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GREEDY WALK ON THE REAL LINE

BY SERGEY FOSS, LEONARDO T. ROLLA AND VLADAS SIDORAVICIUS

Heriot-Watt University, Novosibirsk State University and Institute of
Mathematics, Instituto de Matemática Pura e Aplicada and Universidad de

Buenos Aires, and Instituto de Matemática Pura e Aplicada

We consider a self-interacting process described in terms of a single-
server system with service stations at each point of the real line. The customer
arrivals are given by a Poisson point processes on the space–time half plane.
The server adopts a greedy routing mechanism, traveling toward the nearest
customer, and ignoring new arrivals while in transit. We study the trajectories
of the server and show that its asymptotic position diverges logarithmically
in time.

1. Introduction. We consider a self-interacting process described in terms
of a single-server system with service stations at each point of the real line. The
system is described as follows. Initially, there is a Poisson field of customers in
R with unit intensity and the server starts at x = 0. Customers arrive as a Poisson
point process in the space–time R × R+ with intensity λ > 0. When not serving,
the server chooses the nearest customer and travels toward it at speed 0 < v ≤ ∞,
ignoring new arrivals. The service then takes T units of time with ET = 1, after
which the customer leaves the system. This is a common example of a routing
mechanism that depends on the system state, and targeting the nearest customer is
known as a greedy strategy.

The particular interest in customer-server systems in continuous space stems
from their transparent description of large systems with spacial structure, in con-
trast with finite systems where phenomenological properties are often obscured by
combinatorial aspects of the model. However, systems with greedy routing strate-
gies in the continuum are extremely sensitive to microscopic perturbations, and
their rigorous study represents a challenging problem; a topic that has been active
for almost three decades [2, 7, 8, 12, 15, 18, 19, 24–26, 32, 33].

The system described above arises naturally in the question of stability of a
greedy server on the circle R/Z. It was conjectured in [12] that the greedy server on
R/Z is stable when λ < 1, regardless of the speed v. This was verified only under
light-traffic assumptions, that is, for large enough v given λ [19], and for the greedy
server on a discrete ring Z/nZ [15, 16, 26, 35].1 Yet, discrete models have not been
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1Stability was also shown for a number of other finite graphs and a broader class of service strate-
gies [35], as well as several nongreedy policies [18], a gated-greedy variant on convex spaces [2] and
random nongreedy servers on general spaces [1]. See [33] for a recent review.
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able to grasp the microscopic nature of the greedy mechanism in continuous space,
and there are major obstacles in extrapolating any approach based on a discrete
approximation.

On the other hand, stability under the same conditions is known to hold for the
polling server on R/Z, that is, the server whose strategy is to always travel in
the same direction [17].2 Simulations indicate not only that the greedy server is
stable, but also that under heavy traffic conditions its dynamics resembles that of
the polling server [12].

This prompts a detailed study of its local behavior, and it is natural to describe
it with a model on an infinite line. The model on the line is clearly different from
that on the circle as a queueing system, for its total arrival rate is infinite. The
study of the former is rather intended to give mathematical insight on the server’s
local motion, as is confirmed in [34]. It was shown in [21] that the position of the
greedy server on Z is transient. But again, the behavior in this case is governed by
averaging effects inside each discrete cell overcrowded by waiting customers, and
its understanding is of little help for the continuous-space system. The goal of this
paper is to study the greedy server on R.

The main difficulty in studying this model is due to the interplay between the
server’s motion and the environment of waiting customers that surround it. This
interplay is given by the interaction at the microscopic level resulting from the
greedy choice of the next customer and the removal of those who have been served.
The server’s path is locally self-repelling, since the removal of already served cus-
tomers makes it less likely for the greedy server to take the next step back into the
recently visited regions.

There are several deep studies of processes which in different ways are self-
repelling. This includes examples of self-interacting walks such as the random
walk avoiding its past convex hull [3, 42], the prudent walk [4, 9], the “true” self-
avoiding walk [39, 40] and excited random walks [6]. In the continuum setup,
one has the self-interacting diffusion with repulsion [28], the perturbed Brownian
motions [10, 11, 13, 14, 30], the excited Brownian motions [31] and random paths
with bounded local time [5].3 It was clear since these models were introduced that
they could not be treated via standard methods and tools. Despite the existence of a
few disconnected techniques that have proved useful in specific situations, this rich
research field still lacks a systematic basis of study.4 A lot remains to be understood

2Several other state-independent strategies have been analyzed and, in particular, the following
two: after each service, the server decides to move next in a direction chosen at random; the server
follows the path of a Browning motion. Stability under the same conditions holds in both cases,
see [17].

3See the introductions of [28, 31] for concise reviews on these models, [27] for a review on rein-
forced walks, and [29] for a comprehensive survey on the field up to 2007.

4Except for the family of universality classes given by the Schramm–Löwner Evolutions [36],
which include 2-dimensional loop-erased random walk [22] and several other models [23, 37, 38].
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even in dimension d = 1, and in particular none of the known techniques seems to
be applicable in our case.

The future evolution of the greedy server’s position is of course influenced by its
previous path. But unlike the above models, here there is no direct prescription of
such influence in terms of occupation times. A similar situation occurs while defin-
ing the “true self-repelling motion” in d = 1 [41], although the authors show that
its evolution depends on the occupation times, and moreover that such dependency
is local.

Notice that, for the greedy server, “self-repulsion” does not imply immediately
“repulsion toward ∞,” since the server is allowed to backtrack, in which case it
starts being repelled back toward the origin.5 Another particular feature of this
model is an inverse relation between the strength of self-repulsion (measured by
the bias in the probability that the server takes the next step backward) and the
average speed of the server. The attraction felt by the server upon reaching un-
explored regions is increasing in time, due to the accumulation of customers that
keep arriving throughout the whole evolution, but at the same time this high con-
centration of customers causes the subsequent traveled distances to become shorter
at the same proportion.

In this paper, we introduce a framework based on a randomized representation
of the customers environment as viewed from the server (namely, it learns only the
information that is necessary and sufficient to determine the next movement, and
the positions of further waiting customers remain unknown). This allows a fine
description of the system behavior. As a consequence of this approach, we show
transience and describe the server’s asymptotics, setting up an old question in the
field (stated, e.g., as Open Problem 4 in [33]).

THEOREM 1. Let St denote the server position at time t . Assume that EeαT <

∞ for some α > 0. Then for any v > 0 and λ > 0 the greedy server on the real line
is transient. Moreover,

St

λ−1 log t
→ ±1

with probability 1/2 each.

REMARK 1. In our approach, it is important that the arrivals form a Poisson
process in space–time, and that they are independent of the service times.

REMARK 2. Assume that at time 0− the set of waiting customers is dis-
tributed as a Poisson point process with intensity μ(x)dx, for some nonnegative
bounded measurable function μ with

∫
μ = ∞, and with an additional determin-

istic finite set of points. Then Theorem 1 remains true (with essentially the same

5A difficulty similar in spirit was faced in [28], where it was proved that a certain diffusion with
self-repelling potential has a power-law asymptotic behavior.
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proof), except for the lack of symmetry in the probabilities of St diverging to +∞
or −∞.

REMARK 3. There is a dynamic version of the greedy server, where new ar-
rivals are not ignored while the server is traveling. This variation might be studied
by similar arguments, but the dynamic mechanism introduces some extra compli-
cations that will not be considered here.

REMARK 4. The assumption of constant speed is natural in several contexts
where the terminal speed is quickly achieved, but not crucial in our construction.
In fact, for a server moving with constant acceleration, or any other mechanical
constraints (which restarts after each service), mild modifications of our method
yield the same results. Notice that the value of v plays no role in Theorem 1.

Heuristically, the asymptotics described by Theorem 1 is what one should ex-
pect to happen, assuming that the server will indeed move most of the times in the
same direction. Suppose that all of the first N customers were found to the right
of the server. The typical distance between the server and the next customer to the
right is about 1

N
, because customers have been arriving to this region for about

N time units. To the left of the server, there are regions of size about 1
N−1 , 1

N−2 ,
1

N−3 , etc., where the arrival of customers is rather recent: they must have happened
during the last 1, 2, 3, etc., units of time. If the server is eventually moving only to
the right (or the excursions to the left are very sparse in time), the server position
SN should therefore diverge as logN .6

However, the probability that the next customer is found to the left of the server
is about C

N
, which implies that it will happen some time in the future. In fact,

the server will make an excursion of length c
N

to the left for infinitely many N ,
for any constant c, in contrast with its discrete variant. Nevertheless, the proba-
bility that the two next customers are both to the left is about C

N2 . One may thus
push this argument and show that indeed, with positive probability, the system will
never produce microscopic scenarios capable of causing important changes in the
server’s course.

To make the above observation rigorous, we introduce a dynamic block con-
struction, where the block sizes are increasing at each step, and combine it with
a renewal argument. The size �k of the blocks (groups of sequentially served cus-
tomers) should increase slow enough so that the cleared region left by a block
is wide enough to support the next one, but fast enough so that the probability of
atypical gaps inside the blocks is summable in k. It turns out that a growth �k ∼ kη,
with 0 < η < 1

2 , works well for this purpose.

6This heuristics is confirmed by the asymptotic behavior of a continuous model in R where there
is no greedy mechanism and the server is always moving to the right [20], as well as for the greedy
server on Z [21].
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This paper is divided as follows. In Section 2, we present the evolution of the
customers environment as viewed from the server, and study its properties. We
state Proposition 1 about the behavior of the greedy server on the real line at spe-
cific times (a block argument) and show how it implies Theorem 1, and in Sec-
tion 3 we prove Proposition 1. In these sections, we consider the case where T

is deterministic and v = ∞. This case contains the most important features of the
construction and the block argument, but is simpler to present. The general case is
considered in Section 4.

2. The process viewed from the server. We consider a particular construc-
tion of the initial state by assuming that there are arrivals during t ∈ [−1,0], be-
fore the service starts at t = 0. This is of course equivalent to simply starting at
t = 0 with a Poisson field of points. Let ν denote the random set of arrivals in
{(x, t) :x ∈R, t > −1}.

We want to construct the process by following a progressive exploration of the
space–time until finding the mark (x∗, t∗) ∈ ν corresponding to the nearest wait-
ing customer, getting as little information as possible about ν. The server is thus
unaware of existing customers further than the nearest one, and keeps record of the
last time when each point in space was explored in the seek of waiting customers.

For the reasons mentioned above, here we consider the case T = 1 and v = ∞,
and postpone the general case to Section 4. Thus, the server’s position St remains
constant on intervals t ∈ [n − 1, n). By rescaling space, we can assume λ = 1.

Starting at t = 0, each region on the space has potentially witnessed the ar-
rival of customers during 1 unit of time. The first customer is then found at an
exponentially-distributed distance, to the left or to the right with equal probabili-
ties. Discovering its position reveals the presence of a point in ν, as well as a region
where ν has no points. For the second customer, there is a region in space that has
potentially witnessed the arrival of customers during 1 unit of time (namely, the
region explored on the previous step), and the complementary region has not been
queried during the last 2 units of time. The position of the third customer is already
more involved, and the positions of both of the previous customers are important
in determining the regions where ν is still unexplored. Yet there is a general de-
scription which is amenable to study, which motivates the construction described
hereafter and depicted in Figure 1.

A potential is a piecewise continuous function u :R → R such that there is a
unique point x∗ = S(u) where it attains its maximum M = M(u) = u(x∗).

Given a pair of positive numbers w = (E,U), where 0 < E < ∞ and
0 < U < 1, we define the operator Hw as follows. Let u be given and take z > 0
as the unique number such that∫ x∗+z

x∗−z
(M− u)dx = E.

Let

a =M− u(x∗ − z), b = M− u(x∗ + z),
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choose

x∗ =

⎧⎪⎪⎨
⎪⎪⎩

x∗ − z, if U ∈
(

0,
a

a + b

]
,

x∗ + z, if U ∈
(

a

a + b
,1

)
,

and finally

(
Hw(u)

)
(x) =

⎧⎪⎨
⎪⎩
M+ 1, x = x∗,
M, x ∈ [x∗ − z, x∗ + z], x �= x∗,
u(x), otherwise.

(1)

Notice that M(Hw(u)) =M(u)+1, S(Hw(u)) = x∗, and
∫
R
[Hw(u)−u]dx = E.

Moreover, if u is unimodal, then Hw(u) is also unimodal.
Start with u0

0 :R → R given by u0
0(x) = δ0(x)− 1, let (En)n and (Un)n be inde-

pendent i.i.d. sequences of exponential and uniform random variables, and write
wn = (En,Un). Let u0

n = Hwn(u
0
n−1) and write Sn = S(u0

n).

LEMMA 1. The sequence (Sn)n=1,2,... defined above has the same distribution
as the sequence (St−)t=1,2,... given by the positions of the greedy server at integer
times.

The lemma follows from the properties of the Poisson point process ν on

�u := {
(x, t) :x ∈ R, u(x) ≤ t < ∞} ⊆R

2.

Indeed, consider a progressive exploration at the left and right vertical bound-
aries of the continuously-expanding region {(x, t) :x∗ − z ≤ x ≤ x∗ + z,u(x) ≤
t ≤M(u)} as z increases, starting from 0 until finding the first point (x∗, t∗) of ν.
The variable E is given by the area of the explored region. The variable U is
related to the position of (x∗, t∗) on the union of the two disjoint vertical inter-
vals where this region is growing, and is given by t∗ = M(u) − |(a + b)U − a|,
x∗ = x∗ + z · sgn[(a + b)U − a]. By the properties of a Poisson point process,
E and U are independent of each other, distributed as standard exponential and
uniform variables, regardless of how ν had been explored outside �u.

We now consider some properties of the operators H. Let θzu = u(z + ·). For
any potential u, any number c, and any point z, M(θzu + c) = M(u) + c and
S(θzu + c) = S(u) − z. It follows from the definition of H that

Hw(θzu + c) = θzHw(u) + c.(2)

A potential u is said to be centered if S(u) = 0 and M(u) = 0. Define the
operator 
u(·) = θS(u)(·) −M(u), so that 
u(u) is centered. For given potentials
u and ũ,



u(ũ) ◦ 
u = 
ũ.(3)
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The natural shifts in this evolving sequence of potentials (u0
n)n≥0 is given for

each k by (uk
n)n≥0 defined as uk

n := 
uk−1
1 (uk−1

n+1). Expanding this recursion and
using (3) yields

uk
n = 
uk−1

1
(

uk−2

1
(
uk−2

n+2

)) = 
uk−2
2

(
uk−2

n+2

) = · · · = 
u0
k
(
u0

n+k

)
.(4)

In particular, uk
0 = 
u0

k (u0
k). Writing

Hk
n = Hwk+n

◦ · · · ◦Hwk+2 ◦Hwk+1,

it follows from (2) that uk
n = Hk

n(u
k
0). Therefore, uk

0 is determined by w1,w2, . . . ,

wk , whereas (uk
n)n≥0 is determined by wk+1,wk+2, . . . and uk

0 itself.
The above properties imply that the evolution of (u0

n)n is a homogeneous,
translation-invariant, height-invariant, Markov chain in the space of potentials. At
any moment k, we can take u0

k and move the axes so that the origin is placed on its

maximum (i.e., apply 
u0
k ), obtaining uk

0, and from this point on the evolution of
(uk

n)n is independent of (u0
1, . . . , u

0
k), and obeys the same transition rules. More-

over, (uk
n)n is related to (u0

k+n)n by uk
n = 
u0

k (u0
k+n). An example depicting this

construction is shown in Figure 1.
This motivates us to define the evolution of the greedy server model starting

from any centered potential u as the initial u0
0, not necessarily given by δ0 − 1.

Namely, the system starts at t = 0, with customer arrivals in space–time given by
a Poisson point process ν on �u. We denote its law by P

u.
In the proof of Theorem 1, we only use two properties of u0

0(x) = δ0(x) − 1.
We say that a potential u is unimodal if u is nondecreasing on (−∞, S(u)) and
nonincreasing on (S(u),+∞). We say that a potential u is bounded if m(u) :=
M(u)− infx∈R u(x) is finite. Each of these conditions is preserved by the operators
of the form Hω. Since they are also preserved by θz and u �→ u + c, starting from
u0

0(x) = δ0(x) − 1 the potentials uk
n are unimodal and bounded for any k and n.

Proposition 1 below, though, uses only unimodality.
Grouping customers. Theorem 1 is proved by grouping customers as in the fol-

lowing proposition. Write

�j = ⌈
12j1/4 + 1

⌉
, j = 1,2,3, . . . .

PROPOSITION 1. Let (Sn) be a greedy random walk generated by a centered
unimodal initial potential u. For any ε > 0, there exists δ > 0 depending on ε but
not on the potential u, and a sequence of stopping times L0,L1,L2,L3, . . . with
the following properties.

Let σ = sgnS1, Zj = σSLj
, Nj = Lj − u(SLj

), Qj = Lj+1 − Lj and Xj =
Zj+1 − Zj . Then, with probability at least δ, we have, for all j = 1,2,3, . . . ,⎧⎪⎨

⎪⎩
Qj = �j or �j + 1,

X−
j ≤ Xj ≤ X+

j ,

Zj−1 < σSn < Zj+1, for Lj ≤ n < Lj+1,

(5)



1406 S. FOSS, L. T. ROLLA, V. SIDORAVICIUS

FIG. 1. Revealing three points of ν ⊆ R × (−1,∞) to determine the greedy server’s first steps.
Before starting, the configuration is unknown on the whole ν ⊆ R × (−1,∞), represented by the
graph u0

0(x) = δ0(x)−1. The nearest customer found at time 0 corresponds to the bold point (x∗, t∗)

in the second plot (middle above), where the graph of u0
1 covers the region that had to be explored

in order to find (x∗, t∗). After serving this customer, the point in ν corresponding to the nearest
customer corresponds to a new bold point appearing in the third plot, where the graph of u0

2 covers
the total region explored in these two steps. The server’s trajectory is depicted by the arrowed, curly
path, and consists of unit service times alternated with instantaneous space displacements. The fourth
plot (below, left) shows the three points of ν determining the construction of u3

0, the region of �
u0

0
explored and the path performed by the server during the interval [0,3). The fifth and sixth plots
(below, center and right) depict the Markovian nature of this procedure. At the second customer’s
departure time, we place the axes on the maximum of u0

2, obtaining u2
0. Notice that in this picture

there is no record of the past trajectory and the location of the other two points also called (x∗, t∗).
It turns out that the potential is enough in order to determine the future evolution, and we find the
same point (x∗, t∗) corresponding to the next customer.

where

X−
j = (1 − ε)

�j − 1

Nj+1
and X+

j = (1 + ε)
�j

Nj

.

In words, Zj is the server position after serving Lj customers (in case σ =
+1, otherwise the picture is mirrored), Nj is the discontinuity of the potential at
the server’s position at this moment, and finally Xj measures the displacement in
space after serving the next Qj customers.

The above proposition is proved in the next section. Let us show how it implies
the main result.
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PROOF OF THEOREM 1 FOR v = ∞ AND T = 1. Let ε be any positive num-
ber. The system starts at time n0 = 0 from the potential u0

0, and by Proposition 1,
with probability at least δ the events (5) hold for all j , for some sequence of stop-
ping times Lj . If it does not hold for all j , let j∗ be the first j for which condi-
tion (5) is violated, and call n1 = Lj∗+1. Whether (5) occurs or not is determined
by (u0

n)n=0,1,...,Lj+1 . Since Lj+1 is a stopping time, defining n1 = ∞ on the event
that (5) is satisfied for all j , we have that n1 is also a stopping time. Therefore, at
time n1 the system restarts from some unimodal bounded potential u

n1
0 , ignoring

the past history, that is, conditioned on n1 and u0
n1

, (u
n1
n )n≥0 is distributed as Pu

n1
0 .

Again, starting from such potential there is probability at least δ that (5) holds for
all j , with (u0

n)n replaced by (u
n1
n )n. It thus takes at most a geometric number of

restarts (with parameter δ) to get a success, so there is an a.s. finite time n∗ such
that condition (5) holds for all j , with (u0

n)n replaced by (un∗
n )n. Notice that σ

takes a possibly new value at each attempt.
We write a ∼ε b if lim sup |a

b
− 1| ≤ ε and a ∼ b if a

b
→ 1. By definition of �

and L, we have Lj ∼ 48j5/4

5 and �j/Lj ∼ 5
4j

. Now, by construction of N , Lj ≤
Nj ≤ Lj + m(u

n∗
0 ) and, therefore, Nj+1 ∼ Nj ∼ Lj . Finally, assuming that (5)

holds for all j , Xj ∼ε �j /Lj .

But Zj+1 = Z0 + ∑j
i=1 Xi , and putting these all together gives

Zj+1 ∼ε
5
4 log j.

Finally, the position Sn is given by Sn = Sn∗ + σZj at times n satisfying n =
n∗ + Lj and, therefore,

Sn ∼ε σ logn a.s.

Since ε was arbitrary,

Sn

σ logn
→ 1 a.s.

and using Lemma 1 this completes the proof of Theorem 1 for v = ∞ and T = 1.
�

3. Block argument. In this section, we prove Proposition 1. Let 0 < ε < 1
2 .

Here and in the next section, each time C or c (resp., cε or Cε) appears, it denotes
a different constant (resp., function of ε) that is positive, finite and universal. We
write a ∨ b for max{a, b}.

We are going to define the event Aj that step j is successful. For each j ,
the occurrence of Aj implies (5), and we will show that there exists a sequence
p0,p1,p2, . . . , depending only on ε, such that

P
u(Aj |Aj−1,Aj−2, . . . ,A0) ≥ pj(6)
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and
∞∏

j=0

pj > 0.(7)

For the latter, we show that pj increases fast enough so that 1 − pj is summable,
and that pj > 0 for all j . Let us drop the superscript 0 in the potentials u0

n.
We start with j = 0, omitted in the statement of Proposition 1. Define �0 = 1,

and take L0 = 0, Z0 = S0 = 0, and L1 = Q0 = 1. We choose σ = sgn(S1). Let
Z1 = X0 = σS1 = |S1|, and N1 = L1 − u(σZ1). We say that step 0 is successful if

X0 ≥ X−
0 := 4

N1
,(8)

otherwise we declare step 0 to have failed and stop. The next steps j = 1,2,3, . . .

are described assuming for simplicity that σ = +1.
Suppose that steps 0,1,2, . . . , j − 1 have been successful and start from uLj

.
Step j may be successful in two situations. First, if each of the next �j customers
SLj+1, SLj+2, . . . , SLj+�j

satisfy Sn > Sn−1, in which case we take Qj = �j . Sec-
ond, if there is one ñ ∈ {Lj + 1, . . . ,Lj + �j } such that Sñ < Sñ−1, and Sn > Sn−1
for all n ∈ {Lj + 1, . . . ,Lj + �j ,Lj + �j + 1} except ñ, in which case we take
Qj = �j + 1. If none of these two happen, we declare step j to have failed and
stop. Otherwise, in either of the above two cases we say that step j is successful
if (5) is satisfied.7

Notice that, for j ≥ 1, if step j − 1 is successful we have⎧⎪⎨
⎪⎩
M(uLj

) = Lj ,

uLj
(x) = u0(x) ≤ Lj − Nj, for x > Zj ,

uLj
(x) ≥ Lj − Qj−1, for Zj − X−

j−1 < x < Zj .
(9)

Having described the grouping steps, it remains to show (6) and (7).
Recall from the previous section that, once un is fixed, the position of the

next customer Sn+1 is determined by a pair En+1,Un+1 of exponentially- and
uniformly-distributed random variables, or alternatively by the Poisson point pro-
cess ν restricted to the region {(x, t) :un(x) < t ≤ M(un)}.

We start with j = 0. In this step, we pay a finite price p0 to produce a potential
which exhibits a plateau with convenient shape, namely a potential satisfying (8).
Recall that E1 and U1 are the exponential and uniform random variables used
in order to produce u1 from u0. Consider the event that E1 and U1 satisfy the

7We could have taken Qj always equal �j + 1 and have a simpler proposition with nonrandom
times Lj . In this case, we would define step j to be successful if Sn > Sn−1 for all j = Lj +
1, . . . ,Lj + �j + 1 except for possibly one ñ in Lj + 1, . . . ,Lj + �j . This would result in a simpler
statement but less robust proof. More precisely, the simple estimate (10) below would not suffice,
and a special treatment would be needed for the last point SLj +�j +1.
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following two requirements. The first requirement is that E1 > 8. The second one
is that, given E1, the variable U1 lies on the largest interval among [0, a

a+b
] and

[ a
a+b

,1]; see (1). This is when σ is determined. In the worst case, this interval

has length 1
2 , whence the probability that both conditions are satisfied is at least

p0 = 1
2e−8 > 0. The requirement for U1 implies that u(S1) ≤ u(−S1). Hence, by

monotonicity of u0, the occurrence of the above event implies that

8 <

∫ +X0

−X0

−u(x)dx ≤
∫ +X0

−X0

max[−X0,+X0]
(−u)dx = −2X0u(σX0) = −2X0u(S1)

≤ 2X0N1.

The above inequality implies A0 and, therefore, Pu(A0) ≥ p0 > 0.
Fix some j = 1,2,3, . . . . We will describe events B1,B2,B3, omitting the de-

pendency on j , such that B1 ∩ B2 ∩ B3 implies Aj . The conditional probability of
B1 ∩B2 ∩B3 given uLj

can be bounded from below by some number pj that does
not depend on the potential uLj

as long as it satisfies (9). This in turn implies (6).
We stress that, even though the knowledge about these events inconveniently

provides more information about ν than needed in determining uLj+1 , we only
study them with the purpose of estimating the probability of Aj . The occurrence
of the latter is entirely determined by uLj

, uLj+1, uLj+2, . . . , uLj+1 .
We consider the evolution given by the point process ν itself rather than the

construction specified in (1). We write νi = ν ∩ Ri , where

R1 = {
(x, t) :x > Zj ,u(x) < t ≤ Lj

}
,

R2 = {
(x, t) :Zj < x < Zj + X+

j ,Lj < t ≤ Lj + �j + 1
}

∪ {
(x, t) :Zj − X−

j−1 < x < Zj ,uLj
(x) < t ≤ Lj + �j + 1

}
.

The first event considered is

B1 := [|ν2| ≤ 1
]
.

Notice that, conditioned on uLj
, the number of points |ν2| is distributed as a

Poisson random variable with mean given by the area |R2|. Now, on the event that
uLj

satisfies (9),

|R2| ≤ (�j + 1)X+
j + (�j−1 + 1)X−

j−1 + (�j + 1)X−
j−1 ≤ 3(�j + 1)X+

j

≤ C
(�j + 1)2

Nj

≤ C
1

j3/4

since

�j ≤ Cj1/4 and Nj ≥ Lj ≥ Q0 + · · · + Qj−1 ≥ Cj5/4,

and therefore

P(B1|uLj
) ≥ 1 − C|R2|2 ≥ 1 − C

1

j3/2 .(10)
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We also need the estimate to be positive for all j , which follows from

P(B1|uLj
) ≥ P(ν2 = ∅|uLj

) = e−|R2| ≥ e−c > 0.

We now consider the events B2 and B3, which depend on ν1. Define

A(x) =
∫ x

Zj

[
Lj − u(z)

]
dz, x ≥ Zj ,(11)

and write ν1 = {(x1, t1), (x2, t2), (x3, t3), . . .} with x0 = Zj < x1 < x2 < x3 < · · ·.
By definition of ν1, we have that (A(xn) − A(xn−1))n=1,2,3,... are i.i.d. exponen-
tial random variables with mean 1, independent of uLj

. The events B2 and B3 are
defined in terms of A(xn), n = 1,2,3, . . . , whence the estimates on their probabil-
ities are always uniform on uLj

.
Consider the event

B2 := [
(1 − ε)(�j − 1) < A(x�j−1) < A(x�j

) < (1 + ε)�j

]
.(12)

By Chernoff’s exponential bounds,

P(B2) ≥ 1 − e−cε�j .(13)

Consider the event

B3 :=
[
A(xn) − A(xn−1) ≤ �j

12
for n = 1,2, . . . , �j

]
.(14)

By a simple union bound, we have

P(B3) ≥ 1 − �j e
−�j /12 ≥ 1 − Ce−c�j .(15)

Using (13) and (15), we get

P(B2 ∩ B3) ≥ 1 − Cεe
−cε�j .

Now, since �j ≥ 12, we have

P(B2 ∩ B3) ≥ P
(
1 − ε < A(xn) − A(xn−1) < 1 for n = 1,2, . . . , �j

)
> e−cε�j > 0

and thus adjusting cε we get

P(B2 ∩ B3) ≥ 1 − e−cε�j .

Since ν1 is conditionally independent of ν2 ∪ ν3 given uLj
, we have that

P(B1 ∩ B2 ∩ B3|uLj
) ≥ pj

for

pj = (
1 − e−cε�j

)(
e−c ∨ (

1 − Cj−3/2))
.

Notice that the sequence (pj )j=0,1,2,... satisfies (7), thus it only remains to show
that B1 ∩ B2 ∩ B3 implies Aj .
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Suppose B1, B2 and B3 happen. By (9) and monotonicity of u, we have

Nj [xn − xn−1] ≤ A(xn) − A(xn−1) ≤ [
Lj − u(xn)

][xn − xn−1],
whence by (12)

x�j−1 − Zj ≤ x�j
− Zj ≤ (1 + ε)

�j

Nj

= X+
j ,(16)

and by (14)

xn − xn−1 ≤ �j

12Nj

≤ X−
j−1

3
.(17)

Moreover, for n = 1,2, . . . , �j − 1,

A(xn) − A(xn−1) ≤ [
Lj − u(x�j−1)

][xn − xn−1]
and, by (12),

x�j
− Zj ≥ x�j−1 − Zj ≥ (1 − ε)

�j − 1

Lj − u(x�j−1)
≥ (1 − ε)

�j − 1

Nj+1
= X−

j

as long as Zj+1 = SLj+Qj
≥ x�j−1.

Therefore, to prove (5) it suffices to show that{
x�j−1 ≤ SLj+Qj

≤ x�j
,

x0 − X−
j−1 ≤ SLj+n < SLj+Qj

, n = 1,2, . . . ,Qj − 1.
(18)

The remainder of the proof is dedicated to proving (18) assuming (16), (17) and
that B1 occurs.

We first recall that the points in (x, t) ∈ ν that correspond to customers
(SLj+1, SLj+2, . . . , SLj+Qj

) are such that uLj
(x) < t ≤ Lj + �j + 1. When these

points are neither in R1 nor in R2, they must be in R3 given by t ∈ (uLj
(x),Lj +

�j + 1] and

x < Zj − X−
j−1 or x > Zj + X+

j .(19)

The points in R1 are given by (xn, tn)n=1,2,..., and R2 is either empty or contains
one point, denoted by (x′, t ′).

Let n′ be the maximal index between 0 and �j such that

(SLj
, SLj+1, SLj+2, . . . , SLj+n′−1, SLj+n′) = (x0, x1, x2, . . . , xn′−1, xn′).

If n′ = �j , we have Qj = �j , thus (18) is satisfied. So suppose n′ ≤ �j − 1. We
claim that

SLj+n′+1 = x′

with x′ satisfying

xn′ − �j

12Nj

≤ x′ < xn′+1,
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and moreover

SLj+n+1 = xn for n = n′ + 1, n′ + 2, . . . , �j ,(20)

that is, the points in R3 cannot participate in the construction of SLj+Qj
.

In the case x′ < xn′ , we will have Qj = �j + 1 and SLj+Qj
= x�j

. Otherwise,
xn′ < x′ < xn′+1, we will have Qj = �j , and in this case SLj+Qj

= x�j−1 if n′ ≤
�j − 2 or SLj+Qj

= x′ ∈ (x�j−1, x�j
) if n′ = �j − 1. Therefore, (18) is always

satisfied.
It thus remains to prove the above claim. By definition of n′, the point (x′, t ′) ∈ ν

corresponding to SLj+n′+1 cannot be in R1. But it cannot be in R3 either. Indeed,
since SLj+n′ = xn′ and

xn′ < xn′+1 ≤ xn′ + �j

12Nj

,

we must have

x0 − �j

12Nj

≤ xn′ − �j

12Nj

≤ x′ < xn′+1,

thus x′ cannot satisfy (19). Therefore, (x′, t ′) is the only point in ν2.
We finally show (20). Start with n = n′ + 1. Write x̃ = SLj+n′+2, corresponding

to a point (x̃, t̃) ∈ ν. This point cannot be in R2, since (x′, t ′) was the only such
point. As before,

∣∣x′ − xn′+1
∣∣ ≤ ∣∣x′ − xn′

∣∣ + |xn′ − xn′+1| ≤ �j

6Nj

,

thus we must have

x̃ < xn′+1 ≤ x�j
≤ Zj + X+

j

and

∣∣x̃ − x′∣∣ <
�j

6Nj

,

whence

x̃ > x′ − 2
�j

Nj

≥ x0 − �j

4Nj

and again x̃ cannot satisfy (19) either. Therefore, (x̃, t̃) ∈ ν1 which implies x̃ =
xn′+1. For n = n′ + 2, . . . , �j , the argument is the same.
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4. Finite speed and random service times. In this section, we show how
the proof of Theorem 1 for the particular case T = 1, v = ∞ can be adapted to
more broad conditions as stated in Section 1. We start describing the analogous
construction for the stochastic evolution of potentials. Assume that at time t = 0
the server starts serving a customer at x = 0 (for convenience, we consider here
the potentials corresponding to times when service starts). Assume also that the
set of waiting customers is given by a Poisson Point Process on R with intensity
−u0(x)dx for a unimodal potential u0 with maximal value u0(0) = 0. In analogy
with (1), given w = (T ,E,U) we define the operator Hw by∫ x∗+z

x∗−z
(M+ T − u)dx = E,

a = M+ T − u(x∗ − z),

b = M+ T − u(x∗ + z),

x∗ =

⎧⎪⎪⎨
⎪⎪⎩

x∗ − z, if U ∈
(

0,
a

a + b

]
,

x∗ + z, if U ∈
(

a

a + b
,1

)
,

and

(
Hw(u)

)
(x) =

⎧⎪⎪⎨
⎪⎪⎩
M+ T + z

v
, x = x∗,

M+ T , x ∈ [x∗ − z, x∗ + z], x �= x∗,
u(x), otherwise.

Notice that M(Hw(u)) = M(u) + T + z
v

, S(Hw(u)) = x∗, and
∫
R
[Hw(u) −

u]dx = E.
We take an i.i.d. sequence (ωn)n=1,2,..., where each ωn = (Tn,En,Un) has inde-

pendent coordinates, distributed respectively as the service time, a standard expo-
nential, and a uniform on [0,1]. We define uk

n by (4) and let un = u0
n and u = u0.

Define tn = M(u0
n) and Sn = S(u0

n). In analogy with Lemma 1, we have

LEMMA 2. The pair sequence (tn, Sn)n=1,2,... described above has the same
distribution as (tn,Stn)n=1,2,... given by the beginning of service times and the
corresponding positions.

For the evolution (un)n=0,1,2,... we will define a sequence of stopping times
0 = N0 < N1 < N2 < · · · in N0, as well as the corresponding events of success Aj

defined in terms of uNj
and whose occurrence is determined by u0, u1, . . . , uNj+1 .

The construction will have the following properties. For some sequence pj and
any u that is centered and unimodal,

P
u(Aj |uNj

) ≥ pj on A0 ∩ · · · ∩ Aj−1 and
∏
j

pj > 0.(21)

Moreover, the event
⋂∞

j=0 Aj implies Sn ∼ε σ logn just as in the proof of Theo-
rem 1 in the end of Section 2.
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Step 0 provides σ = ±1 which indicates the direction in which subsequent
blocks are supposed to grow. In the steps described below we let Nj = Q0 + · · ·+
Qj−1, where Qj is the number of customers served in each block, Lj = M(uNj

)

the physical time, Nj = Lj − u(SNj
) the height of discontinuity in the poten-

tial, Zj = σSNj
, Xj = Zj+1 − Zj physical displacement during each block, and

Mj = Lj+1 − Lj is the time elapsed within each block. In this setting, the time
Lj+1 is given by the instant when the server reaches the customer located at
σZj+1, and the next block starts.

Let �j be given as above, and write mj = �1 + · · · + �j . Let j∗ be such that

1

mj∗
· 1

v
<

1

16
and P

(
n

2
< T1 + · · · + Tn < 2n

)
> 0 for all n > �j∗ .

Fix m = 1 + mj∗ . In steps 1, . . . , j∗ we will relax the lower bound on time and
take M−

j = 0. This is compensated by finding a big number of customers at step 0,
namely Q0 = m. So the triggering step will take care of however small the speed
v is, as well as complications arising from the distribution of T .

The event A0 is defined by the following conditions. First, that Sm is an unex-
plored point, that is, σSm > σSn for all n = 0,1,2, . . . ,m − 1 and some σ = ±1.
Second, M0 ≥ M−

0 = mj∗. Finally,

Tm ≤ 1 and X−
0 ≤ |Sm − Sm−1| ≤ X+

0 ,

where X−
0 = 4

N1
and X+

0 = v.
We claim that Pu(A0) ≥ p0 for some p0 > 0 that does not depend on u. To prove

the claim, consider the following events. First, suppose T1 ≥ 1. Suppose also that
E1 ≥ 16, and U1 is such that S1 lies on the bigger side of −u, as in Section 3.
Assuming that all these happen, σ is determined by which direction S1 was found,
that is, the higher side of the plateau in u1. In the sequel we assume for simplicity
that σ = +1, otherwise mirror the system around x = 0. Now suppose that, for all
n = 2, . . . ,m − 1, Tn ≥ 1, En ∈ [0,1], and Un > 1

2 . Finally, suppose that Tm ≤ 1,
8 ≤ Em < 16 and Um > 1

2 .
Let us show that these events imply A0, which proves our claim. By assumption

S1 > 0 and

16 ≤ E1 =
∫ S1

−S1

[
T1 − u(x)

]
dx ≤ −2S1 · u(S1)

and thus

−u(S1) ≥ 8

S1
.

Writing z2 = |S2 − S1|, we have

1 ≥ E2 =
∫ S1+z2

S1−z2

[
M(u1) + T2 − u1(x)

]
dx ≥

∫ S1+z2

S1

[−u1(x)
]
dx ≥ −u(S1) · z2
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and thus z2 ≤ S1
8 and 0 < S1 − z2 < S1. Since u1(x) ≤ 0 for x > S1 and u1(x) =

T1 > 0 for −S1 < x < S1, the choice of U2 > 1
2 implies that S2 = S1 + z2 > S1.

By the same argument, E3 ≤ 1 implies |S3 − S2| ≤ S1
8 , and thus U3 > 1

2 implies
S3 > S2, and so on. Therefore, Sm−1 > S1 and um−1(x) = u(x) for x > Sm−1. As
before, writing zm = |Sm − Sm−1| we have

16 > Em =
∫ Sm−1+zm

Sm−1−zm

[
M(um−1) + Tm − um−1(x)

]
dx

≥ zm · [
T1 + · · · + Tm − u(Sm−1)

]
,

thus zm < 2S1, and since Um > 1
2 we have Sm > Sm−1. Moreover, T1 +· · ·+Tm ≥

mj∗ and thus Sm − Sm−1 = zm < v = X+
0 . Finally,

8 ≤ Em =
∫ Sm−1+zm

Sm−1−zm

[
M(um−1) + Tm − um−1(x)

]
dx ≤ 2zm · [

M(um) − u(Sm)
]

= 2z · N1,

and thus Sm − Sm−1 = zm ≥ X−
0 . This proves the above claim.

For j ≥ 1, we define Qj and the event Aj as in Section 3, with condition (5)
replaced by ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Qj = �j or �j + 1,

X−
j ≤ Xj ≤ X+

j ,

M−
j ≤ Mj ≤ M+

j ,

Zj−1 < Sn < Zj+1, for Nj ≤ n < Nj+1,

where X−
j = (1 − ε)

�j−1
Nj+1

,X+
j = (1 + ε)

�j

Nj
,M+

j = 3�j + 3 and M−
j = 1

2�j1j>j∗ .
Assuming that (A0 ∩ · · · ∩ Aj−1) occurs, since uNj

is unimodal it must satisfy⎧⎪⎨
⎪⎩
M(uNj

) = Lj ,

uNj
(x) = u0(x) ≤ Lj − Nj, for x > Zj ,

uNj
(x) ≥ Lj − Mj−1, for Zj − X−

j−1 < x < Zj .

For j = 1 the last condition is replaced by uN1(x) ≥ L1 − Tm − X+
0
v

≥ L1 − 2.
Moreover,

Nj = −u(σZj ) + Lj ≥ Lj ≥ M−
0 + · · · + M−

j−1 ≥ mj ≥ cj5/4

and thus X+
j ≤ Cj−1 and X−

j−1 ≤ Cj−1. Therefore, M+
j ≤ Cj1/4.

To estimate P
u(Aj |uNj

) on (A0 ∩ · · · ∩ Aj−1), we consider the events B1, B2,
and B3 as in Section 4.

The region analogous to R2 ⊆ R×R is contained in the union of the rectangles
[Zj − X−

j−1,Zj ] × [Lj − M+
j−1,Lj + M+

j ] and [Zj ,Zj + X+
j ] × [Lj ,Lj + M+

j ]
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with M0 replaced by Tm + X+
0
v

≤ 2 for j = 1. The above inequalities imply that
|R2| ≤ (X−

j−1 + X+
j )(M+

j−1 + M+
j ) ≤ Cj−3/4. Therefore,

P
u(B1|uNj

) ≥
(

1 − C

j3/2 ∨ e−c

)
.

Events B2 and B3 are defined by (12) and (14). Therefore, occurrence of B2 ∩B3
implies inequalities (16) and (17), and its probability satisfies (21). The desired
bounds for Sn for Nj ≤ n < Nj+1 and for Xj thus follow exactly as in Section 3.

It remains to control Mj , which was not necessary in the case T = 1, v = ∞
because Mj = Qj in that setup. But Mj is composed of Qj service times plus
traveling time. The latter is nonnegative and bounded by

2
Xj

v
≤ 2

X+
j

v
≤ 2

�j/Nj

v
≤ 2

�j/m

v
≤ �j .

Therefore, the inequality M−
j ≤ Mj ≤ M+

j holds whenever the sum of Qj service

times is bigger than 1
2Qj1j>j∗ and less than 2Qj . The probability of this event

is exponentially high in �j , and positive by the choice of j∗. This completes the
proof of Theorem 1.
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