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We prove that the Kleene structure in a σ -complete MV-algebra with
product is sufficient to recover the MV-structure.

1 INTRODUCTION

A natural problem is to find classes of MV-algebras that are characterized
by their underlying order structure, in the sense that order isomorphic
algebras are isomorphic.

As a well known example we mention the class of finite MV-algebras.
Indeed, since a finite chain admits only one MV-algebra structure, and finite
MV-algebras are direct products of finitely many finite chains, it follows
that order isomorphic finite MV-algebras are isomorphic. In [6] this result
was generalized to the class of liminary MV-algebras, i.e., MV-algebras
with prime lattice filters occurring in disjoint finite chains.

The underlying lattice of an MV-algebra admits an involution, given by
negation. More precisely, it is a Kleene algebra (see §1). Since a finite chain
admits a unique structure of a Kleene algebra, the underlying lattices of the
MV-algebras considered above admit a unique Kleene algebra structure.
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But an infinite chain may admit non-isomorphic Kleene algebra structures.
Therefore, in the absence of finiteness conditions it seems more appropriate
to look for classes of MV-algebras that are characterized by their underlying
Kleene algebra structure (see [9, 10]). In this note we show that σ -complete
MV-algebras with product are characterized by their underlying Kleene
algebra structure. This example is interesting because these algebras play
an important role in MV-algebraic probability theory [14].

2 BASIC NOTIONS

Kleene algebras
A De Morgan algebra is an algebra 〈A,∨,∧,¬, 0, 1〉 such that L(A) =
〈A,∨,∧, 0, 1〉 is a distributive lattice with a smallest element 0 and a
greatest element 1, and the operation ¬ : A → A satisfies the identities
¬¬x = x and ¬(x ∨ y) = ¬x ∧ ¬y. A Kleene algebra is a De Morgan
algebra satisfying the identity

x ∧ ¬x ≤ y ∨ ¬y. (K)

Kleene algebras coincide with those De Morgan algebras that can be
represented as subdirect products of totally ordered De Morgan algebras.
Notice that Boolean algebras are the De Morgan algebras that satisfy the
identity x ∨ ¬x = 1. A systematic study of De Morgan and Kleene algebras
can be found in [1, Chapter XI].

We say that a Kleene algebra A is centered if there is a z ∈ A such
that ¬z = z. It follows at once from condition (K) that this z is unique. It
is called the center of A. Recall that a homomorphism between Kleene
algebras is a lattice homomorphism which preserves the bottom, the top,
and the negation ¬. We state, for further reference, the following property:

2.1 All homomorphic images of a centered Kleene algebra are centered
Kleene algebras. ✷

Given a distributive lattice L with 0 and 1, we say that an element x ∈ L

is boolean iff it is complemented, in the sense that there is a (unique)
y ∈ L such that x ∨ y = 1 and x ∧ y = 0. The set of boolean elements of
L is the universe of a sublattice of L which turns out to be a boolean
algebra. This boolean algebra is called the boolean skeleton of L, and will
be denoted by B(L).

Since every Kleene algebra A is a subdirect product of totally ordered
algebras, then for each x ∈ B(L(A)), the element ¬x coincides with the
complement of x, i.e., x ∨ ¬x = 1 and x ∧ ¬x = 0. This property is crucial
in the proof of the following well-known result (see [4, Lemma 4.3]):
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2.2 Let A be a Kleene algebra and let J be an ideal of the boolean
algebra B(L(A)). Let the binary relation ≡J be defined by the stipulation
a ≡J b iff there is j ∈ J such that a ∨ j = b ∨ j . Then ≡J is a congruence
of A. ✷

The quotient algebra A/≡J will be denoted by A/J , and the equivalence
class of an element a by a/J . With these notations we have:

2.3 If h is an isomorphism of a Kleene algebra A onto a Kleene algebra
B, then the restriction h of h to B(L(A)) is an isomorphism of the boolean
algebra B(L(A)) onto the boolean algebra B(L(B)), and for each ideal J in
B(L(B)), the correspondence a/h−1(J ) 
→ h(a)/J defines an isomorphism
from A/h

−1(J ) onto B/J . ✷

MV-algebras
An MV-algebra A = 〈A, 0,⊕,¬〉 is an algebra where the operation
⊕ : A × A → A is associative and commutative with 0 as the neutral
element, the operation ¬ : A → A satisfies the identities ¬¬x = x and
x ⊕ ¬0 = ¬0, and, in addition,

y ⊕ ¬(y ⊕ ¬x) = x ⊕ ¬(x ⊕ ¬y). (1)

The real unit interval [0, 1] equipped with the operations x ⊕ y =
min(1, x + y) and ¬x = 1 − x is an MV-algebra, called the standard
MV-algebra. The defining equations of MV-algebras express all equational
properties of the standard MV-algebra (Chang completeness theorem [3],
[5, 2.5]). Equation (1), in particular, states that the maximum operation
over [0, 1] is commutative. Upon adding x ⊕ x = x to the equations of
MV-algebras one obtains the variety of boolean algebras. Thus MV-algebras
may be regarded as a non-idempotent equational generalization of boolean
algebras. Following common usage, for any elements x, y of an MV-algebra,
we shall use the abbreviations

1 = ¬0, x � y = ¬(¬x ⊕ ¬y), x � y = x � ¬y,
x ∨ y = x ⊕ ¬(x ⊕ ¬y), x ∧ y = x � ¬(x � ¬y). 1

For every MV-algebra A, its lattice reduct L(A) = 〈A,∨,∧, 0, 1〉 is a
bounded distributive lattice with 1 and 0 as top and bottom elements,
respectively, and K(A) := 〈A,∨,∧,¬, 0, 1〉 is a Kleene algebra. For any
MV-algebra A, we shall write B(A) for B(L(A)). It is a subalgebra of A.
Given z ∈ B(A), we have z ⊕ x = z ∨ x and z � x = z ∧ x for each x ∈ A.

An MV-algebra A is σ -complete (resp., complete) iff L(A) is σ -complete
(resp., complete). Equivalently, every sequence (resp., every family) of
elements of A has a supremum in A.

1 Unless otherwise specified, all MV-algebras in this paper shall be nontrivial, i.e., 0 �= 1.
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Remark 1 Since the lattice operations of an MV-algebra A are defined
from the operations ⊕ and ¬, it follows that for every subalgebra S of A,
L(S) is also a sublattice of L(A), with preservation of 0 and 1. However,
a subalgebra S of a σ -complete MV-algebra A need not be closed under
the denumerable lattice operations. We say that S is a σ -subalgebra of
A iff

∨
n∈N an ∈ S for every denumerable family {an}n∈N of elements of

S. Analogously, given σ -complete MV-algebras A,B, a homomorphism
h : A → B (i.e., h(0) = 0, h(x ⊕ y) = h(x) ⊕ h(y), and h(¬x) = ¬h(x)))
is also a lattice homomorphism. In case h also preserves the denumerable
lattice operations, we shall say that h is a σ -homomorphism. If, in addition,
h is an isomorphism (i.e., h is injective and surjective), then it is an
order-isomorphism. It follows that h preserves all existing suprema and
infima, whence h is a σ -isomorphism.

An easy adaptation of the proof of [5, Lemma 6.6.4] shows that if the
supremum (or the infimum) of a family of elements of B(A) exists in A,
then it belongs to B(A). Then we have:

2.4 If A is a σ -complete MV-algebra, then B(A) is a σ -complete boolean
algebra, and the σ -infinitary operations of B(A) agree with the restrictions
of the corresponding operations of A. ✷

IfG is a lattice-ordered abelian group (�-group for short) and u is a strong
order unit of G, �(G,u) denotes the MV-algebra 〈[0, u],⊕,¬, 0〉 where
[0, u] := {x ∈ G | 0 ≤ x ≤ u} and the operations ⊕ and ¬ are defined by
x ⊕ y := u ∧ (x + y), and ¬x := u − x. MV-algebras of the form �(G,u)
are the most general examples of MV-algebras. Indeed, it was shown in
[12] (see also [5, Section 7]) that � defines an equivalence between the
category of MV-algebras and homomorphisms, and the category whose
objects are �-groups with a distinguished strong order unit and whose
morphisms are unit preserving �-group homomorphisms. In particular we
have 〈[0, 1], min (1, x + y),¬, 0〉 = �(R, 1).

For each n = 1, 2, 3, . . . , the symbolLn+1 will denote the finite subalgebra
of the standard MV-algebra [0, 1] formed by the fractions with denominator
n:

Ln+1 =
{
0,

1

n
, . . . ,

n − 1

n
, 1

}
⊆ [0, 1]. (2)

We have Ln+1 = �( 1
n
Z, 1), where Z denotes the additive group of the

integers with its usual order.
Following [8], we say that an �-group G is Dedekind σ -complete if

every nonempty denumerable subset of G which is bounded above in G

has a supremum in G. We have:
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2.5 An MV-algebra A is σ -complete iff A ∼= �(G,u) for a Dedekind
σ -complete �-group G with strong order unit u. ✷

Functional representation of σ -complete MV-algebras
Given an MV-algebra A, X (A) will denote the set of homomorphisms
of A into the standard MV-algebra [0, 1]. It is well known that the map
χ 
→ Ker χ = {a ∈ A | χ (a) = 0} is a one-one correspondence between
X (A) and the set of maximal ideals of A. In particular, X (A) �= ∅ for
every (nontrivial) A (see [5, Corollary 1.2.15]). The set X (A) becomes
a compact Hausdorff space with the topology inherited from the product
space [0, 1]A, where [0, 1] is endowed with its usual topology as a subspace
of R. An open subbasis for the topology of X (A) is given by the sets of
the form: Wa,U = {χ ∈ X (A) | χ (a) ∈ U}, for a ∈ A and U open in [0, 1].

Given a compact Hausdorff space X, we denote by C(X) the MV-algebra
of all [0, 1]-valued continuous functions onX, with the pointwise operations.
It follows from [8, Lemma 9.10] and 2.5 that C(X) is σ -complete iff X
is basically disconnected, i.e., the closure of every open Fσ -set in X is
open. As is well known, basically disconnected compact Hausdorff spaces
are precisely the dual spaces of σ -complete boolean algebras.

Let A be a σ -complete MV-algebra. For each a ∈ A, let a = ∨
n∈N n.a,

where n.a is defined inductively by 0.a = 0 and (n + 1).a = a ⊕ n.a. It
follows from [8, Lemma 9.8] that a ∈ B(A). Moreover, in the proof of
[8, Theorem 9.9] it is shown that a ∧ b = 0 implies a ∧ b = 0. Thus, if
a ∧ b = 0 there is a z ∈ B(A) such that a ≤ ¬z and b ≤ z. As a consequence
we have (see [7, Theorem 3.3 (iii)] or [8, Theorem 8.1]):

2.6 Let A be a σ -complete MV-algebra. Given a maximal ideal M of
the boolean algebra B(A), there is a unique χ = χM ∈ X (A) such that
Ker χ ∩ B(A) = M . ✷

Let A be a σ -complete MV-algebra. By 2.4, B(A) is a σ -complete
boolean algebra. Hence the set of maximal ideals of B(A) equipped with
the Stone topology is a basically disconnected compact Hausdorff space
that we denote by M(B(A)). We say that M ∈M(B(A)) is discrete if
χM (A) is a finite subalgebra of the standard algebra [0, 1]. We shall
denote by Disc (A) the set of all discrete maximal ideals of B(A).
To each a ∈ A, we associate the function â :M(B(A)) → [0, 1] defined
by the stipulation: â(M) = χM (a), for each M ∈M(B(A)). Since the
correspondence M 
→ χM defines a homeomorphism of M(B(A)) onto
X (A), it follows that â ∈ C(M(B(A))). More precisely, we have the
following MV-algebraic version of the Goodearl–Handelman–Lawrence
Theorem for Dedekind σ -complete �-groups [8, Corollary 9.14] (see [13,
Lemma 6.1]):
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Theorem 1 LetAbeaσ -completeMV-algebra,and let Âbe theσ -subalgebra
of C(M(B(A))) defined as follows:

Â = {f ∈ C(M(B(A))) | f (M) ∈ χM (A) for all M ∈ M(B(A))}.
Then the correspondence a 
→ â defines an isomorphism of A onto Â.

Notice that by Remark 1, the isomorphism a 
→ â preserves denumerable
suprema and infima.

3 σ -COMPLETE MV-ALGEBRAS WITH PRODUCT

Definition 1 [11] An MV-algebra A with product is an algebra 〈A,⊕, ·,
¬, 0〉 such that 〈A,⊕,¬, 0〉 is an MV-algebra and · is a binary operation
(called product) which is commutative, associative, and satisfies the following
conditions for all a, b, c ∈ A:

• 1 · a = a ,
• a · (b � ¬c) = (a · b) � ¬(a · c) .
The standard MV-algebra [0, 1] endowed with the ordinary multiplication

of real numbers is an example of an MV-algebra with product. In [14,
3.1.3] it is shown that multiplication is the only binary operation satisfying
the conditions of Definition 1 that can be defined on subalgebras of the
standard algebra [0, 1]. Hence L2 is the only finite subalgebra of [0, 1]
which admits a product.

Lemma 1 Let A be an MV-algebra with product. Every MV-algebra
homomorphism χ : A → [0, 1] preserves the product, and χ (A) is a
subalgebra with product of [0, 1]. ✷

Proof: By [11, Lemma 2.11], all MV-congruences preserve the product.
Hence χ (a) = χ (a′) and χ (b) = χ (b′) imply that χ (a · b) = χ (a′ · b′).
Therefore the stipulation χ (a) ∗ χ (b) = χ (a · b) defines a binary operation
∗ on the image χ (A) which satisfies all the identities of Definition 1.
Consequently, ∗ must coincide with the usual multiplication of real
numbers. ✷

Lemma 2 LetAbeaσ -completeMV-algebrawithproductandχ : A → [0, 1]
be an MV-algebra homomorphism. Then the image χ (A) is either the
MV-algebra L2 or the whole standard MV-algebra [0, 1]. ✷

Proof: By Theorem 1, A is isomorphic to the σ -subalgebra Â of the
σ -complete MV-algebra C(M(B(A))). By Lemma 1, for all M ∈ Disc (A),
χM (A) = L2. Since {0, 1} is a closed subset of [0, 1], then Disc (A) is
closed in M(B(A)). Let M0 ∈M(B(A)) \ Disc (A), and let α ∈ χM0 (A).
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For any clopen set U such that M0 ∈ U ⊆M(B(A)) \ Disc (A), let the
function f :M(B(A)) → [0, 1] be defined by

f (M) =
{
α if M ∈ U,

0 otherwise.

Then f belongs to Â. Hence there is an a ∈ A such that â = f , and
α = â(M0) = χM0 (a) ∈ χM0 (A). ✷

Theorem 2 Let A1, A2 be σ -complete MV-algebras with product. If their
Kleene reducts K(A1) and K(A2) are isomorphic, then A1 and A2 are
isomorphic.

Proof: Let h be a (Kleene algebra) isomorphism of K(A1) onto K(A2).
Since for every MV-algebra A, B(L(K(A))) = B(L(A)) = B(A), with the
notation of 2.3 it follows that the correspondence M 
→ ψ(M) = h

−1(M)
defines a homeomorphism ψ from M(B(A2)) onto M(B(A1)). Further,
the quotient Kleene algebras K(A1)/ψ(M) and K(A2)/M are isomorphic.
Since MV-algebra homomorphisms are automatically Kleene algebra
homomorphisms, from M ⊆ Ker χM it follows that χψ(M)(K(A1)) and
χM (K(A2)) are homomorphic images of K(A1)/ψ(M) and of K(A2)/M ,
respectively.Supposethatχψ(M0)(A) = [0, 1].AsintheproofofLemma2,there
is a clopen U such that ψ(M0) ∈ U and the function f :M(B(A2)) → [0, 1]
defined by

f (M) =




1

2
for M ∈ U,

0 otherwise,

belongs to Â. Let k :M(B(A2)) → [0, 1] be defined by

k(M) =


0 if M ∈ U,

1 otherwise.

We have k = b̂ for some b ∈ M , and k ∨ f = k ∨ ¬f . Hence the equivalence
class f/ψ(M0) is the center of the Kleene algebra K(A1)/ψ(M0). Therefore
the isomorphic Kleene algebra K(A2)/M0 is also centered, and by 2.1,
χM0 (K(A2)) is centered. Hence, by Lemma 2 we get χM0 (A2) = [0, 1].
One similarly proves that if χM0 (A2) = [0, 1] then χψ(M0)(A1) = [0, 1],
whence χψ(M)(A1) = χM (A2) for each M ∈M(B(A2)). Consequently, for
each a ∈ A1, the composite map âψ belongs to Â2. Since, by Lemma 1,
MV-homomorphisms χM also preserve the product, we now easily conclude
that the correspondence a 
→ âψ defines an isomorphism of A1 onto A2. ✷
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Remark 2 The above theorem remains true if instead of assuming that
A1, A2 are σ -complete MV-algebras with product, we require that they are
σ -complete MV-algebras such that for each M ∈M(B(Ai)), and i = 1, 2,
χM (Ai) is either the standard MV-algebra [0, 1] or the finite chain Ln, for
some fixed even number n.
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