)

with δγx the Dirac measure centered at γx. We call (2.1) the standard representation
of ξ.

Thus, a particle configuration ξ can be thought of as a locally finite family of
particles, each with its own respective multiplicity. The set 〈ξ〉 shall be called the
support of ξ. It is the collection of particles which constitute ξ, with no regard for
their multiplicities. If we take these into consideration then we obtain the weighted
support of ξ given by

[ξ] := {(γx, i) ∈ (S × G) × N : γx ∈ 〈ξ〉 and 1 ≤ i ≤ mξ(γx)}.
Definition 2.2 alone is sufficient to define the configuration space whenever G is

compact. For the general case, however, we will require an extra restriction.

Definition 2.4. (i) A measure ξ on (S × G,BS×G) is said to be of S-locally finite
allocation if it satisfies ξ(Λ × G) < +∞ for every Λ ∈ B0

S .
(ii) The configuration space of S × G is the space N (S × G) of all particle config-

urations on S × G which are of S-locally finite allocation.
(iii) The set of configurations (supported) on Λ ∈ B0

S is the set

N (Λ × G) := {ξ ∈ N (S × G) : 〈ξ〉 ⊂ Λ × G}.
[The notation is slightly abusive.]

We now define the natural notions of restriction and superposition of configu-
rations.

Definition 2.5. Given ξ ∈ N (S × G) and A ∈ BS×G, the restriction of ξ to A is
defined as the particle configuration ξA such that for every B ∈ BS×G

ξA(B) = ξ(A ∩ B).

Equivalently, if ξ :=
∑

γx∈〈ξ〉 mξ(γx)δγx then ξA is given by the standard represen-
tation

ξA =
∑

γx∈〈ξ〉∩A

mξ(γx)δγx .

To improve readability, in the following we will write ξΛ instead of ξΛ×G for Λ ∈ B0
S .

Definition 2.6. The superposition of two configurations σ, η ∈ N (S×G) is defined
as the particle configuration σ · η such that for every B ∈ BS×G

(σ · η)(B) = σ(B) + η(B).

In the particular cases in which σ ∈ N (Λ×G) and η ∈ N (Λc ×G) for a certain
Λ ∈ B0

S , the superposition σ · η can be thought of as a concatenation. In these
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cases, the operations of restriction and superposition induce a natural identification
between N (S × G) and N (Λ × G) ×N (Λc × G) for any given Λ ∈ B0

S. Indeed, the
applications

N (S × G) r→ N (Λ × G) ×N (Λc × G)

ξ 
→ (ξΛ, ξΛc)

and

N (Λ × G) ×N (Λc × G) s→ N (S × G)

(σ, η) 
→ σ · η
are bijections and have each other as their respective inverse.

2.1.2. Measurable structure

The space N (S × G) is endowed with a measurable structure by considering the
σ-algebra F generated by the counting events, i.e.

F = σ({ξ ∈ N (S × G) : ξ(B) = k} : k ∈ N0 and B ∈ B0
S×G). (2.2)

Alternatively, if one considers for every B ∈ BS×G the counting variable

NB : N (S × G) → N0

NB(η) = η(B),

then

F = σ(NB : B ∈ B0
S×G).

More generally, for any A ∈ BS×G the σ-algebra FA of events occurring in A is
defined as the one generated by the counting events inside A, i.e.

FA := σ({ξ ∈ N (S × G) : ξ(B) = k} : k ∈ N0 and B ∈ B0
A)

= σ(NB : B ∈ B0
A).

The case A = Λ × G for Λ ∈ B0
S is of particular relevance. First, we make the

following important observation.

Remark 2.7. The identification between N (S × G) and N (Λ × G) ×N (Λc × G)
defined above is in fact a measurable isomorphism if the spaces are endowed with
the σ-algebras F and FΛ×G ⊗FΛc×G, respectively.

Further, we introduce the natural notions of local events and observables.

Definition 2.8. (i) A function f : N (S×G) → R is called a local observable if there
exists Λ ∈ B0

S such that f is FΛ×G-measurable, i.e. if f(σ) = f(η) whenever
σΛ = ηΛ.

(ii) An event A ∈ F is called local if �A is a local observable, i.e. if A ∈⋃
Λ∈B0

S
FΛ×G.

(iii) An event A ∈ F is called σ-local if it is the countable union of local events.
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2.1.3. Topological structure

Physically, two configurations are close whenever inside some large compact set
each configuration is a slight deformation of the other. This means that each particle
inside this compact set of one configuration can be matched to a neighboring particle
of the other and vice versa. The precise definition is as follows.

Definition 2.9. (i) Given δ > 0 and ξ, η ∈ N (S × G) we say that ξ is δ-
embedded in η if there exists an injective application p : [ξ] → [η] such
that d(πS×G(γx, i), πS×G(p(γx, i))) < δ for all (γx, i) ∈ [ξ], with πS×G :
(S × G) × N → S × G the projection onto S × G. We denote it by ξ �δ η.

(ii) Given a particle configuration ξ ∈ N (S × G), a compact set K ⊆ S × G and
δ > 0, the (K, δ)-neighborhood of ξ is the set

(ξ)K,δ = {η ∈ N (S × G) : ξK �δ η and ηK �δ ξ}.
The topology of the configuration space is the one defined by these neighbor-

hoods.

Definition 2.10. The vague topology on N (S × G) is the topology generated by
the basis

B = {(ξ)K,δ : ξ ∈ N (S × G), K ⊆ S × G compact and δ > 0}.
A number of observations are in order.

Remark 2.11. (a) N (S ×G) admits a metric consistent with the vague topology,
under which it is a separable metric space. It is also complete whenever G is
compact.

(b) The σ-algebra F defined in (2.2) is actually the Borel σ-algebra corresponding
to the vague topology on N (S × G).

(c) The vague topology is usually defined as the one generated by the neighbor-
hoods

(ξ)f1,...,fn,δ = {η ∈ N (S × G) : |ξ(fi) − η(fi)| < δ, i = 1, . . . , n}
for δ > 0 and f1, . . . , fn continuous functions vanishing outside some compact
set. This definition is equivalent to ours, but we will not use it in the sequel.

2.1.4. Point processes on S × G

We call any random element of N (S × G) a point process on S × G. Every point
process X on S × G is characterized by its distribution PX , which is a probability
measure on N (S × G); the original measure space on which the process is defined
plays no role. In the sequel, we will study convergence of point processes on S ×G

and, in general, of probability measures on N (S × G). Besides the well-known
notion of weak convergence, in our work we will also consider the notion of local
convergence, which we define now.
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Definition 2.12. (i) A sequence (µn)n∈N of probability measures on N (S × G)
converges locally to a probability measure µ on N (S × G) if

lim
n→+∞ µn(f) = µ(f)

for every bounded local function f : N (S×G) → R. We denote this by µ
loc−→ µ.

(ii) Likewise, a sequence (Xn)n∈N of point processes on S ×G converges locally to
a point process X on S × G if PXn

loc−→ PX . We denote this by Xn
loc−→ X .

In the general setting local observables need not be continuous, so that local and
weak notions of convergence may not coincide in general. However, since uniformly
continuous functions can be approximated arbitrarily well in the supremum norm
by local observables, we have that local convergence is always stronger than weak
convergence. Both notions coincide in fact whenever S and G are both countable
and discrete. For further details, we refer the reader to [10, Sec. 4.1] and also [16].

2.2. Gas models

Our models consist of three ingredients: (1) a configuration space, (2) an underlying
“free” measure on the configuration space, and (3) a notion of interaction encoded
in Hamiltonians. The first ingredient was the object of the preceding subsection;
here we discuss the remaining two and give the general definition of gas model.

2.2.1. Poisson processes on S × G and the free measure

In all gas models the underlying free measure will be a Poisson distribution on
N (S × G) for some appropriate intensity. We give the definition of Poisson distri-
bution below.

Definition 2.13. Let ν be a measure on (S×G,BS×G) of S-locally finite allocation
(i.e. such that ν(Λ × G) < +∞ for every Λ ∈ B0

S).

(i) The Poisson distribution with intensity ν is the unique measure πν on N (S×G)
which satisfies

πν({ξ ∈ N (S × G) : ξ(Bi) = ki for all i = 1, . . . , n})

=
n∏

i=1

e−ν(Bi)(ν(Bi))ki

ki!

for all k1, . . . , kn ∈ N0, disjoint B1, . . . , Bn ∈ B0
S×G and n ∈ N.

(ii) A point process X is called a Poisson process with intensity ν if it is distributed
according to πν , i.e. for every finite collection of disjoint sets B1, . . . , Bn ∈
B0

S×G the random variables X(B1), . . . , X(Bn) are independent and Poisson-
distributed with respective means ν(B1), . . . , ν(Bn).
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2.2.2. Hamiltonians

In this paper, we aim at treating general gas models, including also contour ensem-
bles. The latter are not amenable to a standard Gibbsian description. Rather, the
energy cost of particle configurations in these models is described in terms of a
Hamiltonian prescription, according to the following formal definition.

Definition 2.14. (i) A Hamiltonian prescription on N (S ×G) is a family of mea-
surable functions

H = {HΛ|η : N (Λ × G) → (−∞, +∞] : Λ ∈ B0
S , η ∈ N (S × G)}.

The function HΛ|η is called the local Hamiltonian on Λ with boundary condi-
tion η.

(ii) Given a Hamiltonian prescription H , Λ ∈ B0
S and a configuration η ∈ N (Λc ×

G), the energy leap in Λ relative to η is the function ∆EΛ|η : Λ×G → (−∞, +∞]
defined by

∆EΛ|η(γx) =

{
HΛ|η(ηΛ×G + δγx) − HΛ|η(ηΛ) if HΛ|η(ηΛ) < +∞
+∞ otherwise.

The local Hamiltonian HΛ|η measures the energy cost of inserting configurations
in Λ if surrounded by the configuration η. The energy leap ∆EΛ|η represents the
energy cost of placing an additional particle γx inside Λ when in the presence of
the configuration η. In particular, we may define the impact relation ⇀ on S × G

by the rule

γ̃y ⇀ γx ⇔ ∃Λ ∈ B0
S and η ∈ N (S × G) with ∆EΛ|η(γx) �= ∆EΛ|η+δγ̃y

(γx).

(2.3)

If γ̃y ⇀ γx we say that γ̃y has an impact on γx. This relation is not necessarily
symmetric.

2.2.3. Definition of gas model

Every gas model is defined by a pair (ν, H), where ν is an intensity measure and H a
Hamiltonian prescription. The former describes how particles would be distributed
if there would be no interaction among them, and the latter specifies this interaction.
Our aim of considering general point processes forces us to list a relatively long list
of assumptions. As illustrated below, these assumptions are naturally satisfied by
usual examples.

Definition 2.15. A gas model on S × G is a pair (ν, H) verifying the following
conditions:

(1) S-locally finite allocation. For all Λ ∈ B0
S the measure ν satisfies ν(Λ×G) < +∞.

(2) Diluteness condition: HΛ|η(∅) < +∞ for every Λ ∈ B0
S and η ∈ N (S × G).
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(3) Existence of infinite-volume energy leap function: The limit

∆Eη(γx) := lim
Λ↗S

∆EΛ|η(γx)

exists for all γx ∈ S × G and η ∈ N (S × G).
(4) Bounded energy loss and allowance of particles:

−∞ < ∆E := inf
Λ∈B0

S


 inf

γx∈Λ×G
η∈N (S×G)

∆EΛ|η(γx)


 < +∞.

(5) Integrable interaction range: Let the interaction range of B ∈ BS×G be the set

I(B) = {γ̃y ∈ S × G : ∃ γx ∈ B such that γ̃y ⇀ γx}.
Then I(B) is measurable and ν(I(Λ × G)) < +∞ for each Λ ∈ B0

S .
(6) Measurability of local Hamiltonians: Given Λ ∈ B0

S and γx ∈ S × G,

(i) The application (ξ, η) → HΛ|η(ξ) is (FΛ×G ⊗F(Λc×G)∩I(Λ×G))-measurable.
(ii) The application η 
→ ∆Eη(γx) is FI(γx)-measurable.

(7) Integrability of local Hamiltonians: For any Λ ∈ B0
S and η ∈ N (S × G)

ZΛ|η :=
∫
N (Λ×G)

e−HΛ|η(σ)dπν
Λ(σ) < +∞,

where πν
Λ is the Poisson distribution on N (Λ × G) with intensity νΛ×G.

These conditions are satisfied by all physical systems of interest we know of
(although for some discrete systems, like the Ising model for example, one may
need to consider an alternative lattice gas representation for these to hold), with the
exception of condition (4). This condition is violated, for example, by interactions of
Lennard–Jones type. Indeed, if one considers a ring of particles of a radius for which
the L–J potential is negative, then the addition of a particle at the center of the
ring would lead to an energy leap that becomes arbitrarily low with the (potentially
unbounded) number of particles in the ring, thus yielding ∆E = −∞. This suggests
that, except for systems with purely nonnegative interactions, the validity of the
leftmost inequality in (4) is tantamount to the existence of some sort of hard-
core requirement preventing arbitrarily large amounts of particles inside bounded
regions. Finally, we emphasize that we do not require interactions between particles
to be of bounded range, only that condition (5) above holds, which essentially means
that typical configurations of the model should not have an infinite amount of
particles interacting with a single given particle simultaneously. See Definition 2.17
below for a more precise statement.

2.2.4. Gas kernels

Every gas model defines a family of probability measures on N (S × G), called gas
kernels, which describe the local behavior of the system in bounded volumes. We
introduce this family of gas kernels below.
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Definition 2.16. The gas kernel of (ν, H) on the volume Λ ∈ B0
S with boundary

condition η ∈ N (S × G) is the probability measure µΛ|η on N (S × G) given by

µΛ|η = ωΛ|η × δηΛc (2.4)

where we make the identification N (S × G) = N (Λ × G) × N (Λc × G) and ωΛ|η
denotes the probability measure on N (Λ × G) defined through the relation

dωΛ|η =
e−HΛ|η

ZΛ|η
dπν

Λ

with πν
Λ denoting the Poisson distribution on N (Λ × G) with intensity νΛ×G and

ZΛ|η =
∫
N (Λ×G)

e−HΛ|η(σ)dπν
Λ(σ)

being the normalization constant. Notice that by assumptions (1)–(2) in Defini-
tion 2.15 we have

ZΛ|η ≥ e−HΛ|η(∅)πν(NΛ×G = 0) = e−(ν(Λ×G)+HΛ|η(∅)) > 0

and also ZΛ|η < +∞ by assumption (7), so that ωΛ|η is well defined.

The measures µΛ|η describe the local behavior of the system inside the volume
Λ when the configuration outside Λ is fixed as η. The true objects of interest for us
are, however, the possible local limits of these along suitable boundary conditions.

Definition 2.17. Let (ν, H) be a gas model.

(i) We say that a configuration η ∈ N (S × G) has finite H-interaction range
whenever η(I(Λ × G)) < +∞ for every Λ ∈ B0

S , i.e. if η has only finitely many
particles interacting with those in any given bounded volume.

(ii) A probability measure µ on N (S × G) is called a (ν, H)-gas measure if there
exist η ∈ N (S × G) with finite H-interaction range and (Λn)n∈N ⊆ B0

S with
Λn ↗ S such that

µΛn|η
loc−→ µ. (2.5)

By condition (5) in Definition 2.15, configurations with an infinite H-interaction
range are not physically admissible for the system. Thus, allowing these as bound-
ary conditions in (2.5) may lead to pathological limits of no physical meaning.
Indeed, it is not hard to device examples in which δ∅, the δ-measure on the empty
configuration, can be obtained as the local limit in (2.5) along a boundary condition
with an infinite H-interaction range. This is why in the definition of gas measure
we disregard this type of boundary conditions.
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2.2.5. Gibbsian gas models

Gas measures possess a clear physical interpretation for the particular case of Gibb-
sian models. These are defined by taking Hamiltonian prescriptions in which local
interactions do not depend on the particular volume under consideration.

Definition 2.18. We say that a model (ν, H) is Gibbsian if the Hamiltonian pre-
scription H satisfies the consistency property

HΛ|η(σ) = H∆|σΛ·ηΛc (σ∆) + H(Λ \∆)|∅Λ·ηΛc (σΛ \∆) (2.6)

for every ∆ ⊆ Λ ∈ B0
S, σ ∈ N (Λ × G) and η ∈ N (S × G).

Notice that condition (2.6) implies that, as we anticipated, the energy leap
∆EΛ|η(γx) does not depend on Λ. In particular, assumption (3) in Definition 2.15
immediately holds for Hamiltonians verifying (2.6). Furthermore, condition (2.6)
yields gas kernels satisfying a consistency relation of the form

µΛ|η =
∫

µ∆|ξ dµΛ|η(ξ) (2.7)

for every pair of volumes ∆ ⊆ Λ ∈ B0
S and η ∈ N (S × G). A family of gas kernels

satisfying (2.7) is called a specification. The infinite-volume measures relevant to
Gibbsian models are usually introduced through the Λ → S version of (2.7).

Definition 2.19. Let (ν, H) be a Gibbsian model. A probability measure µ on
N (S × G) is called a Gibbs measure for (ν, H) if for every Λ ∈ B0

S

µ =
∫

µΛ|η dµ(η). (2.8)

Thus, Gibbs measures are precisely those infinite-volume measures which are
consistent (in the sense of (2.7)) with the local description of the model given by
its specification. Hence, we may think of them as the measures describing the global
states of our system. The relation between Definitions 2.19 and 2.17 follows from the
fact that, for a large class of Gibbsian models (see [25] for details), any local limit
of gas kernels as put in (2.5) is in fact a Gibbs measure for (ν, H) and, furthermore,
all extremal Gibbs measures can be obtained in this way.

In practice, almost every model of physical interest is Gibbsian. There is, how-
ever, one important exception: contour ensembles. These are of particular relevance
since they constitute one of the main tools for studying Gibbsian systems in the
low-temperature (or condensation) regime. We give further discussion on Gibbsian
and non-Gibbsian models in the following section.

2.3. Examples of gas models

We now present some examples of models to illustrate the definitions of the previous
section. Later in Sec. 4, we will also use these as ground for applications of our
results.
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2.3.1. Models given by an interaction potential

The typical way in which Hamiltonians satisfying (2.6) are specified is via
an interaction potential, i.e. a family Φ = (Φ(n))n∈N of symmetric functions
Φ(n) : (S × G)n → (−∞, +∞] subject to appropriate measurability and summa-
bility requirements so that the local Hamiltonians

HΛ|η(σ) :=
∑
n≥1
m≥0

1
n!m!

∑
(γ(1)

x ,i1),...,(γ(n)
x ,in)∈[σ]

(γ̃(1)
y ,j1),...,(γ̃(m)

y ,jm)∈[ηΛc ]

Φ(n+m)(γ(1)
x , . . . , γ(n)

x , γ̃(1)
y , . . . , γ̃(m)

y )

(2.9)

are well-defined and satisfy all the pertinent conditions in Definition 2.15. The
resulting Hamiltonian prescription is said to be specified by Φ and will be often
denoted by HΦ. The function Φ(n) is called the n-body interaction of the potential Φ.

We say that a model (ν, H) is given by an interaction potential if H = HΦ for
some Φ. It follows from (2.9) that any such model is Gibbsian. Furthermore, we
have that:

• HΦ
Λ|η(∅) = 0 for any Λ ∈ B0

S and η ∈ N (S × G).
• For any γx ∈ S × G and η ∈ N (S × G) the energy leap ∆EΦ

η (γx) takes the form

∆EΦ
η (γx) =

∑
m≥0

1
m!

∑
(γ̃

(1)
y ,j1),...,(γ̃

(m)
y ,jm)∈[η]

Φ(m+1)(γx, γ̃(1)
y , . . . , γ̃(m)

y ). (2.10)

• The bounded energy loss condition in (4) of Definition 2.15 in this case reduces
to the existence of a constant C > 0 such that∑

m≥0

∑
(γ̃

(1)
y ,j1),...,(γ̃

(m)
y ,jm)∈[η]

Φ(m+1)(γx, γ̃(1)
y , . . . , γ̃(m)

y ) ≥ −C

for every γx ∈ S × G and η ∈ N (S × G). This condition is well-known and
standard in the study of gas systems (see [23, Sec. 1.2]).

Models specified by an interaction potential are the most common among gas
models. Below we give some examples.

2.3.2. The discrete Widom–Rowlinson model

It is a classical hardcore interaction model, first introduced by Lebowitz and
Gallavotti in [18]. It involves particles of two types, say (+)-particles and (−)-
particles, located at the sites of the discrete lattice Zd for d ≥ 1. The interaction
between particles allows at most one particle per site and forbids any two particles
of different type from being within a certain fixed distance k ∈ N of each other.
The corresponding gas model is defined by the following ingredients:

• Location space S = Zd and spin set G = {+,−}.
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• Intensity measure given by

ν = λ+ · cZd × δ+ + λ− · cZd × δ−, (2.11)

where λ+, λ− > 0 are two fixed parameters known as the fugacities of (±)-
particles, respectively, and cZd denotes the counting measure on Zd.

• Hamiltonian prescription H specified by the potential Φ = Φ(2) given by

Φ(2)(γx, γ̃y) :=




+∞ if x = y

+∞ if 0 < ‖x − y‖∞ ≤ k and γ �= γ̃

0 otherwise.

(2.12)

Alternatively, one could define the model by considering instead the pair
(cZd×{+,−}, H̃), where cZd×{+,−} is the counting measure on Zd × {+,−} and H̃ is
specified by the potential Φ̃ = (Φ̃(1), Φ̃(2)) with Φ̃(2) as in (2.12) and

Φ̃(1)(γx) =

{
−log λ+ if γ = +

−log λ− if γ = −.

Both representations are equivalent in the sense that they produce the same gas
kernels. Nevertheless, for our analysis it will be more convenient to adopt the first
representation. The reason for this choice will be explained later in Sec. 4. We adopt
this representation also in the remaining examples.

2.3.3. The continuum Widom–Rowlinson model

In the continuum version of the model, particles are now located throughout the
entire Euclidean space Rd and the interaction forbids particles of different type from
being within a certain distance r > 0 of each other. It was originally introduced
by Widom and Rowlinson in [29] and later studied in [3, 22]. Its formal ingredients
are:

• Location space S = Rd and spin set G = {+,−}.
• Intensity measure

ν := λ+ · Ld × δ+ + λ− · Ld × δ−,

where Ld is the Lebesgue measure on Rd.
• Hamiltonian prescription H specified by the potential Φ = Φ(2) given by

Φ(2)(γx, γ̃y) :=

{
+∞ if ‖x − y‖∞ ≤ r and γ �= γ̃

0 otherwise.
(2.13)

Notice that the first term in (2.12) excluding multiple particles in one site is now
missing from (2.13). This is because the Poisson distribution πν already assigns
zero probability to configurations with more than one particle per site and so this
term becomes unnecessary.
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2.3.4. The Widom–Rowlinson model with generalized interactions

Several generalizations of the Widom–Rowlinson model are worth looking into.
One interesting possibility is to consider a model in which nearby pairs of particles
of opposite type are not necessarily forbidden, but merely discouraged, and also
intra-species repulsion terms are included. Such generalization is defined through
decreasing functions h, j± : R+ → [0, +∞] with bounded support, by replac-
ing (2.12)–(2.13) with the 2-body interaction

Φ(2)(γx, γ̃y) =




h(‖x − y‖∞) if γ �= γ̃

j−(‖x − y‖∞) if γ = γ̃ = −
j+(‖x − y‖∞) if γ = γ̃ = +.

We call (h, j−, j+) the repulsion vector. The original continuum Widom–Rowlinson
model is obtained by setting h := (+∞)�[0,r] and j± ≡ 0. The discrete version
corresponds to the same choice of h and j± := (+∞)�{0}. We refer to [9] where
these type of generalizations were investigated.

2.3.5. The thin rods model in Z2

Given k ∈ N we consider a system of hard rods in R2 of zero width and length 2k

whose centers are located at the sites of Z2. Each rod has an orientation specified
by an angle γ ∈ [0, π) with respect to the x-axis, and the interaction forbids any
two rods to intersect. More precisely, if for r > 0 we set

Lr
γ := {t · (cos γ, sinγ) : t ∈ [−r, r]}

then the thin rods model in Z2 is defined by:

• Location space S = Z2 and spin set G = [0, π).
• Intensity measure ν := λ · cZ2 × ρ, where λ > 0 is called the fugacity of rods and

ρ is a probability measure on G called the orientation measure.
• Hamiltonian prescription H specified by the potential Φ = Φ(2) given by

Φ(2)(γx, γ̃y) :=

{
+∞ if (Lk

γ + x) ∩ (Lk
γ̃ + y) �= ∅

0 otherwise.
(2.14)

Of particular interest to us is the case when the orientation measure is given by

ρ = pδ0 + (1 − p)δπ
2

(2.15)

for some p ∈ (0, 1). This model is identical to the discrete Widom–Rowlinson model,
with the exception of an additional repulsion term between particles of the same
type. Indeed, by identifying G with {+,−} we have that ν equals (2.11) for λ+ := pλ

and λ− := (1 − p)λ, while Φ(2) in (2.14) can be rewritten as Φ(2) = Φ(2)
WR + Φ(2)

∗ ,
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where Φ(2)
WR is as in (2.12) and

Φ(2)
∗ (γx, γ̃y) =




+∞ if γ = γ̃ = + and |x1 − y1| ≤ k

+∞ if γ = γ̃ = − and |x2 − y2| ≤ k

0 otherwise.

(2.16)

We call this particular system the nematic thin rods model. More details about this
model can be found in [4, 12] and references therein.

2.3.6. The thin rods model in R2

Similar to the previous model, the rod centers are now located at arbitrary points
of R2 and the rod lengths are 2r for some fixed r > 0 which is not necessarily an
integer. The model is formally defined by:

• Location space S = R2 and spin set G = [0, π).
• Intensity measure ν = λ · L2 × ρ, where λ > 0 and ρ is the orientation measure.
• Hamiltonian prescription H specified by the potential Φ = Φ(2) where

Φ(2)(γx, γ̃y) :=

{
+∞ if (Lr

γ + x) ∩ (Lr
γ̃ + y) �= ∅

0 otherwise.

For ρ as in (2.15), the model is equivalent to the continuum Widom–Rowlinson
model since πν assigns zero probability to configurations for which Φ(2)

∗ in (2.16)
would be nonzero. Thus, both the Widom–Rowlinson model and the nematic thin
rods model have the same continuum version. We refer to [2] where the model with
a finite number of orientations was studied.

2.3.7. The Peierls contours model

To conclude, we show an example of a model which is not Gibbsian, but still fits
into our framework: the Peierls contours model. It was first presented by Peierls in
[20] to study the Ising model at low temperature (see also [13]). For simplicity, we
focus only on the 2-dimensional case.

The Ising model is the lattice system on the configuration space {−1, +1}Z2

defined by the set of finite-volume specifications {µI
Λ|η : Λ ∈ B0

Z2 , η ∈ {−1, +1}Z2}
given by

µI
Λ|η(σ) =

�{σΛc≡ηΛc}
ZI

Λ|η
e−HI

Λ|η(σΛ),

where

HI
Λ|η(σΛ) := −β

2

∑
x,y∈Λ

‖x−y‖2=1

σ(x)σ(y) − β
∑

x∈Λ,y /∈Λ
‖x−y‖2=1

σ(x)η(y) (2.17)

for a fixed parameter β > 0 known as the inverse temperature. Let us observe that,
since the interaction has range one, the boundary condition η is involved in (2.17)
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only through its values on the external boundary ∂Λ of Λ defined as

∂Λ := {y /∈ Λc : d2(y, Λ) = 1}.
Of particular interest are the boundary conditions + and −, corresponding to
η(x) = +1 and η(x) = −1 for all x ∈ Z2, respectively. It can be seen that the
local limits

µ+ := lim
Λ↗Z2

µI
Λ|+ and µ− := lim

Λ↗Z2
µI

Λ|−

both exist and constitute the unique extremal Gibbs measures of the model for a
fixed β, in the sense of Definition 2.19 (see [11] and references therein for details).
If β is such that µ+ and µ− do not coincide, we say that a phase transition occurs
at inverse temperature β. Peierls showed the existence of a phase transition for all
sufficiently large values of β by considering the following geometric description of
configurations in terms of contours.

We begin by fixing + as the boundary condition and letting ∆ ∈ B0
Z2 be a square.

Now, consider Z2
∗ := Z2 +(1

2 , 1
2 ), the dual lattice of Z2. Given an edge e joining two

neighboring sites in Z2, let e∗ denote the unique edge joining neighboring sites in
Z2
∗ which is orthogonal to e. We call e∗ the dual edge of e. Furthermore, consider:

• e(∆), the set of edges in Z2 with at least one endpoint in ∆.
• e∗(∆) := {e∗ : e ∈ e(∆)}, the set of dual edges of e(∆).
• ∆∗, the set of sites in Z2∗ which are endpoints of edges in e∗(∆).

Given a configuration σ satisfying the boundary condition + outside ∆, let Dσ

denote the set of dual edges e∗ ∈ e∗(∆) such that e joins two sites x, y with different
spin, i.e. σ(x)σ(y) = −1. With a little work it is possible to show that the edges
in Dσ join up to form closed curves (which may contain loops). This set of curves
can be decomposed into connected components γ1, . . . , γn. We call any of these
components γi a contour, and write Γσ := {γ1, . . . , γn} for the set of contours of
σ. It can be seen that the assignation σ 
→ Γσ is in fact a bijection: given a finite
family Γ of mutually disjoint contours contained in e∗(∆), there exists a unique
configuration σΓ satisfying the boundary condition + in ∆c which has Γ as its set
of contours. Furthermore, if |γ| denotes the number of edges in γ, then for any such
σ we have

µI
∆|+(σ) =

1
W∆

e−2β
P

γ∈Γσ
|γ|, (2.18)

where W∆ is a normalizing constant depending solely on ∆. Thus, whenever ∆
is a square, with (2.18) we obtain an alternative representation of µI

∆|+ in terms
of a system of contours interacting by exclusion. In the current framework of gas
models, this system is defined by setting:

• The dual lattice Z2
∗ as the location space S.

• The set of contours rooted at the origin 0∗ := (1
2 , 1

2 ) ∈ Z2
∗ as the spin set G. Here,

we say that a contour γ is rooted at x ∈ Z2
∗ if x is the smallest site belonging to γ
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(with respect to the lexicographical order). Thus, we interpret any γx ∈ Z2∗ × G

as the contour shape γ rooted at x.
• The intensity measure ν given for each γx ∈ S × G by ν(γx) := e−2β|γx|.
• For each Λ ∈ B0

Z2∗
and η ∈ N (Z2∗ ×G), the Hamiltonian HΛ|η specified as in (2.9)

but for the local potential ΦΛ = (Φ(1)
Λ , Φ(2)) given by

Φ(2)(γx, γ̃x) =

{
+∞ if γx ∩ γ̃y �= ∅
0 otherwise

and

Φ(1)
Λ (γx) =

{
+∞ if γx ∩ (Z2

∗ − Λ) �= ∅
0 otherwise.

The interaction term Φ(2) is responsible for the exclusion among different con-
tours, while the term Φ(1)

Λ bans those contours which are not contained in Λ.

The resulting pair (ν, H) is called the Peierls contours model. The main physical
interest of this model lies in the fact that phase transitions in the Ising model at
low temperatures can be understood in terms of the diluteness properties of gas
measures for (ν, H). Indeed, if {µP

Λ|η : Λ ∈ B0
Z2∗

, η ∈ N (Z2
∗ × G)} is the family of

kernels induced by (ν, H), then (2.18) can be rewritten as

µI
∆|+(σ) = µP

∆∗|∅(Γσ) (2.19)

for any square ∆ ∈ B0
Z2 and spin configuration σ ∈ {−1, +1}Z2

equal to + outside
∆. Here, ∅ denotes the empty contour configuration. Using (2.19) and the spin-
flip symmetry of the Ising model, one can show that if the gas measure µP :=
lim∆↗Z2∗ µP

∆∗|∅ is sufficiently diluted (which occurs at low temperatures) then the
infinite-volume measures µ+ and µ− in the Ising model are distinct. Therefore, by
changing the (local) spin variables into new (non-local) contour variables, the proof
of the existence of a phase transition reduces to the proof of some form of diluteness
of the contour measure. We refer to [25] for details.

In our present context, however, this model is of interest also for another reason:
it constitutes the canonical example of a (physically relevant) non-Gibbsian system.
Indeed, for any γx ∈ Z2

∗ ×G, Λ ∈ B0
Z2∗

and η ∈ N (Z2
∗ × G) we have that the energy

leap

∆EΛ|η(γx) =

{
+∞ if γx ∩ 〈η〉 �= ∅ or γx ∩ (Z2

∗ − Λ) �= ∅
0 otherwise

depends on the volume Λ through the restriction imposed by the interaction term
Φ(1)

Λ , implying that the model is not Gibbsian. However, the limit

lim
Λ↗Z2∗

∆EΛ|η(γx) =

{
+∞ if γx ∩ 〈η〉 �= ∅
0 otherwise

exists for all choices of η and γx, so that the conditions in Definition 2.15 are still
satisfied. The restriction imposed by Φ(1)

Λ must be, nonetheless, included for (2.19)
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to hold, as µI
∆|+ is supported on configurations σ such that Γσ is always contained

in ∆∗.

2.3.8. Other examples

More in general, our treatment is also adapted to handle systems in the following
general classes:

General contour ensembles. The Peierls contours discussed above are particularly
simple because the Ising Hamiltonian is symmetric under the overall flipping
of configurations. More general non-symmetric cases are the object of study of
Pirogov–Sinai theory [27]. The main features of contours defined in this theory are
the following:

(i) Contours are “thick” subsets formed by collections of plaquettes,
(ii) contours include some additional information (color, configurations on both

sides or, in general, the configuration on the relevant plaquettes),
(iii) each reference configuration has a specific contour ensemble,
(iv) contour ensembles are not of physical nature and only external contours coin-

cide with the physical “defects” in the presence of reference configurations,
(v) contour weights include ratios of partition functions that must be bounded so

as to obtain exponential expressions similar to the one in (2.18).

The last property is encoded in the expression “contours must satisfy a Peierls
condition”. If these conditions are met, by proceeding as for the Peierls contours
one can show that the diluteness of a contour ensemble implies the existence of
a measure “tilted” towards the corresponding boundary configuration. We observe
that PS contour ensembles do not fit the Gibbsian framework for the same reason as
in the Peierls contours ensemble. Our results applied to these PS contour ensembles
can yield not only proofs of the existence of phase transitions in the associated spin
systems, but also the stability of the resulting phases with respect to perturbations
and discretizations. This will be exploited in a subsequent publication [7].

General polymer models. These models — introduced by Gruber and Kunz [14] —
involve general geometrical objects subject to a general hardcore condition defined
in terms of a “compatibility” relation (see [17, 5]). They are the traditional target of
cluster-expansion or closely related methods [1]. Our results extend uniqueness and
mixing properties to a larger region of parameters than expansion-based treatments,
at the cost of sacrificing analyticity considerations.

General point processes. Point processes are the genesis of the ancestor algorithm
exploited in this paper. All the models presented in one of the original publica-
tions [8] fall within the scope of our treatment: area-interacting processes, Strauss
process, loss networks, random cluster model. In fact, our results apply to models
that combine the generality of polymer models — that do not require a geomet-
ric underlying space — with that of point processes — that allow soft as well as
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hard-core interactions. A full presentation of the ancestor algorithm in such a gen-
eral framework, and involving even weaker dilution requirements, is the object of a
separate paper [24].

2.4. Approximation families

We now describe the perturbations of the configuration space that will be considered
in the target model. These include, but are not limited to, discretization schemes
on both the location space and spin set.

Definition 2.20. A family D = (Dε)ε≥0 of measurable applications Dε : S ×G →
S × G is called an approximation family if the following conditions are satisfied:

(i) For any B ∈ B0
S×G and δ > 0 there exists B(δ) ∈ B0

S×G with
⋃

0≤ε≤δ D−1
ε (B) ⊆

B(δ).
(ii) For any B ∈ B0

S×G and δ > 0 there exists B(δ) ∈ B0
S×G with

⋃
0≤ε≤δ Dε(B) ⊆

B(δ).
(iii) There exists a : R≥0 → R≥0 with limε→0+ a(ε) = a(0) = 0 such that

dS×G(Dε(γx), γx) ≤ a(ε)

for every γx ∈ S × G and ε ≥ 0.

The application Dε is called the ε-approximation operator.

We note that conditions (i)–(ii) are merely technical requirements needed for
the proofs, the essence of Definition 2.20 is contained in (iii). In fact, if the metric
structure on S × G is such that Bδ = {γx ∈ S × G : d(γx, B) ≤ δ} ∈ B0

S×G holds
for any B ∈ B0

S×G then conditions (i)–(ii) are immediately satisfied and they can
be removed from Definition 2.20. On a side note, we observe that by definition D0

is always the identity operator on S × G. This is so for notational convenience.

Example 2.21. Some natural examples of approximation families include:

• Spatial translations: Defined on S = Rd, given for each ε > 0 by

Dtr
ε (x, γ) = (x + ε · v, γ)

for some fixed unit vector v ∈ Rd.
• Spatial discretizations: Defined on S = Rd, given for each ε > 0 by

Dds
ε (x, γ) = (xε, γ)

where, for x = (x1, . . . , xd) ∈ Rd, we write

xε :=
(
ε
[x1

ε

]
, . . . , ε

[xd

ε

])
. (2.20)
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• Spin rotations: Defined on G = Sd−1, the unit sphere in d-dimensions, given for
each ε > 0

Drot
ε (x, γ) = (x, ε · Rγ)

where R is some fixed rotation.
• Spin discretizations: Defined on G = [0, π), given for each ε > 0 by

Dsds
ε (x, γ) =

(
x, ε

[γ
ε

])
. (2.21)

Approximations can be composed giving rise, for instance, to operators of the
form Dds

ε1
Dsds

ε2
that discretize both space and spin and may depend on more than

one parameter. To simplify the exposition we will always assume that ε ∈ R≥0, but
we point out that the extension to the case in which ε = (ε1, . . . , εk) is a vector of
parameters is straightforward.

In the sequel, for notational convenience we shall write γε
x instead of Dε(γx).

Moreover, for ξ ∈ N (S × G) and each ε > 0 we define Dε(ξ) ∈ N (S × G) as the
particle configuration given by the standard representation

Dε(ξ) =
∑

γx∈〈ξ〉
m(γx)δγε

x
.

The fact that Dε(ξ) is indeed locally finite follows from (i) in Definition 2.20.
Furthermore, it follows from Lemma 6.3 below that limε→0+ Dε(ξ) = ξ vaguely. To
simplify notation, we may sometimes write ξε instead of Dε(ξ).

3. Main Results

The main results featured in this article concern the particular class of heavily
diluted gas models, which we introduce now.

Definition 3.1. A model (ν, H) satisfying Definition 2.15 is said to be heavily
diluted if there exists a measurable function q : S × G → [1, +∞) such that

αν,H
q := sup

γx∈S×G

[
e−∆E

q(γx)

∫
I(γx)

q(γ̃y)dν(γ̃y)

]
< 1. (3.1)

The quantity αν,H
q is called the q-diluteness coefficient and q is called the size

function.

Heavily diluted models have a unique gas measure, as the following result in
[25] shows.

Theorem 3.2 (Uniqueness of the Gas Measure in Heavily Diluted Mod-
els). Let (ν, H) be a heavily diluted model on S × G. Then:

(i) The local limit µ := limΛ↗S µΛ|η exists and coincides for any η ∈ N (S×G) with
finite H-interaction range. In particular, (ν, H) admits a unique gas measure.

(ii) If (ν, H) is Gibbsian then µ constitutes the unique Gibbs measure of the model.
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To state our results we need to introduce first the notion of negligible event on
N (S × G).

Definition 3.3. We say that an event N ⊆ N (S ×G) is dynamically negligible for
a given intensity measure ν on S × G if it satisfies the following properties:

(i) N is a σ-local πν-null event.
(ii) N is closed under addition of particles, i.e. η ∈ N, η � ξ ⇒ ξ ∈ N , where η � ξ

whenever their standard representations satisfy 〈η〉 ⊆ 〈ξ〉 and mη(γx) ≤ mξ(γx)
for every γx ∈ Qη.

Examples of dynamically negligible sets will be given in the applications of
Sec. 4. As illustrated in Sec. 4, most realistic continuum models will not satisfy
the limit (3.2) in the hypotheses of Theorem 3.4 below for every configuration, but
will rather do so only for configurations outside a dynamically negligible set. Thus,
for our results to be of any real use in the continuum, it is necessary to allow for
violations of (3.2) inside such sets. Fortunately, our results will still hold under this
weaker hypothesis. Later in Sec. 6, we will introduce the even weaker notion of
dynamically impossible sets when discussing further relaxations to the hypotheses
of Theorem 3.4 below.

We are now ready to present our main result. In its statement, we add super-
scripts to the usual notation in order to identify the model which we are referring
to.

Theorem 3.4. Let (Dε)ε≥0 be an approximation family and suppose that
(νε, Hε)ε≥0 is a family of gas models such that:

(i) For every ε > 0 the intensity measure νε is given by

νε := ν0 ◦ D−1
ε .

(ii) There exists a dynamically negligible set N for ν0 such that

lim
ε→0+

∆EHε

ηε (γε
x) = ∆EH0

η (γx) (3.2)

for every γx ∈ S × G and all η ∈ N (S × G) with η + δγx ∈ N c.
(iii)

∆E := inf
ε≥0


 inf

Λ∈B0
S


 inf

γx∈Λ×G
η∈N (S×G)

∆EHε

Λ|ηε(γε
x)




 > −∞.

(iv) There exists for each γx ∈ S × G a set V (γx) ∈ BS×G such that:

• For every ε ≥ 0 one has the inclusion

D−1
ε (IHε

(γε
x)) ⊆ V (γx). (3.3)
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• There exists a size function q : S × G → [1, +∞) which verifies

αν0,V
q := sup

γx∈S×G

[
e−∆E

q(γx)

∫
V (γx)

q(γ̃y)dν0(γ̃y)

]
< 1. (3.4)

Then:

(a) Each model (νε, Hε) admits exactly one gas measure µε.
(b) As ε → 0+, we have the weak convergence

µε w→ µ0.

(c) There exists a coupling (Zε)ε≥0 of the measures (µε)ε≥0 such that for any
B ∈ B0

S×G there exists (a random) εB > 0 verifying that for all ε ≤ εB

Zε
B = Dε

(
Z0

D−1
ε (B)

)
. (3.5)

In particular, Zε as−→ Z0 with respect to the vague topology.

We point out that, in all common situations, the condition αν0,H0
< 1 alone is

enough to guarantee the validity of (iv) in the statement of Theorem 3.4. Indeed,
as we shall see in Sec. 4, a set V (γx) satisfying (3.3) can generally be obtained by
slightly enlarging IH0

(γx) in some appropriate manner. If αν0,H0

q is a continuous
function of the parameters of the model and all the remaining models (νε, Hε)ε>0

are “sufficiently close” to (ν0, H0), then performing this slight enlargement will
yield a coefficient αν0,V

q very close to αν0,H0

q , so that (3.4) holds.
In principle, Theorem 3.4 deals only with perturbations of the intensity mea-

sure which are given by approximations in the sense of Definition 2.20. However,
one may cover other cases of interest as well by first transferring perturbations in
the intensity measure to an effective Hamiltonian prescription and then applying
Theorem 3.4. In this way, we obtain the following important corollary, dealing with
absolutely continuous modifications to the intensity measure. This scenario typi-
cally represents perturbations in the parameters of the model: fugacity of particles,
inverse temperature and interaction range among others.

Corollary 3.5. Let (νε, Hε)ε≥0 be a family of diluted models such that:

(i) There exists an intensity measure ν on S×G such that νε � ν for every ε ≥ 0.
(ii) There exists a dynamically negligible set N for ν such that

lim
ε→0+

∆Ẽε
η(γx) = ∆Ẽ0

η(γx),

for every γx ∈ S × G and all η ∈ N (S × G) with η + δγx ∈ N c, where

∆Ẽε
η(γx) := lim

Λ↗S
∆Ẽε

Λ|η(γx)

with

∆Ẽε
Λ|η(γx) := ∆EHε

Λ|η(γx) − log
(

dνε

dν
(γx)

)
.
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(iii)

∆Ẽ := inf
ε≥0


 inf

Λ∈B0
S


 inf

γx∈Λ×G
η∈N (S×G)

∆Ẽε
η(γx)




 > −∞.

(iv) There exists for each γx ∈ S × G a set V (γx) ∈ BS×G such that:

• For every ε ≥ 0 one has the inclusion

IHε

(γε
x) ⊆ V (γx). (3.6)

• There exists a size function q : S × G → [1, +∞) which verifies

αν,V
q := sup

γx∈S×G

[
e−∆Ẽ

q(γx)

∫
V (γx)

q(γ̃y)dν(γ̃y)

]
< 1.

Then:

(a) Each model (νε, Hε) admits exactly one gas measure µε.
(b) As ε → 0+, we have the local convergence

µε loc→ µ0.

(c) There exists a coupling (Zε)ε≥0 of the measures (µε)ε≥0 such that for any
B ∈ B0

S×G there exists (a random) εB > 0 verifying Zε
B = Z0

B for all ε ≤ εB.

Remark 3.6. Motivated by the uniqueness result in Theorem 3.2, one might won-
der how (3.1) relates to Dobrushin’s uniqueness condition in the case of lattice
systems, i.e. whenever (ν, H) is Gibssian and S = Zd for some d ∈ N. Recall that
for any such system, Dobrushin’s condition asserts that there exists a unique Gibbs
measure if

Dν,H := sup
x∈Zd


∑

y �=x

(
sup

η≡η′ off y
‖µ{x}|η − µ{x}|η′‖x

) < 1, (3.7)

where η ≡ η′ off y means that η(S−{y})×G ≡ η′
(S−{y})×G and for any x ∈ S

‖ν‖x = sup
A∈F{x}×G

|ν(A)|.

Under some particular conditions, it is possible to show that (3.7) is weaker
than (3.1). Indeed, suppose that we have a lattice system with a countable spin
set G, which is given by an interaction potential Φ as outlined in the examples
section. Then, a straightforward computation using the definitions shows that for
any x, y ∈ Zd

dTV (µ{x}|η, µ{x}|η) ≤ (max
γ∈G

ν(γx))e−∆E1y⇀x
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for any pair η, η′ ∈ Zd × G such that η ≡ η′ off y, where y ⇀ x means that there
exist γ, γ′ ∈ G such that γ′

y ⇀ γx. In particular, we get that∑
y �=x

sup
η=η′ off y

dTV (µ{x}|η, µ{x}|η) ≤
(

max
γ∈G

ν(γx)
)

e−∆E|{y : y ⇀ x}|

where | · | denotes cardinality. Hence, if:

(a) ν(γx) is a constant independent of γx,
and

(b) |{y : y ⇀ x}| ≤ |I(γx)| for each γ ∈ G,
then we obtain that

Dν,H ≤ αν,Φ
q , (3.8)

for any constant size function q, so that our dilution condition in fact implies
Dobrushin’s. However, we point out that (a) and (b) may not always hold. Indeed,
(a) implies that G needs to be finite and (b) suggests that there is some symmetry in
the interaction between different particle types, i.e. γ′

y ⇀ γx if and only if γy ⇀ γ′
x.

These conditions are satisfied for example by the discrete Widom–Rowlinson model
with λ+ = λ− presented in Sec. 2.3.2, so that for this particular model the bound
in (3.8) holds. It is less clear whether a similar comparison still holds in the general
case.

4. Applications

We discuss here some consequences of our main results for the models in Sec. 2.3.
First, we will focus on applications of Corollary 3.5 and then consider other applica-
tions using Theorem 3.4 in its full generality. The reader should keep in mind that,
although we do not state it explicitly in each application, for every local and/or
weak convergence of probability measures throughout this section Theorem 3.4
guarantees the existence of a coupling in which the convergence takes place almost
surely.

4.1. Applications of Corollary 3.5

We illustrate the use of Corollary 3.5 by showing the continuity in the parameters
of the unique gas measure for the Widom–Rowlinson and Peierls contour models
defined in Sec. 2.3.

4.1.1. The Widom–Rowlinson model

Theorem 4.1 (The Discrete Widom–Rowlinson Model). Given k ∈ N and
λ+

0 , λ−
0 > 0, consider the discrete Widom–Rowlinson model with fugacities λ±

0 and
exclusion radius k. Then, if

α
(d)
WR(λ+

0 , λ−
0 , k) := max{λ−

0 , λ+
0 }(2k + 1)d + min{λ−

0 , λ+
0 } < 1 (4.1)
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there exists an open neighborhood U of (λ+, λ−) such that for any (λ+, λ−) ∈ U

the model with fugacities λ± and exclusion radius k admits a unique Gibbs measure
µ(λ+, λ−). Moreover, the application (λ+, λ−) 
→ µ(λ+, λ−) is continuous on U in
the local topology, i.e. for any (λ+

∗ , λ−
∗ ) ∈ U the following local limit holds:

lim
(λ+,λ−)→(λ+

∗ ,λ−
∗ )

µ(λ+, λ−) = µ(λ+
∗ , λ−

∗ ).

Proof. Observe that for any γx ∈ Zd × {+,−} and η ∈ N (Zd × {+,−}) we have

I(γx) = {γx} ∪ {γ̃y : γ̃ = −γ, ‖x − y‖∞ ≤ k} (4.2)

and

∆Eη(γx) =

{
+∞ if η(I(γx)) > 0

0 otherwise.
(4.3)

It follows from this that for the model (νλ+,λ−
, H) with fugacities λ± and exclusion

radius k the associated diluteness coefficient in (3.1) for any constant size function
q is

ανλ+,λ−
,H

q = sup
γx∈Zd×{+,−}

e−∆Eνλ+,λ−
(I(γx))

= max{λ−, λ+}(2k + 1)d + min{λ−, λ+}.
Therefore, if α

(d)
WR(λ+

0 , λ−
0 , k) < 1 then there exists an open neighborhood U of

(λ+, λ−) such that ανλ+,λ−
,H

q < 1 for all (λ+, λ−) ∈ U . In particular, by Theo-
rem 3.2 there exists a unique Gibbs measure µ(λ+, λ−) of the model (νλ+,λ−

, H)
for any (λ+, λ−) ∈ U .

To see that (λ+, λ−) 
→ µ(λ+, λ−) is locally continuous in U , we fix (λ+
∞, λ−

∞) ∈
U and check that for any sequence (λ+

n , λ−
n )n∈N ⊆ U converging to (λ+

∞, λ−
∞) we

have

µ(λ+
n , λ−

n ) loc−→ µ(λ+
∞, λ−

∞).

For this, it suffices to see that (νλ+
n ,λ−

n , H)n∈N∪{∞} satisfies the hypotheses of Corol-
lary 3.5. But notice that if for n ∈ N ∪ {∞} we write νn := νλ+

n ,λ−
n then νn � ν∞

with density given by

dνn

dν∞ (γx) =
λ+

n

λ+∞
�{γ=+} +

λ−
n

λ−∞
�{γ=−}.

In particular, we have that for every γx ∈ Zd × {+,−} and η ∈ N (Zd × {+,−})

∆Ẽn
η (γx) = ∆EH

η (γx) − log
(

dνn

dν∞ (γx)
)

→ ∆EH
η (γx) = ∆Ẽ∞

η (γx)

and also that

∆Ẽ = −log
(

sup
n∈N

[max{λ+
n − λ+

∞, λ−
n − λ−

∞}]
)

> −∞
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if (λ+
n , λ−

n )n∈N is sufficiently close to (λ+∞, λ−∞). Furthermore, if for each γx ∈ Zd ×
{+,−} we choose V (γx) := IH(γx) then the inclusion (3.6) immediately holds for
all n ∈ N ∪ {∞} and

αν∞,V
q = e−∆Ẽαν∞,H

q < 1

provided that (λ+
n , λ−

n )n∈N is sufficiently close to (λ+
∞, λ−

∞) so that ∆Ẽ is close
enough to 0. Hence, we see that the sequence (νλ+

n ,λ−
n , H)n∈N∪{∞} verifies the

hypotheses of Corollary 3.5 (with the limit n → ∞ replacing the usual ε → 0)
and this concludes the proof.

Remark 4.2. If one uses the alternative representation of the Widom–Rowlinson
model given by the pair (ν̃, H̃) in Sec. 2.3.2 then for any constant size function q

one obtains the larger diluteness coefficient

αν̃,H̃
q = max{λ−, λ+}((2k + 1)d + 1)

which leads to a smaller uniqueness condition than the one in Theorem 4.1. This is
why we chose to include the fugacities in the intensity instead of the Hamiltonian
prescription.

To illustrate the need to consider dynamically negligible events, let us treat the
case of the continuum Widom–Rowlinson model. We have the following analogue
of Theorem 4.1.

Theorem 4.3 (The Continuum Widom–Rowlinson Model). Given r0 > 0
and λ+

0 , λ−
0 > 0, consider the continuum Widom–Rowlinson model of fugacities λ±

0

and exclusion radius r0. Then, if

α
(c)
WR(λ+

0 , λ−
0 , r0) := max{λ−

0 , λ+
0 }(2r0)d < 1 (4.4)

there exists an open neighborhood U of (λ+
0 , λ−

0 , r0) such that for every (λ+, λ−, r) ∈
U the model of fugacities λ± and exclusion radius r has a unique Gibbs measure
µ(λ+, λ−, r). Moreover, the application (λ+, λ−, r) 
→ µ(λ+, λ−, r) is locally contin-
uous on U .

Proof. The first assertion follows as in the proof of Theorem 4.1 by noticing that
now (4.2) is replaced with

I(γx) = {γ̃y : γ̃ = −γ, ‖x− y‖∞ ≤ r}.
To see the local continuity, observe that if (λ+

n , λ−
n , rn)n∈N converges to

(λ+∞, λ−∞, r∞) ∈ R3
>0 and for each n ∈ N ∪ {∞} we denote by (νn, Hn) the model

with parameters (λ+
n , λ−

n , rn) then the convergence

∆Ẽn
η (γx) = ∆EHn

η (γx) − log
(

dνn

dν∞ (γx)
)

→ ∆EH∞
η (γx) = ∆Ẽ∞

η (γx)
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may not hold if η + δγx is inside the set

N = {ξ ∈ N (Rd ×{+,−}) : ∃ γ̃y �= γ̂z ∈ 〈ξ〉such that γ̃ = −γ̂ and ‖y− z‖∞ = r0}.

Indeed, the problem lies when γx is at a distance r0 from a particle in η of opposite
type. If this is the case and rn ↗ r∞ then we can have ∆EHn

η (γx) = 0 � +∞ =
∆EH∞

η (γx). However, since N is a dynamically negligible event for ν∞, one may
disregard these cases and still proceed as in the proof of Theorem 4.1 to conclude
the result.

Similarly, we can obtain an analogous result for the model with generalized
interactions. For simplicity, we only state it for its continuum version and omit the
details of the proof.

Theorem 4.4 (The Continuum Widom–Rowlinson Model with Gener-
alized Interactions). For each ε ≥ 0, let us consider the continuum Widom–
Rowlinson model with fugacities λ±

ε and repulsion vector (hε, jε−, jε
+). Assume that

the following conditions hold:

(i) limε→0+ λ+
ε = λ+

0 and limε→0+ λ−
ε = λ−

0 .
(ii) limε→0+ hε(r) = h0(r) and limε→0+ jε

±(r) = j0
±(r) for L-almost every r ≥ 0.

(iii) limε→0+ mhε = mh0 and limε→0+ mjε
± = mj0

±
, where

mhε = sup{r ≥ 0 : hε(r) �= 0} and mjε
± = sup{r ≥ 0 : jε

±(r) �= 0}.

(iv) αWR(λ±
0 , h0, j0

−, j0
+) < 1, where for any λ+, λ− > 0 and repulsion vector

(h, j−, j+) we define

αWR(λ±, h, j) := 2d max{λ−md
j− + λ+ max{md

h, md
j+}, λ+md

j+

+ λ− max{md
h, md

j−}}.
Then for ε ≥ 0 sufficiently small, there exists a unique Gibbs measure µε of the asso-
ciated continuum Widom–Rowlinson model. Furthermore, we have the convergence
µε loc−→ µ0.

The uniqueness regions of parameters prescribed by the above bounds are com-
parable — although a little weaker — to those obtained via disagreement percola-
tion arguments (see, for instance, [11]). It is not clear, however, whether the latter
method can lead to the stability results brought by our approach.

4.1.2. The Peierls contour model

Theorem 4.5 (The Peierls Contours Model). Define the coefficient

βP = inf{β > 0 : αP (β) < 1},
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where

αP (β) := sup
γx∈Z2∗×G


 1
|γx|

∑
γ̃y :γ̃y∩γx �=∅

|γ̃y|e−2β|γ̃y|


. (4.5)

Then, if β > βP the model at inverse temperature β admits a unique gas measure
µ(β). Moreover, the application β 
→ µ(β) is locally continuous on (0, βP ).

Proof. Notice that the coefficient αP (β) is exactly the diluteness coefficient for
the model at inverse temperature β associated to the size function q(γx) := |γx|.
Hence, uniqueness for β > βP follows from Theorem 3.2. For the continuity, we
proceed as in the proof of Theorem 4.1. Thus, we fix β∞ > βP and a sequence
(βn)n∈N ⊆ R>βP converging to β∞ and show that the family (νβn , H)n∈N∪{∞}
satisfies all the hypotheses of Corollary 3.5. This can be done as in the proof of
Theorem 4.1, but one has to be careful that

inf
n∈N

[
inf

γx∈S×G

[
−log

(
dνβn

dνβ∞
(γx)

)]]
= inf

n∈N

[
inf

γx∈S×G
2(βn − β∞)|γx|

]
= −∞

if βn < β∞ for some n ∈ N, so that if one takes ν in the statement of Corollary 3.5
as νβ∞ then the same argument that in the proof of Theorem 4.1 does not go
through this time. To solve this, we take ν := νβ∗ with β∗ := infn∈N∪{∞} βn and
then proceed as before.

We point out that the analogous result also holds for the model in higher dimen-
sions. The condition in Theorem 4.5 for the d-dimensional model (d ≥ 2) is satisfied
for all β > 0 such that ∑

�≥2d

�N�e
−2β� < 1 (4.6)

where N� denotes the number of contours of perimeter �. For the two-dimensional
model, this condition coincides with the Peierls condition presented in usual text-
books treatments of the Peierls argument. In higher dimensions, however, the Peierls
condition is weaker, basically corresponding to changing the factor � in the left-hand
side to �1/(d−1). Also, additional arguments based on the Borel-Cantelli lemma show
that it suffices to have “+∞” instead of “1” in the right-hand side of (4.6) in order
to guarantee a phase transition. Of course, our theorem implies further properties
that cannot be directly obtained from the original Peierls argument.

4.2. Applications of Theorem 3.4

We now discuss some further applications which use Theorem 3.4 in its full gener-
ality. We shall focus in discretization schemes applied to the thin-rods and Widom–
Rowlinson models and determine diluteness regimes in which the Gibbs measure
of the continuum model is the scaling limit of the equilibrium measure in the dis-
cretized model.
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4.2.1. The Widom–Rowlinson model and its “universality” class

Theorem 4.6. For λ0, r0 > 0 such that λ0(2r0)d < 1 we have the following:

(i) The continuum Widom–Rowlinson model with fugacity λ0 and exclusion radius
r0 in Rd admits exactly one Gibbs measure, which we shall denote by µ0.

(ii) The discrete Widom–Rowlinson model with fugacity εdλ0 and exclusion radius
r0
ε in Zd admits exactly one Gibbs measure µ̃ε if 0 < ε < (2dr0)−

1
d − r0.

(iii) Provided that 0 < ε < (2dr0)−
1
d − r0, as ε → 0 we have

µ̃ε ◦ i−1
ε

d→ µ0

where for each ε > 0 we define the shrinking map iε : Zd × {+,−} → Rd ×
{+,−} by the formula

iε(x, γ) := (ε · x, γ).

Proof. Assertions (i)–(ii) follow at once from Theorem 3.2 and (4.4)–(4.1), respec-
tively. To show (iii), we consider the spatial discretization family (Dds

ε )ε≥0 given
by (2.20) and for each ε ≥ 0 set:

• The intensity measure νε as νε := ν0 ◦ (Dds
ε )−1, where ν := λ0Ld × (δ+ + δ−).

• The Hamiltonian prescription Hε as the one given by the 2-body interaction

Φ(2)
ε (γx, γ̃y) :=




+∞ if x = y and ε > 0

+∞ if 0 < ‖x − y‖∞ ≤ r0 and γ �= γ̃

0 otherwise.

(4.7)

Notice that (ν0, H0) is precisely the continuum Widom–Rowlinson model of fugacity
λ0 and exclusion radius r0, whereas for each ε > 0 the pair (νε, Hε) constitutes
essentially the iε-shrunken discrete model of fugacity εdλ0 and exclusion radius r0

ε .
More precisely, for every Λ ∈ B0

Zd and ε > 0 we have

µε
iε(Λ)|∅ = µ̃ε

Λ|∅ ◦ i−1
ε (4.8)

where µ̃ε
Λ|∅ is the Boltzmann–Gibbs distribution with empty boundary condition

associated to the discrete Widom–Rowlinson model and µε
Λ|∅ is the one associated

to (νε, Hε). Thus, by taking the limit as Λ ↗ Zd, Theorem 3.2 yields for 0 < ε <

(2dr0)−
1
d − r0

µε = µ̃ε ◦ i−1
ε

where µε is the unique Gibbs measure of the gas model given by the pair (νε, Hε).
Hence, to conclude the desired convergence it suffices to show that the family
(νε, Hε)ε≥0 satisfies the hypotheses of Theorem 3.4. But notice that:

• (i) in the hypotheses holds trivially by the choice of measures νε.
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• limε→0+ ∆Eε
ηε(γε

x) = ∆E0
η(γx) for all η ∈ N (Rd ×{+,−}) and γx ∈ Rd ×{+,−}

such that η + δγx is outside the dynamically negligible set N1 ∪N2 for ν0, where

N1 = {ξ ∈ N (Rd × {+,−}) : σ({y} × {+,−}) > 1 for some y ∈ Rd} (4.9)

and

N2 = {ξ ∈ N (Rd × {+,−}) : ∃ γ̃y, γ̂z ∈ 〈ξ〉 with γ̃ = −γ̂ and ‖y − z‖∞ = r0}.
• ∆E := infε≥0 ∆EHε

= 0 by the repulsive nature of the interaction.
• If for γx ∈ Rd × {+,−} we take

V (γx) := {(y, γ) : ‖y − x‖∞ < δ} ∪ {(z,−γ) : ‖z − x‖∞ ≤ r0 + δ}
with δ > 0 sufficiently small so that for any constant size function q we have

αν0,V
q = sup

γx∈Rd×{+,−}
ν0(V (γx)) = λ0((2(r0 + δ))d + (2δ)d) < 1,

then IHε

(γε
x) ⊆ V (γx) for every ε ≥ 0 sufficiently small.

Thus, the hypotheses of Theorem 3.4 are satisfied and from this the result follows.

Theorem 4.6 in particular shows that, for the case of the Widom–Rowlinson
model, in order to simulate the Gibbs measure of the continuum system the method
of sampling from the Gibbs measure of the discrete model obtained by discretizing
both the interactions and the configuration space indeed yields a faithful approxi-
mation of the desired distribution, at least whenever in the heavily diluted regime
and the discretization is sufficiently refined. It is clear that Theorem 3.4 guarantees
that the same statement holds in general for other types of gas models as well. We
point out that, in general, this procedure is not equivalent to directly discretizing
the continuum measure. Indeed, the proof of Theorem 3.4 shows that (3.5) is in
general as much as one can expect, although this is not enough to imply that for
any fixed ε > 0 the Gibbs measure of the discrete system µε coincides with Dε(µ0),
the discretization of the continuum Gibbs measure. As a matter of fact, the latter
may sometimes fail to be Gibbsian at all, where by this we mean that there exists
no Gibbsian gas model for which Dε(µ0) is a Gibbs measure (see, e.g., [28]).

Another interesting interpretation which can be made of Theorem 4.6 is that it
portrays the continuum Widom–Rowlinson model as a fixed point of a “universality
class” to which many families of discrete models converge when properly rescaled.
Indeed, the only relevant information about the discrete models used in the proof
was that the additional interaction forbidding multiple particles per site vanishes as
ε → 0, which suggests that the same convergence should also hold for other discrete
models with extra interactions which become negligible in the continuum limit.
At least for heavily diluted gas models, this is indeed the case and is essentially
a consequence of Theorem 3.4. We illustrate this fact below by considering the
particular case of the nematic thin rods model as an example.
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Theorem 4.7. For λ0, r0 > 0 such that 4λ0r
2
0 < 1 we have the following:

(i) The continuum Widom–Rowlinson model with fugacity λ0 and exclusion radius
r0 in R2 admits exactly one Gibbs measure, which we shall denote by µ0.

(ii) The nematic thin rods model in Z2 with fugacity ε2λ0 and rod length 2 r0
ε admits

exactly one Gibbs measure µ̃ε if 0 < ε <
√

2r2
0 + 1

2λ0
− 2r0.

(iii) Provided that 0 < ε <
√

2r2
0 + 1

2λ0
− 2r0, as ε → 0 we have

µ̃ε ◦ i−1
ε

d→ µ0.

Proof. The proof is almost identical to that of Theorem 4.6. One only has to
replace (4.7) with

Φ(2)
ε (γx, γ̃y) :=




+∞ if ε > 0, γ = γ̃ = + and |x1 − y1| ≤ r0

+∞ if ε > 0, γ = γ̃ = − and |x2 − y2| ≤ r0

+∞ if 0 < ‖x − y‖∞ ≤ r0 and γ �= γ̃

0 otherwise

and (4.9) with N+ ∪ N−, where

N+ = {ξ ∈ N (R2 × {+,−}) : ∃ γ̃y �= γ̂z ∈ 〈ξ〉 with γ̃ = γ̂ = + and y1 = z1}
and

N− = {ξ ∈ N (R2 × {+,−}) : ∃ γ̃y �= γ̂z ∈ 〈ξ〉 with γ̃ = γ̂ = − and y2 = z2}.
The rest of the proof goes through exactly as before. We leave the details to the
reader.

4.2.2. The thin-rods model

For simplicity, we focus only on the continuum model in R2. We begin by estab-
lishing the continuity in the parameters of the model with a fixed finite number
of orientations. In the sequel, given a number k ∈ N, a vector of k orientations
�θ = (θ1, . . . , θk) ∈ [0, π)k and a probability vector �p = (p1, . . . , pk) ∈ Rk, we shall
write ρ

�θ,�p for the orientation measure given by

ρ
�θ,�p :=

k∑
i=1

piδθi .

Theorem 4.8 (The Thin Rods Model in R2). Fix k ∈ N and, given λ0, l0 >

0, �θ0 ∈ [0, π)k and a probability vector �p0 ∈ Rk, consider the thin rods model in R2

with fugacity λ0 > 0, rod length 2l0 > 0 and orientation measure ρ
�θ0,�p0

. If

α
(c)
TR(λ0, l0, ρ

�θ0,�p0) := 4λ0(l0)2 sup
γ∈[0,π)

[∫ π

0

|sin(γ − γ̃)|dρ
�θ0,�p0(γ̃)

]
< 1 (4.10)

then there exists an open neighborhood U of (λ0, l0, �θ0, �p0) such that for all
(λ, l, �θ, �p) ∈ U the model with parameters (λ, l, �θ, �p) has a unique Gibbs measure
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µ(λ, l, �θ, �p). Moreover, the applications (λ, l, �θ, �p) 
→ µ(λ, l, �θ, �p) and (λ, l, �p) 
→
µ(λ, l, �θ0, �p) are respectively weakly continuous on U and locally continuous on
U�θ0

= {(λ, l, �p) : (λ, l, �θ0, �p) ∈ U}.

Proof. A straightforward calculation shows that if (ν0, H0) is the model with
parameters (λ0, l0, �θ0, �p0) then the diluteness coefficient associated to any constant
size function q is

αν0,H0

q = 4λ0(l0)2 sup
γ∈[0,π)

[∫ π

0

|sin(γ − γ̃)|dρ
�θ0,�p0(γ̃)

]
.

From this, the first assertion about uniqueness of the Gibbs measure immediately
follows. To establish the weak continuity, we fix (λ∞, l∞, �θ∞, �p∞) ∈ U and an
arbitrary sequence (λn, ln, �θn, �pn)n∈N ⊆ U converging to (λ∞, l∞, �θ∞, �p∞) ∈ U and
show that

µ(λn, ln, �θn, �pn) d→ µ(λ∞, l∞, �θ∞, �p∞).

For this purpose, we define the approximation family D = (Dn)n∈N∪{∞} by the
formula

Dn(x, γ) =

{
(x, �θn(i)) if γ = �θ∞(i) for some i = 1, . . . , k

(x, γ) otherwise,

where for each n ∈ N ∪ {∞} and i = 1, . . . , k, �θn(i) denotes the ith coordinate of
�θn(i). Furthermore, for each n ∈ N ∪ {∞} consider the Hamiltonian prescription
Hn given by the potential Φn = (Φ(1)

n , Φ(2)
n ), where

Φ(1)
n (γx) =


−log

(
λn�pn(i)
λ∞�p∞(i)

)
if γ = �θn(i) for some i = 1, . . . , k

0 otherwise,

and

Φ(2)(γx, γ̃y) :=

{
+∞ if (Lln

γ + x) ∩ (Lln
γ̃ + y) �= ∅

0 otherwise.

Now, if we write νn := ν∞ ◦D−1
n where ν∞ := λ∞L2 × ρ

�θ∞,�p∞ , then it is not hard
to see that the model (νn, Hn) is equivalent to the thin rods model with parame-
ters (λn, ln, �θn, �pn). The result now follows at once upon noticing that the sequence
(νn, Hn)n∈N∪{∞} satisfies the hypotheses of Theorem 3.4 if (λn, ln, �θn, �pn)n∈N is suf-
ficiently close to (λ∞, l∞, �θ∞, �p∞). Finally, to obtain the local continuity whenever
the vector of orientations is fixed we follow a similar argument using Corollary 3.5
instead.

To conclude, we consider the case of a continuum of possible orientations and
derive the analogue of Theorem 4.6 in this context for spin discretizations. For
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definiteness, we state the result for the continuum model with a uniform orientation
measure on [0, π).

Theorem 4.9. Given λ, l > 0, let us consider the thin rods model on R2 with
fugacity λ, rod length 2l and uniform orientation measure ρu on [0, π). Then, if

α
(c)
TR(λ, l, ρu) =

8
π

λl2 < 1

there exists a unique Gibbs measure µ of the model and for every n ∈ N sufficiently
large the model with orientation measure

ρn
u :=

1
n

n−1∑
i=0

δ i
n

also has a unique Gibbs measure µn which, furthermore, satisfies µn d→ µ.

We omit the proof of this result since it goes very much along the lines of
Theorem 4.6 but using the spin discretization family introduced in (2.21) instead.

5. The Fernández–Ferrari–Garcia Dynamics

In this section, we study the Fernández–Ferrari–Garcia dynamics first introduced
in [6]. In their work, the authors focus on the Peierls contours model of Sec. 2.3 and
show that, for a sufficiently large value of the inverse temperature β, the unique gas
measure of this contour model can be realized as the unique invariant measure of
this dynamics. In [25], it is shown that this result can be extended to the broader
class of gas models, where the sufficiently large inverse temperature condition is
replaced by the one in (3.1). This extension of the dynamics will be the main tool
used in the proof of Theorem 3.4. We give a brief overview of it now.

Given a gas model (ν, H), we consider the following dynamics on N (S × G):

• At rate e−∆E the birth of new animals is proposed with intensity given by ν.
• Each γx proposed for birth will be effectively born with probability

e−(∆Eη(γx)−∆E), where η is the state of the system at the time in which the
birth of γx is proposed.

• Every animal which has effectively been born will have an independent lifetime,
with exponential distribution of mean 1.

• After its lifetime has expired, each animal dies and vanishes from the configura-
tion.

Thus, the infinitesimal generator L associated to such dynamics is formally given by

L(f)(σ) =
∑

γx∈〈σ〉
σ(γx)(f(σ − δγx) − f(γx))

+
∫

e−∆Eσ(γx)(f(σ + δγx) − f(γx))dν(γx) (5.1)
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for any bounded local function f : N (S×G) → R. The reader may notice that (5.1)
is nothing more than the standard Glauber dynamics (also called the Gibbs sam-
pler) adapted to this particular context. These dynamics have been well-used in the
past in the study of Gibbsian systems ([11, Chap. 4]), even in the continuum setting
([19, Chap. 7]), although mostly in the analysis of finite-volume Boltzmann–Gibbs
distributions, see [26]. The following result is shown in [25].

Theorem 5.1. If (ν, H) is heavily diluted then the Markov process with generator
L exists and has the unique gas measure of (ν, H) as its unique invariant measure.
Furthermore, there exists a time-stationary construction K = (Kt)t∈R of the process.

Remark 5.2. In the statement of Theorem 5.1 above, by a “time-stationary con-
struction” we mean a graphical construction in the classical sense of Harris, i.e.
there exists a Poisson process Π on an appropriate metric space X and a (deter-
ministic) function

Ξ: N (X) → B(R 
→ N (S × G)),

where B(R 
→ N (S × G)) denotes the space of measurable functions f : R →
N (S×G), such that K = Ξ(Π) is a time-stationary process taking values in N (S×G)
with generator given by the formula in (5.1).

For our purposes, it will be convenient to understand the basics of the proof of
this result, so we summarize it below. The idea is to construct K explicitly as a
suitable thinning of a non-interacting birth-and-death process on S × G with the
appropriate rates.

To make matters more precise, let us consider the product space C = (S ×G)×
R × R+. The elements of C are called cylinders, since any (γx, t, l) ∈ C can be seen
as a cylinder on S × R of axis {x} × [t, t + l] and diameter γ. However, we shall
prefer to describe each cylinder C = (γx, t, s) ∈ C in terms of its basis γx, its time
of birth t and its lifespan l. We denote these three features of C by basis(C), bC

and lC , respectively.
In the following, we consider particle configurations that belong either to C or

to C × [0, 1]. This requires the obvious adaptation of all the definitions in Sec. 2.1.1.
We perform the necessary adjustments in the following definition.

Definition 5.3. Let (X, d) be a locally compact complete separable metric space.

• A measure θ on (X,BX) is called a Radon measure if θ(B) < +∞ for any B ∈ B0
X .

It is called a particle configuration on X if in fact θ(B) ∈ N0 for any B ∈ B0
X .

• The space of particle configurations on X is denoted by N ∗(X).a

• N ∗(X) is endowed with a measurable space structure by considering the σ-
algebra generated by the counting events on X .

aNotice that in Sec. 2.1.1 we asked the configurations in N (S×G) to be of locally finite allocation.
Hence the extra index ∗ in N ∗(X). This restriction was imposed in Sec. 2.1.1 for simplicity of
notation in the statement of Theorem 3.4, but it is unnecessary here.
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• Given a Radon measure ϑ on X we define the Poisson distribution πϑ as the
unique probability measure on N ∗(X) which satisfies

πϑ({θ ∈ N ∗(X) : θ(Bi) = ki for all i = 1, . . . , n}) =
n∏

i=1

e−ϑ(Bi)(ϑ(Bi))ki

ki!

for all k1, . . . , kn ∈ N0, disjoint B1, . . . , Bn ∈ B0
X and n ∈ N.

• A random particle configuration on X is called a Poisson process with intensity
ϑ if it is distributed according to πϑ.

In the following, we will often identify a given random cylinder configuration V
with a birth-and-death process on S×G through its time sections: if for each t ∈ R

we define the random particle configuration Vt ∈ N (S × G) by the formula

Vt({γx}) := #{C ∈ V : basis(C) = γx and bC ≤ t < bC + lC}
for every γx ∈ S × G, then V = (Vt)t∈R constitutes a birth-and-death process on
S × G. From this point of view, we interpret any cylinder (γx, t, l) as an animal γ

born at time t on location x with a lifetime of length l.
Now, consider a Poisson process Π on C with intensity measure φν := ν ×

e−∆EL × E1, where L is the Lebesgue measure on R and E1 is the exponential
distribution of mean 1. We call Π the free process, since it is a non-interacting
birth-and-death process on S × G. It is stationary and has πe−∆Eν as its invariant
measure. The process K will be obtained as an appropriate thinning of Π. However,
to properly conduct such thinning, we need to add an additional component to Π:
to each cylinder in Π we attach an independent uniform random variable, which we
call its flag. Each of these flags will be used to determine the success of its cylinder’s
attempted birth in the dynamics. More formally, we define the flagged free process
Π as the Poisson process on C × [0, 1] with intensity measure φν := φν ×L[0,1]. For
any (γx, t, l) ∈ Π we denote its corresponding flag by F (γx, t, l). Thus, elements of
Π are simply pairs of the form (C, F (C)) with C ∈ C. Finally, we define the thinned
process K by the formula

K = {(γx, t, l) ∈ Π : F (γx, t, l) ≤ M(γx | Kt−)} (5.2)

where, for γx ∈ S × G and ξ ∈ N (S × G) we use the notation M(γx|ξ) :=
e−(∆Eξ(γx)−∆E). Observe that the self-referential nature of the thinning rule in (5.2)
could keep the process K from being well-defined. Indeed, let us introduce some def-
initions that will help us give further details on this matter.

Definition 5.4.

• Given C, C̃ ∈ C, we say that C̃ is a first generation ancestor of C and write
C̃ ⇀ C whenever

basis(C̃) ⇀ basis(C) and bC̃ < bC < bC̃ + lC̃ ,

where ⇀ is the impact relation defined in (2.3). We will denote by P(C) the set
of all first generation ancestors of a given C ∈ C.
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• For C ∈ C, we define A1(C) := ΠP(C), the restriction of Π to P(C), and for
n ∈ N we set

An+1(C) :=
⋃

C̃∈An(C)

A1(C̃).

We define the clan of ancestors of C in Π as

A(C) :=
⋃
n∈N

An(C).

• For t ∈ R and Λ ∈ B0
S , let us define the clan of ancestors of Λ × G at time t as

At(Λ × G) :=
⋃

n∈N0

At
n(Λ × G)

where At
0(Λ × G) := {C ∈ Π : basis(C) ∈ Λ × G , bC ≤ t < bC + lC} and for

n ∈ N

At
n(Λ × G) :=

⋃
C∈At

0(Λ×G)

An(C).

Let us return to the discussion of whether the process K is well-defined. Notice
that if we wish to determine whether a given cylinder C = (γx, t, l) ∈ Π belongs to
K or not then first we need to specify the configuration Kt− in order to evaluate
whether the condition in (5.2) is satisfied. To be more accurate, due to Assump-
tions 2.15 we will only need to specify Kt− inside the set I(γx). Hence, recalling
Definition 5.4, we see that to determine the fate of C, we must first determine the
fate of, in principle, all of its ancestors in A1(C). But this itself involves determin-
ing the fate of a second generation of ancestors, A2(C). In general, to determine
if C belongs to K one may need to study the fate of every cylinder in the clan of
ancestors of C. If A(C) were to span over an infinite number of generations then it
may be impossible to decide whether to keep C or not and, hence, the process K
would not be well-defined in this situation. On the other hand, if for every cylin-
der C ∈ Π, the clan A(C) spans only over a finite number of generations then
K would effectively be well-defined. Indeed, since M(γx | Kσ

t−) = M(γx | ∅) for any
(γx, t, l) ∈ Π with no ancestors preceding it, the fate of every cylinder in the last
generation of ancestors of a given C ∈ Π can be decided upon inspecting their
respective flags (and nothing else). By proceeding one generation at a time, the
fate of all their descendants, including C, can be determined. More precisely, take
C ∈ Π and define

NC = max{n ∈ N : An(C) �= ∅}.
If NC < +∞ set

KNC (C) := {(γ̃y, r, l) ∈ ANC (C) : F (γ̃y, r, l) < M(γ̃y | ∅)}
and for 1 ≤ i ≤ NC − 1 inductively define

Ki(C) = Ki+1(C) ∪ {(γ̃y, r, l) ∈ Ai(C) : F (γ̃y, r, l) < M(γ̃y |Ki+1(C))}.
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Then the cylinder C ∈ Π is kept in K if and only if

F (C) < M(γ̃y |K1(C)).

This algorithm decides whether C is kept in finitely many steps. Therefore, we have
that for K to be well-defined it suffices to have NC < +∞ for every C ∈ Π. As it
turns out, the heavy diluteness condition of Definition 3.1 is enough to ensure this.

Proposition 5.5 ([25, Proposition 9.3]). If (ν, H) is heavily diluted then almost
surely the clans of ancestors At(Λ × G) are finite for every t ∈ R and Λ ∈ B0

S.

It follows from the discussion above and a straightforward computation that if
(ν, H) is heavily diluted then K is well-defined and its infinitesimal generator is
given by (5.1). Furthermore, Proposition 5.5 implies the following facts:

(i) The dynamics defining K loses memory of the initial condition, a fact which
implies uniqueness of the invariant measure. Furthermore, since K is a sta-
tionary process (due to its time-translational invariant construction and the
stationarity of Π), this implies that for each t ∈ R the configuration Kt is
distributed according to the unique invariant measure of the dynamics.

(ii) KΛ|η
t

loc−→ Kt as Λ ↗ S for all t ∈ R and η ∈ N (S × G) of finite H-interaction
range, where KΛ is the process obtained by running the dynamics in the vol-
ume Λ with boundary condition η (and with ∆Eξ replaced by ∆EΛ|ξΛ·ηΛc in
the definition of M , see Eq. (5.2)). Each process KΛ|η is again stationary and
a straightforward calculation with its generator shows that µΛ|η is its unique
invariant measure. From this and the local convergence stated above, we con-
clude that the invariant measure of K is the unique gas measure of (ν, H).

6. Proofs of Theorem 3.4 and Corollary 3.5

In this final section, we give the proof of our main result, Theorem 3.4. Following
the proof, we discuss some relaxations of its hypotheses and then conclude the
section by showing how Corollary 3.5 follows from Theorem 3.4.

6.1. Proof of Theorem 3.4

We divide the proof in three steps.

6.1.1. Uniqueness of the gas measure for each model (νε, Hε)

Let us begin by considering a Poisson process Π on C× [0, 1] with intensity measure
φν := ν × e−∆EL × LR+ × U [0, 1]. Notice that, by the nature of the intensity, all
cylinders in Π have multiplicity one. Thus, it makes sense to define for each ε ≥ 0
the ε-discretized process Π

ε
(or simply ε-process) by the formula

Π
ε

:= {(γε
x, t, s, u) ∈ C × [0, 1] : (γx, t, s, u) ∈ Π}. (6.1)

Observe that Π
ε

is a Poisson process on C× [0, 1] with intensity νε×e−∆EL×LR+ ×
U [0, 1]. Moreover, (6.1) establishes a one-to-one correspondence between cylinders
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of Π and Πε. Thus, in the following we write Cε to denote the ε-cylinder in Πε which
corresponds to the cylinder C ∈ Π, i.e. if C = (γx, t, s) then we set Cε = (γε

x, t, s).
Now, by the proof of Theorem 3.2 we see that it suffices to show that for each

ε ≥ 0 A0,Hε

(Λ×G), the clan of ancestors at time 0 with respect to the Hamiltonian
prescription Hε and with underlying free process Πε, is finite almost surely for all
Λ ∈ B0

S . To see this, notice that if we define an impact relation ⇀V by the condition

γ̃y ⇀V γx ⇔ γ̃y ∈ V (γx)

and for Λ ∈ B0
S we consider the corresponding clan of ancestors A0,V (Λ×G) given

by ⇀V , then for each ε ≥ 0 we have

A0,Hε

(Λ × G) ⊆ Dε(A0,V (Λε × G)) (6.2)

where Λε = {x ∈ S : d(x, Λ) ≤ ε} and for Γ ⊆ C we set

Dε(Γ) = {(γε
x, t, s) ∈ C : (γx, t, s) ∈ Γ}.

By the proof of Proposition 5.5 (see [25] for details), we see that αν0,V
q < 1 implies

that almost surely A0,V (Λ × G) is finite for every Λ ∈ B0
S, so that from (6.2) we

conclude that A0,Hε

(Λ × G) must be finite as well. This shows that (νε, Hε) has
a unique gas measure. Notice that our argument does not imply that the model
(νε, Hε) is heavily diluted itself. Indeed, the only available estimate

e−∆EHε

q(γε
x)

∫
IHε (γε

x)

q(γ̃y)dνε(γ̃y) ≤ e−∆E

q(γε
x)

∫
V (γx)

q(γ̃ε
y)dν0(γ̃y)

for every γx ∈ S × G is, in principle, not enough to show that αν0,V
q < 1 implies

ανε,Hε

q < 1.

6.1.2. Construction of the coupling (Zε)ε≥0

We need first the following technical lemma.

Lemma 6.1. Suppose that N ⊆ N (S × G) is a σ-local πν-null event. Then

P (Πt ∈ N for some t ∈ R) = 0. (6.3)

Proof. If N =
⋃

n∈N Nn for a sequence (Nn)n∈N of local events, then it suffices to
show that for each n ∈ N one has

P (Πt ∈ Nn for some t ∈ R) = 0.

Thus, let us fix n ∈ N and consider Λ ∈ B0
S such that Nn ∈ FΛ×G. Let us observe

that since Nn is FΛ×G-measurable we have

Πt ∈ Nn ⇔ (Πt)Λ×G ∈ Nn. (6.4)

Now, let MΛ be the set of cylinder configurations θ ∈ N ∗(Λ × G × R × R+) such
that:
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(i) θt(Λ × G) < +∞ for all t ∈ R.
(ii) Every cylinder in θ has a strictly positive lifespan, i.e lC > 0 for all C ∈ θ.

Notice that if θ ∈ MΛ then the process θ = (θt)t∈R is piecewise constant. In
particular, for θ ∈ MΛ we have

θt ∈ Nn for some t ∈ R ⇔ θr ∈ Nn for some r ∈ Q.

Now, the choice of the intensity measure φν plus the fact that ν(Λ × G) < +∞
yields that

P (ΠΛ×G×R×R+ ∈ MΛ) = 1.

Hence, from (6.4) we obtain that

P (Πt ∈ Nn for some t ∈ R) = P ((Πr)Λ×G ∈ Nn for some r ∈ Q)

≤
∑
r∈Q

P (Πr ∈ Nn) =
∑
r∈Q

πν(Nn) = 0.

Now, we construct the coupling (Zε)ε≥0 by considering the processes

Kε = {(γε
x, t, s) ∈ Π : F (γε

x, t, s) < M ε(γε
x | Kε

t−)}
where for each γx ∈ S × G and ξ ∈ N (S × G) we define

M ε(γx | ξ) := e−(∆EHε

ξ (γx)−∆E).

By the arguments in Sec. 5, each process Kε is stationary with invariant measure µε.
Thus, for each ε ≥ 0 we may define Zε := Kε

0. We need to check that for any
B ∈ B0

S×G there exists εB > 0 such that for every ε ≤ εB

Zε
B = Dε(Z0

D−1
ε (B)

). (6.5)

To see this, we notice that if N denotes the dynamically negligible event in the
statement of Theorem 3.4 then by Lemma 6.1 and since K0 is a thinning of Π
we can assume that, with the exception of a set O of realizations of Π with zero
probability, for every C ∈ Π we have

(K0
bC

)I(basis(C)) + δbasis(C) ∈ N c. (6.6)

What we will show in fact is that, for almost every realization of the process Π
outside of this exceptional set O, for any given B ∈ B0

S×G if ε is sufficiently small
then (6.5) holds. The heart of the proof is contained in the next lemma, which
states that clans of ancestors stabilize for ε small.

Lemma 6.2. Fix Λ ∈ B0
S and let O be the exceptional set above. Then in Oc there

exists almost surely (a random) ε0 > 0 such that for 0 ≤ ε < ε0

Kε
Dε(A0,V (Λ×G)) = Dε(K0

A0,V (Λ×G)), (6.7)

i.e. any C ∈ A0,V (Λ × G) is kept in K0 if and only if Cε is kept in Kε for every
0 ≤ ε < ε0.
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Proof. Define K := max{n ∈ N : A0,V
n (Λ×G) �= ∅}, which is finite since αν0,V

q < 1.
Notice that for every cylinder C ∈ A0,V

K (Λ × G) and ε ≥ 0 one has

Cε ∈ Kε ⇔ F (C) < M ε(basis(Cε)|∅ ).

Thus, since ∅ + δbasis(C) ∈ N c by (6.6) and I(basis(C)) = ∅ by definition of K, by
recalling that

lim
ε→0+

∆EHε

ηε (γε
x) = ∆EH0

η (γx)

for every γx ∈ S × G and η ∈ N (S × G) with η + δγx ∈ N c, we deduce that for ε

(randomly) small enough

Kε
Dε(A0,V

N (Λ×G))
= Dε(K0

A0,V
N (Λ×G)

),

except perhaps if F (C) = M0(basis(C) | ∅) for some cylinder C ∈ A0,V
N (Λ × G),

a fact which can only occur with zero probability. In a similar way, one may proceed
with the following generations by induction, using at each step (6.6) and (6.2), to
arrive ultimately at (6.7).

Now, fix B ∈ B0
S×G and take Λ ∈ B0

S sufficiently large so that B(1) ⊆ Λ × G,
where B(1) is as in Definition 2.20. By Lemma 6.2, applied to this volume Λ and
the inclusion

D−1
ε (K) ⊆ Λ × G

that is valid for every 0 < ε ≤ 1, we conclude that (6.5) holds for ε small enough.

6.1.3. Concluding the weak convergence µε → µ0

The weak limit now follows from (6.5) by the dominated convergence theorem and
the following lemma.

Lemma 6.3. Let us suppose that (ξ(ε))ε≥0 ⊆ N (S × G) satisfies that for any
B ∈ B0

S×G there exists εB > 0 such that ξ
(ε)
B = Dε(ξ

(0)

D−1
ε (B)

) for all ε ≤ εB. Then

ξ(ε) → ξ(0) vaguely.

Proof. It suffices to show that for each compact set K ⊆ S × G and δ > 0 there
exists ε0 > 0 small enough such that ξ(ε) ∈ (ξ(0))K,δ for all 0 < ε < ε0. But if given
B ∈ B0

S×G we define

ρB :=
1
2

min{dS×G(γx, γ̃y) : γx �= γ̃y ∈ 〈ξ(0)
B 〉}

and take

ε0 := ρK(δ) ∧ εK(δ) ∧ δ > 0
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where K(δ) and K(δ) are the sets from Definition 2.20, then ξ(ε) ∈ (ξ(0))K,δ for
every ε < ε0, since:

(i) From the definition εK(δ) and the fact that K ⊆ K(δ) we see that every γ
(ε)
x ∈

〈ξ(ε)
K 〉 is of the form γ

(ε)
x = Dε(γx) for some γx ∈ 〈ξ(0)〉. Moreover, since ε <

ρK(δ) there is at most one such γx so that, in particular, their multiplicities
must be the same. Thus, the application p : [ξ(ε)

K ] → [ξ] given by

p(γ(ε)
x , i) = (D−1

ε (γ(ε)
x ), i)

is well-defined and injective. Since ε < δ we obtain that ξ
(ε)
K �δ ξ(0).

(ii) By definition of εK(δ) and the fact that K ⊆ D−1
ε (K(δ)) we see that for every

γx ∈ 〈ξ(0)
K 〉, there exists γ

(ε)
x ∈ 〈ξ(ε)〉 such that Dε(γx) = γ

(ε)
x . Furthermore,

since ε < ρK(δ) there is at most one γx ∈ 〈ξ(0)
K 〉 being mapped by Dε to γ

(ε)
x so

that, in particular, the multiplicity of γ
(ε)
x in ξ(ε) is at least equal to that of γx

in ξ
(0)
K . Therefore, the application p : [ξ(0)

K ] → [ξ(ε)] given by

p(γx, i) = (Dε(γx), i)

is well-defined and injective. Since ε < δ this shows that ξ
(0)
K �δ ξ(ε).

6.2. Some relaxations in the hypotheses of Theorem 3.4

Notice that for the proof of Theorem 3.4 we only required the dynamically negligible
event N to satisfy the following two properties:

• N is closed under the addition of particles.
• P (Πt ∈ N for some t ∈ R) = 0.

Thus, if we call any event N verifying these properties a dynamically impossible
event, then condition (ii) in the hypotheses of Theorem 3.4 may be relaxed by
requiring that the event in question be only dynamically impossible. However, we
should point out that in most cases of interest the original condition is already
satisfied and it is simple to verify, so that there is no real gain from this relaxation.
Furthermore, we also point out that in the statement of the theorem all infima and
suprema may be taken to be essential in the measure-theoretical sense, arriving at
the more general statement of Theorem 3.4 below. The reader who is not interested
in applying our result to a specific model may prefer to skip its reading.

Theorem 6.4. Let (Dε)ε≥0 be an approximation family and suppose that
(νε, Hε)ε≥0 is a family of diluted models such that:

(I) For every ε > 0 the intensity measure νε is given by

νε := ν0 ◦ D−1
ε .
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(II) There exist a ν0-null set M ⊆ S × G and a measurable set N ⊆ N (S × G)
closed under the addition of particles satisfying:

(i)

∆E := inf
ε≥0


 inf

Λ∈B0
S


 inf

γx∈Mc

η+δγx∈Nc

∆EHε

ηε (γε
x)




 > −∞.

(ii) P (Πt ∈ N for some t ∈ R) = 0, where Π is the Poisson process on C with
intensity measure ν0 × e−∆EL × E1, where ∆E is as in (i). (Notice that
∆E (and hence Π) depends, in principle, on the particular choice of N .)

(iii) For every γx ∈ M c and all η ∈ N (S × G) with η + δγx ∈ N c one has

lim
ε→0+

∆EHε

ηε (γε
x) = ∆EH0

η (γx).

(iv) There exists for each γx ∈ S × G a set V (γx) ∈ BS×G such that:

• For every ε ≥ 0, one has the inclusion

D−1
ε (IHε

(γε
x)) ⊆ V (γx).

• There exists a size function q : S × G → [1, +∞) which verifies

αν0,V
q := sup

γx∈S×G

[
e−∆E

q(γx)

∫
V (γx)

q(γ̃y)dν0(γ̃y)

]
< 1.

Then the conclusions of Theorem 3.4 hold, namely:

(a) Each model (νε, Hε) admits exactly one gas measure µε.
(b) As ε → 0+, we have the weak convergence

µε w→ µ0.

(c) There exists a coupling (Zε)ε≥0 of the measures (µε)ε≥0 such that for any
B ∈ B0

S×G there exists (a random) εB > 0 verifying that for all ε ≤ εB

Zε
B = Dε(Z0

D−1
ε (B)

). (6.8)

In particular, Zε as−→ Z0 with respect to the vague topology.

6.3. Proof of Corollary 3.5

To conclude this last section, we show that Corollary 3.5 is a particular case of
Theorem 3.4. Indeed, notice that, since νε � ν, for every Λ ∈ B0

S we have that
πνε

Λ � πν
Λ with density given by

dπνε

Λ

dπν
Λ

(σ) = e−(νε(Λ×G)−ν(Λ×G))
∏

(γx,i)∈[σ]

dνε

dν
(γx), (6.9)
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a fact which can be deduced from the integration formula (see [19, Proposition 3.1])∫
N (Λ×G)

f(σ)dπυ
Λ =

∑
n∈N0

e−υ(Λ×G)

n!

∫
(Λ×G)n

f

(
n∑

i=1

δγi
x

)
dυn(γ1

x, . . . , γn
x )

valid for all bounded FΛ×G-measurable functions f and measures υ on S × G of
S-locally finite allocation, where υn above denotes the n-fold product measure of υ.
In particular, the models (ν, Hε) and (ν, H̃ε) are equivalent, i.e. they produce the
same gas kernels µε

Λ|η, where H̃ε is the Hamiltonian prescription given by

H̃ε
Λ|η(σ) := Hε

Λ|η(σ) −
∑

(γx,i)∈[σ]

log
(

dνε

dν
(γx)

)
.

It is not difficult to check that for each ε ≥ 0 the pair (ν, H̃ε) satisfies Definition 2.15.
Moreover, since for every γx ∈ S × G it is possible to verify that IH̃ε

({γx}) =
IHε

({γx}) and we also have that

∆Ẽε
Λ|η = ∆EH̃ε

Λ|η

for every Λ ∈ B0
S and η ∈ N (S×G), we see that the family of models (ν, H̃ε)ε≥0 falls

under the hypotheses of Theorem 3.4 for the approximation family D = (Dε)ε≥0

given by the identity operator on S × G for each ε ≥ 0. The result then follows
from Theorem 3.4.
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