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Abstract. Let H be a Hilbert space, dim H = ∞. The set ∆1 = {1 + a :
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1. Introduction

The purpose of this paper is to introduce a Finsler structure and expose several
results about the geometrical structure of the set ∆1 , defined by

∆1 = {1 + a ∈ L1 : 1 + a > 0},

where L1 denotes the trace class perturbations of multiples of the identity.

This work was completed with the support of CONICET.
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This study relates to previous work on differential geometry of positive operators
(or positive definite matrices). Mainly a series of papers [6], [7] and [8] by Corach,
Porta and Recht, where the geometry of the set of positive invertible of a C∗

algebra was studied. Also this study is related to classical work on the geometry
of positive matrices ([18]).
Basically, there are two reasons why we have selected the set ∆1 . The first is
that the trace class operators (which are not invertible) usually appear in Physics
([21]) and other sciences. The second is the duality that exists between the space
of positive functional in B(H) and the positive nuclear operators.
Let Gl(H) the general linear group of all invertible bounded operators on a sep-
arable and infinite dimensional Hilbert space H and Gl(H,B1(H)) the subgroup
of invertible trace class perturbations of the identity, i.e.

Gl(H,B1(H)) = {1 + a ∈ Gl(H) : a ∈ B1(H)} = {g ∈ Gl(H) : g − 1 ∈ B1(H)}.

The subgroupGl(H,B1(H)) is a Banach-Lie group locally diffeomorphic to B1(H).
The classical reference for this subject and notation is [12].
Consider the homogeneous space Gl(H,B1(H))/U1, where U1 is the subgroup of
Gl(H,B1(H)) of unitary operators (this space can be identified with ∆1 ). Then
there exists a Finsler metric on the tangent bundle of ∆1 which is given by the
1-norm on (T∆1)1. We show that the Finsler metric induces the following metric
on ∆1

d(a, b) = ‖log(a− 1
2 ba−

1
2 )‖1 a, b ∈ ∆1.

The main object of this paper is to determine the properties of the metric space
(∆1 , d).
The material is organized as follows. Section 2 contains a survey of the topogical
structure and differential geometry of ∆1 , with a description of its structure as a
reductive homogeneous space.
In Section 3 we investigate the minimality properties of the geodesics. In Section
4 we prove that ∆1 shares some properties with Riemannian manifolds of non-
positive sectional curvature (though we can not define the sectional curvature in
this space). For instance, the metric increasing property (MIP) of the exponential
map (Theorem 4.3).
Finally, in Section 5 we prove that ∆1 has non-positive curvature (in Busemann’s
sense [14]) with respect to the Finsler metric (or geodesic distance).

2. Some aspects of the geometry of ∆1 .

2.1. Topological and differentiable structure of ∆1 .

Let B(H) denote the algebra of bounded operators acting on a complex and sep-
arable Hilbert space H.
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Throughout, B1(H) stands for the bilateral ideal of trace class operators of B(H),
that is the subset of compact operators with singular values in l1.
Recall that B1(H) is a Banach algebra without unit, with the norm

‖a‖1 = tr |a| = tr(a∗a)
1
2 =

∑
i∈N

〈|a| ei, ei〉 ,

where {ei}i∈N is any given orthonormal basis of H.
We consider a certain subset of Fredholm operators, namely

L1 = {λ+ a ∈ B(H) : λ ∈ C, a ∈ B1(H)},

the complex linear subalgebra consisting of the trace class perturbations of multi-
ples of the identity. There is a natural (not quadratic) norm for this subspace

‖λ+X‖(1) = |λ|+ ‖X‖1.

The selfadjoint part of L1 is

L1
R = {λ+ a ∈ L1 : (λ+ a)∗ = λ+ a},

Remark 2.1. 1. (L1, ‖.‖(1)) is the unitazion of (B1(H), ‖.‖1).
2. Note that the multiples of identity λ1 and the operators a ∈ B1(H) are

linearly independent. Therefore

λ+ a ∈ L1
R if and only if λ ∈ R , a∗ = a.

Formally,

L1 = C⊕B1(H) L1
R = R⊕B1(H)h,

where B1(H)h denotes the set of selfadjoint trace class operators.
3. One has the usual estimates

(a) ‖λ+ a‖ ≤ ‖λ+ a‖(1),
(b) ‖(λ+ a)(µ+ b)‖(1) ≤ ‖λ+ a‖(1)‖µ+ b‖(1).

for all λ+ a, µ+ b ∈ L1. In particular, (L1,+, .) is a Banach algebra.

Inside L1
R , we consider

∆ = {λ+ a ∈ L1 : λ+ a > 0},

and
∆1 = {1 + a ∈ L1 : 1 + a > 0}.

Apparently ∆ is an open subset of L1
R, and therefore a differentiable (analytic)

submanifold.
The next step is to prove that ∆1 is a submanifold of ∆. For this purpose, we
consider

θ : ∆ → R , θ(λ+ a) = λ.
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Lemma 2.1. θ is a submersion.

Proof. It is sufficient to show that dθλ+a is surjective and ker(dθλ+a) is comple-
mented ([15], Theorem 2.2).
Since L1

R and R are Banach spaces and θ is a continuous linear map we get that
dθλ+a = θ

Apparently, dθλ+a is suryective and ker(dθλ+a) has codimension 1 and hence is
complemented. �

It follows that ∆1 is a submanifold, since ∆1 = θ−1({1}). These facts imply that,
for 1 + a ∈ ∆1 , (T∆1)1+a identifies with B1(H)h.
There is a natural action of Gl(H,B1(H)) over ∆1 , defined by

l : Gl(H,B1(H))×∆1 −→ ∆1, lg(1 + a) = g(1 + a)g∗.

This action is clearly differentiable and transitive, since if 1 + a, 1 + b ∈ ∆1 then

lr(1 + a) = (1 + b),

for r = (1 + b)
1
2 (1 + a)−

1
2 ∈ Gl(H,B1(H)). For 1 + a ∈ ∆1 , let

I1+a = {g ∈ Gl(H,B1(H)) : g(1 + a)g∗ = 1 + a},

the isotropy group of 1 + a. In particular, for 1 ∈ ∆1

I1 = {g ∈ Gl(H,B1(H)) : gg∗ = 1} = U(H) ∩Gl(H,B1(H)) = U1,

where U(H) denotes the unitary operators on H.

2.2. Reductive structure.

Let us recall the definition of homogeneous reductive space

Definition 2.1. A homogeneous space G/F is reductive (RHS) if there exists a
vector space decomposition g = f ⊕ m of the Lie algebra g of G, such that m is
invariant under the action of F

In order to give an RHS structure to ∆1 (or equivalently to Gl(H,B1(H))/U1)
under the action of Gl(H,B1(H)) we must find a decomposition

(TGl(H,B1(H)))1︸ ︷︷ ︸
g

= (TU1)1︸ ︷︷ ︸
f

⊕m.

Recall that g = (TGl(H,B1(H)))1 and f = (TU1)1 can be identified with B1(H)
and iB1(H)h, respectively. Then, we have

B1(H) = iB1(H)h ⊕m.
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The most natural choice is m = B1(H)h. Note that B1(H)h is U1-invariant:

lg(B1(H)h) = {gXg∗ : X ∈ B1(H)h} = B1(H)h.

From the above remarks, we get

Proposition 2.1. ∆1 has an RHS structure under the action of Gl(H,B1(H)).

Now, in order to construct a covariant derivative in ∆1 , we use its reductive
structure. We introduce the transport equation whose solutions give the horizontal
lifts to Gl(H,B1(H)) of curves on ∆1 following the lines of [16].

Definition 2.2. The differential equation

Γ̇ =
1
2
γ̇γ−1Γ,

is called the transport equation for γ, and the solution Γ(t) with initial condition
Γ(0) = 1 ∈ Gl(H,B1(H)) is called the horizontal lift of γ(t).

The transport equation induces a covariant derivative of a tangent field X along
γ, namely

DX

dt
= Γ(t)

d

dt
((T lΓ(t)−1)γ(t)X(t))Γ(t)∗ = Ẋ − 1

2
(Xγ−1γ̇ + γ̇γ−1X).

From now on, we denote with a, b, .. etc. the elements of ∆1 .
The curvature tensor for this connection is

R(X,Y )Z = −1
4
a[[a−1X, a−1Y ], a−1Z],

for X,Y, Z ∈ (T∆1)a.

The corresponding exponential at a ∈ ∆1 is

expa : (T∆1)a → ∆1, expaX = a
1
2 ea−

1
2 Xa−

1
2 a

1
2 .

Notice that expa is a diffeomorphism and its inverse map is

loga : ∆1 → (T∆1)a, logab = a
1
2 log(a−

1
2 ba−

1
2 )a

1
2 .

The covariant derivative can now be used to define a parallel vector field and
geodesics on ∆1 as solutions to ordinary differential equations.
A curve γ is a geodesic if γ̇ is parallel, i.e.

γ̈ = γ̇γ−1γ̇. (2.1)

The basics properties of the geodesics can be summarized in the following state-
ment.

Proposition 2.2. Let a ∈ ∆1 , X ∈ (T∆1)a and γ a geodesic. Then

1. The curve gγg∗ is also a geodesic for all g ∈ Gl(H,B1(H)),
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2. The unique geodesic γ such that γ(0) = a and γ̇(0) = X, is

γ(t) = a
1
2 eta−

1
2 Xa−

1
2 a

1
2 t ∈ R,

3. Let b ∈ ∆1 . There is one and only one geodesic γa,b such that γa,b(0) = a

and γa,b(1) = b, namely

γa,b(t) = a
1
2 (a−

1
2 ba−

1
2 )ta

1
2 t ∈ R.

Proof. The proof is straightforward. �

Through this paper, we use the following notation

a ]t b = a
1
2 (a−

1
2 ba−

1
2 )ta

1
2 = expa(t exp−1

a (b)),

which is called the t-power mean between a and b (see [19]), and the relative
operator entropy

S(a/b) = a
1
2 log(a−

1
2 ba−

1
2 )a

1
2 ,

defined in [11].
Lemma 2 in [10] shows that for a, b ∈ ∆1 and t ∈ R

a ]t b = b ]1−t a.

2.3. Finsler Structure

We define the length of a tangent vector for X ∈ (T∆1)a by

‖X‖a =
∥∥∥a− 1

2Xa−
1
2

∥∥∥
1
.

where ‖.‖1 denotes the norm of B1(H).

Proposition 2.3. The metric in T∆1 is invariant for the action of the group of
invertible elements, i.e. for each a ∈ ∆1 , g ∈ Gl(H,B1(H)) and X ∈ B1(H)h, we
have ‖X‖a = ‖gXg∗‖gag∗

Proof. Let a ∈ ∆1 , g ∈ Gl(H,B1(H)) and X ∈ B1(H), observe that

gXg∗ = ga
1
2 a−

1
2Xa−

1
2 a

1
2 g∗.

Denote by z = ga
1
2 then

(gag∗)−
1
2 = (ga

1
2 a

1
2 g∗)−

1
2 = (zz∗)−

1
2 = |z∗|−1

.

therefore
(gag∗)−

1
2 gXg∗(gag∗)−

1
2 = |z∗|−1

za−
1
2Xa−

1
2 z∗ |z∗|−1

.

From the polar decomposition applied to z ∈ Gl(H), z = |z∗| ρz with ρz unitary,
we have

(gag∗)−
1
2 gXg∗(gag∗)−

1
2 = ρza

− 1
2Xa−

1
2 ρ∗z.
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Now, since |srs∗| = s |r| s∗ for all unitary s, we get

‖gXg∗‖gag∗ = tr
∣∣∣ρza

− 1
2Xa−

1
2 ρ∗z

∣∣∣ = tr(ρz

∣∣∣a− 1
2Xa−

1
2

∣∣∣ ρ∗z)
= tr

∣∣∣a− 1
2Xa−

1
2

∣∣∣ =
∥∥∥a− 1

2Xa−
1
2

∥∥∥
1

= ‖X‖a .

�

3. Minimality of geodesics

In this section we investigate the minimality properties of the geodesics; the expre-
sion “minimal” is understood in terms of the length (or more generally p-energy
functional). We prove that the unique geodesic joining two points is the minimun
of the p-energy functional for p ≥ 1.
For a piecewise differentiable curve α : [0, 1] → ∆1 we now compute the length of
the curve α by

l(α) =
∫ 1

0

‖α̇(t)‖α(t)dt.

Note that given a, b in ∆1 , if γa,b : [0, 1] −→ ∆1 is the unique geodesic joining
them, then

l(γa,b) = ‖log(a− 1
2 ba−

1
2 )‖1.

Definition 3.1. Let a, b ∈ ∆1 . We denote

Ωa,b = {α : [0, 1] → ∆1 : α is a C1 curve, α(0) = a and α(1) = b}.

The geodesic distance between a and b (in the Finsler metric) is defined by

d(a, b) = inf{l(α) : α ∈ Ωa,b}.

If K ⊆ ∆1 , let

d(a,K) = inf{d(a, k) : k ∈ K}.

The next step consists in showing that geodesics are short curves, i.e. if δ is another
curve joining a to b then

l(γa,b) ≤ l(δ).

and hence

d(a, b) = ‖log(a− 1
2 ba−

1
2 )‖1.

The proof of this fact requires some preliminaries. We begin with the following
inequalities (see [13]):
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Let a, b, c be Hilbert space operators with a, b ≥ 0. For any unitarily invariant
norm |||.||| we have

|||a1/2cb1/2||| ≤ |||
∫ 1

0

atcb1−tdt||| ≤ 1
2
|||ac+ cb|||. (3.1)

Theorem 3.1. For all X,Y ∈ B1(H)h

‖Y ‖1 ≤ ‖e−X
2 dexpX(Y )e−

X
2 ‖1,

where dexpX denote the derivate, at a point X, of the exponential map.

This inequality was proved by R. Bhatia for matrices ([5]).

Proof. Our proof uses two ingredients. The first is the well-know formula

Claim 3.1. dexpX(Y ) =
∫ 1

0
etXY e(1−t)Xdt.

We provide here a simple proof of this equality. Since
d

dt
(etxe(1−t)y) = etx(x− y)e(1−t)y,

we have

ex − ey =
∫ 1

0

etx(x− y)e(1−t)ydt,

and hence
lim
h→0

eX+hY −eX

h =
∫ 1

0
etXY e(1−t)Xdt.

LetX,Y ∈ B1(H)h. Write Y = e
X
2 (e−

X
2 Y e−

X
2 )e

X
2 , and then using the inequalities

(3.1) to get from this

‖Y ‖1 ≤ ‖
∫ 1

0

etX(e−
X
2 Y e−

X
2 )e(1−t)Xdt‖1 = ‖e−X

2

∫ 1

0

etXY e(1−t)Xdte−
X
2 ‖1

= ‖e−X
2 dexpX(Y )e−

X
2 ‖1.

This proves the theorem. �

We are now ready to prove the main result in this section.

Theorem 3.2. Let a, b ∈ ∆1 , the geodesic γa,b is the shortest curve joining them.
So

d(a, b) = ‖log(a− 1
2 ba−

1
2 )‖1.

Proof. Since the group Gl1(H,B1(H)) acts isometrically and transitively on ∆1 ,
is suffices to prove the theorem for a = 1.
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Then
γ1,b = bt = et logb and l(γ1,b) = ‖log b‖1.

Let γ ∈ Ω1,b; so write γ(t) = eα(t) we get

‖γ(t)− 1
2 γ̇(t)γ(t)−

1
2 ‖1 = ‖e−

α(t)
2 eα̇(t)e−

α(t)
2 ‖1 = ‖e−

α(t)
2 dexpα(t)(α̇(t))e−

α(t)
2 ‖1

≥ ‖α̇(t)‖1.

Finally,

l(γ) =
∫ 1

0

‖γ̇(t)‖γ(t)dt =
∫ 1

0

‖γ(t)−
1
2 γ̇(t)γ(t)−

1
2 ‖1dt ≥

∫ 1

0

‖α̇(t)‖1dt

≥ ‖
∫ 1

0

α̇(t)dt‖1 = ‖α(t)|10‖1 = ‖α(1)− α(0)‖1 = ‖log b‖1.

�

Remark 3.1. 1. The geometrical result described above can be translated to the
language of the relative entropy

d(a, b) =
∥∥∥a− 1

2S(a/b)a−
1
2

∥∥∥
1

= ‖S(a/b)‖a .

2. For each a ∈ ∆1 and α > 0 the exponential map expa : (T∆1)a → ∆1 maps
the ball {X ∈ (T∆1)a : ‖X‖a ≤ α} onto the ball {x ∈ ∆1 : d(a, x) ≤ α},
since

d(a, expa(X)) = d(a, a
1
2 ea−

1
2 Xa−

1
2 a

1
2 ) = ‖X‖a .

Corollary 3.1. If X,Y ∈ B1(H)h commute we have

‖X − Y ‖1 = d(eX , eY ).

In particular on each line RX ⊆ B1(H)h the exponential map preserves distances.

Definition 3.2. For every p ∈ R− {0} we define the p-energy functional

Ep : Ωa,b → R+, Ep(α) :=
∫ 1

0

(‖α̇(t)‖α(t))pdt.

Remark 3.2. 1. For p = 1 we obtain the length functional

l(α) :=
∫ 1

0

‖α̇(t)‖α(t)dt,

and for p = 2 we obtain the energy functional

E(α) :=
∫ 1

0

(‖α̇(t)‖α(t))2dt,
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2. For any curve α such that ‖α̇(t)‖α(t) is constant we have

Ep(α) = (l(α))p = (E(α))
p
2 .

In Theorem 3.2 we have proved that the geodesic between a and b minimizes the
length functional. This fact is valid also for the p-energy functional (associated
with Ωa,b) for p ∈ (1,∞).

Proposition 3.1. Let a, b ∈ ∆1 and p ∈ [1,∞). Then the p-energy functional

Ep : Ωa,b → R+ Ep(α) :=
∫ 1

0

(‖α̇(t)‖α(t))pdt,

takes on its minumum global dp(a, b) precisely on γa,b.

Proof. Now, let α ∈ Ωa,b and p ∈ (1,∞) then by Hölder´s inequality

(l(α))p = (
∫ 1

0

‖α̇(t)‖α(t)dt)p ≤
∫ 1

0

(‖α̇(t)‖α(t))pdt = Ep(α).

On the other hand, (l(γa,b))p = Ep(γa,b). This implies

Ep(γa,b) = (l(γa,b))p ≤ (l(α))p ≤ Ep(α).

�

Proposition 3.2. Given a, b ∈ ∆1 , g ∈ Gl(H,B1(H)) we get

1.
d(a, b) = d(a−1, b−1).

2. For all t ∈ R
d(a, a ]t b) = |t| d(a, b).

3. Invariance under the action by Gl(H,B1(H))

d(a, b) = d(gag∗, gbg∗).

Proof. 1. It is easy to see that S(a/b) = −a 1
2 log(b−1/a−1)a

1
2 , as a consequence

from log(1/t) = −log(t). Then

d(a, b) = ‖log(a− 1
2 ba−

1
2 )‖1 = ‖a− 1

2S(a/b)a−
1
2 ‖1

= ‖ − a−
1
2 a

1
2 log(a

1
2 b−1a

1
2 )a−

1
2 a

1
2 ‖1

= ‖ − log(a
1
2 b−1a

1
2 )‖1 = d(a−1, b−1).

2. It is obvious that S(a, a ]t b) = tS(a/b), then

d(a, a ]t b) =
∥∥∥a− 1

2S(a/a ]t b)a−
1
2

∥∥∥
1

= |t|
∥∥∥a− 1

2S(a/b)a−
1
2

∥∥∥
1

= |t| d(a, b).

3. Note that if γa,b is the geodesic joining a with b, then

‖g ˙γa,b(t)g∗‖gγa,b(t)g∗
= ‖ ˙γa,b(t)‖γa,b(t)

.

�
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Definition 3.3. For a, b ∈ ∆1 , we call the midpoint of a and b, and we denote by
m(a, b) (following the notation used in [14]) to

m(a, b) := a] 1
2
b.

By the Proposition 3.2 and the last definition we have that:

1. m(a, b) = a] 1
2
b = b] 1

2
a = m(b, a).

2. d(a,m(a, b)) = 1
2d(a, b) = 1

2d(b, a) = d(b,m(b, a)).

4. Convexity of the geodesic distance

The purpose of this section is to show that the norm of the Jacobi field along to
a geodesic γ is a convex function.

Definition 4.1. A vector field J along to a geodesic γ (i.e. J(t) ∈ (T∆1)γ(t) for all
t) is a Jacobi field if

D2J

dt2
+R(J, V )V = 0. (4.1)

where V (t) = γ̇(t) and R(X,Y )Z the curvature tensor.

Theorem 4.1. If J(t) is a Jacobi field along the geodesic γ(t), then ‖J(t)‖γ(t) is a
convex map of t ∈ R. ∈ R.

The method of the following proof is based on a similar argument used in [8].

Proof. Notice that by the invariance of the connection and the metric under the
action of Gl(H,B1(H)) we may supose that γ(t) = etX is a geodesic starting at
γ(0) = 1, where X ∈ B1(H)h.
Then for the field K(t) = e−

tX
2 J(t)e−

tX
2 the differential equation (4.1) changes to

4K̈ = KX2 +X2K − 2XKX. (4.2)

Since the group Gl(H,B1(H)) acts by isometries, we have

‖J(t)‖γ(t) = ‖γ(t)− 1
2 J(t)γ(t)−

1
2 ‖1 = ‖K(t)‖1,

thus the proof reduces to show that for any solution K(t) of (4.2), the map t →
‖K(t)‖1 is convex for t ∈ R.
Fix u < v ∈ R and let t ∈ [u, v]. We shall prove that

‖K(t)‖1 ≤
v − t

v − u
‖K(u)‖1 +

t− u

v − u
‖K(v)‖1.
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Let X =
∑
i∈N

λi〈., ei〉ei be the spectral decomposition of X ∈ B1(H)h where {ei :

i ∈ N} is an orthonormal basis of H.
Consider the matrix valued map

k(t) = (kij(t))i,j∈N,

where kij(t) = 〈K(t)ei, ej〉 for all t ∈ R.
The differential equation (4.2) is equivalent to the equations

k̈ij(t) = δ2ijkij(t),

where δij = λi−λj
2 .

A simple verification shows that all solutions of f̈(t) = c2f(t) satisfy

f(t) = φ(u, v, c; t)f(u) + ψ(u, v, c; t)f(v),

where

φ(u, v, c; t) =

{
Sinh c(v−t)
Sinh c(v−u) if c 6= 0;
(v−t)
(v−u) , if c=0.

ψ(u, v, c; t) =

{
Sinh c(t−u)
Sinh c(v−u) if c 6= 0;
(t−u)
(v−u) , if c=0.

Then each kij(t) satisfies

kij(t) = φij(t)kij(u) + ψij(t)kij(v),

where φij(t) = φ(u, v, δij ; t) and ψij(t) = ψ(u, v, δij ; t). In matrix form

k(t) = Φ(t) ◦ k(u) + Ψ(t) ◦ k(v),
where Φ(t) = {φij(t)}, Ψ(t) = {ψij(t)} and ◦ denotes the Schur product of matri-
ces, i.e. {aij} ◦ {bij} = {aijbij}. Thus we have that

‖k(t)‖1 ≤ ‖Φ(t) ◦ k(u)‖1 + ‖Ψ(t) ◦ k(v)‖1. (4.3)

We make the following claim:

Claim 4.1. Let Ψ(t),Φ(t) and k(t) as above, then

1. ‖Φ(t) ◦ k(u)‖1 ≤ v−t
v−u‖k(u)‖1,

2. ‖Ψ(t) ◦ k(v)‖1 ≤ t−u
v−u‖k(v)‖1.

Proof. We only prove the first inequality, the second is analogous. Define for each
n ∈ N and A = {aij}i,j∈N

An =
{
aij if 1 ≤ i, j ≤ n;
0 otherwise.
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Note that if n→∞,

Φ(t) ◦ k(u)n

‖.‖1
−→ Φ(t) ◦ k(u), (4.4)

since

‖Φ(t) ◦ k(u)n − Φ(t) ◦ k(u)‖1 ≤ max
i>n

|φii(t)|
∑
i>n

|kii(u)| (4.5)

=
(v − t)
(v − u)

∑
i>n

|〈K(u)ei, ei〉|

≤
∑
i>n

|〈K(u)ei, ei〉| → 0.

Next we use a theorem by Ando, Horn and Johnson ([3]), according to which if A
and P are n× n matrices, with P positive semidefinite, then

‖A ◦ P‖1 ≤ (max
1≤i≤n

pii) ‖A‖1 .

Thus

‖Φ(t) ◦ k(u)n‖1 = ‖Φ(t)n ◦ k(u)n‖1 ≤ (max
1≤i≤n

φii(t))‖k(u)n‖1. (4.6)

We conclude from (4.4) and (4.6) that

‖Φ(t) ◦ k(u)‖1 ≤
v − t

v − u
‖k(u)‖1.

�

Consequently we get

‖k(t)‖1 ≤
v − t

v − u
‖k(u)‖1 +

t− u

v − u
‖k(v)‖1.

�

Remark 4.1. For each n ∈ N both matrices, Φ(t)n and Ψ(t)n, are positive definite.
This follows from Bochner’s Theorem applied to Φ(u, v, c; t)n and Ψ(u, v, c; t)n

considered as functions of c. In both cases the matrix is of the form {F (λi−λj)}n

where F (c) is the Fourier transform of a positive function (see [9], formula 1.9.14,
page 31).

A consequence of this result follows:

Theorem 4.2. Let γ(t), ρ(t) be geodesics in ∆1 , then t→ d(γ(t), ρ(t)) is a convex
map in R.

Proof. Suppose the γ(t) and σ(t) are defined in [u, v]. We consider h(s, t) defined
as follows:

1. the map s→ h(s, u), 0 ≤ s ≤ 1 is the geodesic joining γ(u) with ρ(u);



14 Cristian Conde IEOT

2. the map s→ h(s, v), 0 ≤ s ≤ 1 is the geodesic joining γ(v) with ρ(v);
3. for each s, the function t → h(s, t), u ≤ s ≤ v is the geodesic joining h(s, u)

with h(s, v).

Let J(s, t) = ∂h(s,t)
∂s . Hence, for each fixed s, t → J(s, t) is Jacobi field along the

geodesic t→ h(s, t). Finally, we define

f(t) =
∫ 1

0

‖J(s, t)‖h(s,t)ds.

From Theorem 4.1, t → ‖J(s, t)‖h(s,t) is a convex function for each s. Hence,
t→ f(t) ia also convex for t ∈ [u, v]. But f(u) =

∫ 1

0
‖J(s, u)‖h(s,u)ds is the lenght

of s→ h(s, u) and therefore f(u) = d(γ(u), ρ(u)). Similarly, f(v) = d(γ(v), ρ(v)).
Now, for u ≤ t ≤ v f(t) =

∫ 1

0
‖J(s, t)‖h(s,t)ds is the lenght of the curve s→ h(s, t)

which joins γ(t) with ρ(t) and then we get d(γ(t), ρ(t)) ≤ f(t). Convexity of
d(γ(t), σ(t)) follows and the Theorem is proved. �

Remark 4.2. A particular consequence of the above theorem is that there are no
closed nonconstant geodesics in ∆1. Indeed if α : [0, 1] → ∆1 is a nonconstant
geodesic such that α(0) = α(1) = a, then for all t ∈ (0, 1)

0 < d(a, α(t)) ≤ td(a, α(0)) + (1− t)d(a, α(1)) = 0.

Definition 4.2. A subset K of ∆1 is called convex if for all a, b ∈ K the geodesic
γa,b, joining a and b, is contained in K.

Corollary 4.1. Let a, b, c ∈ ∆1 . Then for all t ∈ [0,1]

d(a]tb, a]tc) ≤ td(b, c). (4.7)

In particular,

d(bt, ct) ≤ td(b, c).

There is a clear interpretation of the corollary above. In a Riemannian manifold
M , the sectional curvature is nonpositve if and only if

d(ρs(x), ρs(y)) ≤ sd(x, y),

for all x, y ∈ M and all s ∈ [0, 1], where ρs(x) = expp(s exp−1
p (x)) and p ∈ M is

fixed (see [4]). This expression reduces, in our (non Riemannian) case to

d(p ]sx, p ]sy) ≤ sd(x, y),

which is (4.7).
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Corollary 4.2. Let a ∈ ∆1 , a fixed. Then

f(γ(t)) ≤ (1− t)f(γ(0)) + tf(γ(1)),

where f(x) = d(a, x) and γ(t) is a geodesic. In particular, geodesics spheres are
convex sets.

4.1. The Metric Increasing Property of the Exponential Map

In this section we provide a proof of the metric increasing property (MIP) of the
exponential map (Theorem 4.3) which is based on the exposition in Corach, Porta
and Recht [8]. We begin with a lemma of approximation.

Lemma 4.1. Let γ(t) be a curve in ∆1 , then log(γ(t)) can be approximated uni-
formly by polynomials for t ∈ [t0, t1].

Proof. Throughout the proof Hol(G) and S2 denote the set of all complex analytic
functions defined in G, with G an open set of complex plane and the Riemann
sphere, respectively. Let σ(t) be the spectrum of γ(t), σ(γ) =

⋃
t∈[t0,t1]

σ(t) be the

spectrum of γ in the algebra C([0, 1],L1) and G ⊆ C − {z : Im(z) ≤ 0} an open
neighbourhood of σ(γ).
Since σ(γ) is compact, S2 − σ(γ) is connected and log(z) ∈ Hol(G) then there is
a sequence Pn of polynomials such that Pn(z) → log(z) uniformly on σ(γ) ([20],
Theorem 13.7).
Since Pn(z) are all analytic on G, σ(γ) ⊆ G, and Pn(z) → log(z) uniformly on
compact subsets of G, then ‖Pn(γ(t))− log(γ(t))‖1 → 0 as n→∞. �

The Finsler structure of ∆1 is not Riemannian. However ∆1 shares some property
with Riemannian manifolds of non-positive sectional curvature. For instance, the
following

Theorem 4.3. The exponential map in ∆1 increases distances, i.e. for all a ∈ ∆1 ,
X,Y ∈ B1(H)h we have

d(expa(X), expa(Y )) ≥ ‖X − Y ‖a . (4.8)

Proof. Let γ1(t) = etX ,γ2(t) = etY and f(t) = d(γ1(t), γ2(t)). By Theorem 4.2, f
is convex, with f(0) = 0. Hence f(t)

t ≤ f(1) for all t ∈ (0, 1]. Note that

f(t)
t

=
1
t

∥∥∥log(etX/2e−tY etX/2)
∥∥∥

1
= tr

∣∣∣∣1t log(etX/2e−tY etX/2)
∣∣∣∣ .

Taking limits we have

lim
t→0+

f(t)
t

≤ f(1).
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Observe next that by the previous lemma, log x can be approximated on any
interval [x0, x1] with 0 < x0 < x1 uniformly by polinomials Pn(x). In particular

lim
n→∞

Pn(x) = log x and lim
n→∞

Ṗn(x) =
1
x
.

(in morm ‖.‖1).
Then

lim
t→0+

∣∣∣∣1t log(etX/2e−tY etX/2)
∣∣∣∣ = |X − Y | .

From this inequality and convexity we conclude that

f(t) ≥ t ‖X − Y ‖1 .

This implies that
d(expa(tX), expa(tY )) ≥ t ‖X − Y ‖a for all a ∈ ∆1 , and all X,Y ∈ B1(H)h. �

Remark 4.3. For a = 1, from the theorem above we get

‖X − Y ‖1 ≤
∥∥∥log(e−X

2 eY e−
X
2 )

∥∥∥
1
,

for X,Y ∈ B1(H)h, which can also be written

‖logx− logy‖1 ≤
∥∥∥log(x− 1

2 yx−
1
2 )

∥∥∥
1
, (4.9)

with x, y ∈ ∆1 .

Proposition 4.1. ∆1 is a complete metric space with the geodesic distance.

Proof. Consider a Cauchy sequence Xn ⊂ ∆1 . By (4.9) Yn = log(Xn) is a Cauchy

sequence in B1(H)h. Then there exists an operator Y ∈ B1(H)h such that Yn
‖.‖1−→

Y . Hence

d(Xn, e
Y ) =

∥∥∥log(eY
2 e−Yne

Y
2 )

∥∥∥
1
→ 0,

when n→∞. �
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5. Non-positive Curvature

5.1. Metrics spaces of non-positive curvature

It would be very interesting to understand the relations between the geodesic
distance and general metric spaces with non-positive curvature.
In this section, we will briefly review some basic facts about these spaces. About
fifty years ago Alexandrov showed that the notions of upper and lower curvature
bounds make sense for a more general class of metric spaces than Riemannian
manifolds, namely, for geodesic spaces. One of the first papers on non-positively
curved spaces was written by Busemann in 1948. For more details on metric spaces
with non-positive curvature we refer to [14].
We now introduce the notion of midpoint maps and Busemann’s notion of non-
positive curvature in a metric space (X, d).

Definition 5.1. Let (X, d) be a metric space. A symmetric map M : X ×X −→ X

is called a midpoint map for (X, d) if for all x, y ∈ X

d(M(x, y), x) =
1
2
d(x, y) = d(M(x, y), y).

Definition 5.2. A complete metric space (X, d) is called a geodesic length space,
or simply a geodesic space, if for any two points x, y ∈ X, there exists a shortest
geodesic joining them, i.e. a continuous curve such that γ : [0, 1] → X with γ(0) =
x, γ(1) = y, and

d(x, y) = ld(γ).

Here, ld(γ) denotes the length of γ (respect to the metric d) and it is defined as

ld(γ) := sup{
n∑

i=1

d(γ(ti−1), γ(ti)) : 0 = t0 < t1 < ... < tn = 1, n ∈ N}.

A curve γ : [0, 1] → X is called a geodesic if there exists ε > 0 such that

ld(γ
∣∣
[t,t′] ) = d(γ(t), γ(t′)) whenever |t− t′| < ε.

Finally, a geodesic γ : [0, 1] → X is called a shortest geodesic if

ld(γ) = d(γ(0), γ(1)).

In particular, for the metric space (∆1, d) the geodesics γa,b (in the sense of the
equation (2.1)) are also shortest geodesic, since
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ld(γa,b) = sup{
n∑

i=1

d(γa,b(ti−1), γa,b(ti)) : 0 = t0 < t1 < ... < tn = 1, n ∈ N}

= sup{
n∑

i=1

l(γa,b

∣∣
[ti−1,ti]) : 0 = t0 < t1 < ... < tn = 1, n ∈ N}

= sup{
n∑

i=1

∫ ti

ti−1

‖γ̇a,b(t)‖γa,b(t)
dt : 0 = t0 < t1 < ... < tn = 1, n ∈ N}

= l(γa,b).

this equality implies that γa,b is also a geodesic in the metric sense

ld(γa,b

∣∣
[t,t′]

)
= l(γa,b

∣∣
[t,t′] ) = d(γa,b(t), γa,b(t′)).

Then
ld(γa,b) = l(γa,b) = d(γa,b(0), γa,b(1)).

By the above argument, we have the following statement

Proposition 5.1. The metric space (∆1, d) is a geodesic space and m( . , . ) is a
midpoint point corresponding to the shortest geodesic γa,b for all a, b ∈ ∆1 .

Definition 5.3. Let (X, d) be a metric space and m : X × X −→ X be a mid-
point map for (X, d). Then (X, d) is said to be a m-global Busemann non-positive

curvature space (m− global BNPC) if for all x, y, z ∈ X

d(m(x, y),m(x, z)) ≤ 1
2
d(y, z). (5.1)

Remark 5.1. The m-global BNPC condition is equivalent to m is a convex midpoint
map, i.e. for all x1, x2, y1, y2 ∈ X

d(m(x1, y1),m(x2, y2)) ≤
1
2
(d(x1, x2) + d(y1, y2)).

Theorem 5.1. The space (∆1, d) is a m-global Busemann NPC space.

Here, we introduce the notion of convex hull of a subset K.

Definition 5.4. Let (X, d) be a geodesic length space. The convex hull C(K) of a
subset K of X is the smallest convex subset of X containing K.

In general, the convex hull of a set K as defined above need not exist, because the
intersection of convex subsets of X need not be convex. Nevertheless, for (∆1, d)
there is a constructive approach to compute C(K) due to its Busemann NPC
structure.
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Proposition 5.2. For any K ⊆ ∆1, the convex hull C(K) exists and can be obtained
as follows

C(K) =
∞⋃

n=0

Kn.

where K0 = K and Kn :=
⋃
{a ]t b : a, b ∈ Kn−1}.

Proof. Lemma 3.3.1 ([14]). �

5.2. An alternative definition of sectional curvature

In this section, we shall see that it is possible to give an alternative definition of
sectional curvature in ∆1 . For this, we remember that in [17] Milnor recalls that
the sectional curvature, sa(X,Y ), can be obtained by the following limit

sa(X,Y ) = 6 lim
r→0+

r ‖X − Y ‖a − d(expa(rX), expa(rY ))
r2d(expa(rX), expa(rY ))

.

where X,Y are tangent vectors at a point a. We will see that this limit makes
sense in our context.
Suppose that r > 0 is close to 0 such that e−rX/2erY e−rX/2 lies within the radius
of convergence of the series log(u). Them

log(e−rX/2erY e−rX/2) = r(Y −X) + r3κ(X,Y ) + o(r3),

where

κ(X,Y ) =
1
6
Y XY +

1
12
XYX − 1

12
(XY 2 + Y 2X)− 1

24
(X2Y + Y X2).

Before stating the existence of the limit above we need the following definiton and
lemmas.

Definition 5.5. Let V a vector space and f be a function from V to R ∪ {+∞}.
We shall say that Df(x0)(v) is the right derivate of f at x0 in the direction v if
the limit

Df(x0)(v) = lim
t→0+

f(x0 + tv)− f(x0)
t

.

exists. In this case, we denote by v → Df(x0)(v) the right derivate of f at x0.

Remark 5.2. ([1], Proposition 4.1) Let V a vector space and f be a nontrivial
convex function from V to R ∪ {+∞}. Suppose x0 ∈ Dom(f) and v ∈ V . Then
the limit Df(x0)(v) exists in R and satisfies

f(x0)− f(x0 − v) ≤ Df(x0)(v) ≤ f(x0 + v)− f(x0).

For a ∈ ∆1 , we denote by

Pa : (T∆1)a → R+, Pa(X) = ‖X‖a
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Lemma 5.1. For a ∈ ∆1 , Pa is a convex function. Moreover, Pa is right differen-
tiable on B1(H)h and satisfies

‖X‖a − ‖X − Y ‖a ≤ DPa(X)(Y ) ≤ ‖X + Y ‖a − ‖X‖a .

Proof. By the remark 5.2 it suffices to prove that Pa is convex. Clearly this is
obvious for the usual properties of a norm, since for all λ ∈ (0, 1)

Pa(λX + (1− λ)Y ) ≤ λPa(X) + (1− λ)Pa(Y ).

�

Theorem 5.2. Let a ∈∆1 and X,Y ∈ B1(H)h. The limit

sa(X,Y ) = lim
r→0+

r ‖X − Y ‖a − d(expa(rX), expa(rY ))
r2d(expa(rX), expa(rY ))

exists and verifies

1−
‖Y −X + κ(X,Y )‖1

‖X − Y ‖1

≤ sa(X,Y ) ≤ 0.

Proof. Since the metric on B1(H)h and the geodesic distance are invariant by the
action of Gl(H,B1(H)), it suffices to consider the case a = 1. Note that

lim
r→0+

1
r
d(erX , erY ) = lim

r→0+

∥∥Y −X + r2κ(X,Y ) + o(r2)
∥∥

1
= ‖Y −X‖1 .

Them it is enough to show the existence of the following limit

lim
r→0+

1
r3

(r ‖X − Y ‖1 −
∥∥r(Y −X) + r3κ(X,Y ) + o(r3)

∥∥
1
),

which is equivalent to the existence of the limit

lim
r→0+

1
r2

(‖X − Y ‖1 −
∥∥(Y −X) + r2κ(X,Y )

∥∥
1
).

But this exists and is equal to −DP1(Y −X)(κ(X,Y )) and therefore

s1(X,Y ) =
−DP1(Y −X)(κ(X,Y ))

‖Y −X‖1

.

By the MIP property this limit is non positive. On the other hand,

−DP1(Y −X)(κ(X,Y )) ≥ ‖Y −X‖1 − ‖Y −X + κ(X,Y )‖1

and therefore s1(X,Y ) ≥ 1− ‖Y−X+κ(X,Y )‖1
‖X−Y ‖1

. �
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