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Abstract. The aim of this paper is to give a description of the free algebras in some va-

rieties of Glivenko MTL-algebras having the Boolean retraction property. This description

is given (generalizing the results of [9]) in terms of weak Boolean products over Cantor

spaces. We prove that in some cases the stalks can be obtained in a constructive way

from free kernel DL-algebras, which are the maximal radical of directly indecomposable

Glivenko MTL-algebras satisfying the equation in the title. We include examples to show

how we can apply the results to describe free algebras in some well known varieties of

involutive MTL-algebras and of pseudocomplemented MTL-algebras.
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Introduction

The monoidal t-norm based logic, MTL for short, was introduced by Esteva
and Godo in [16] as an attempt to formalize fuzzy logics in which the con-
junction is interpreted by a left-continuous t-norm on the real segment [0, 1]
and the implication by its corresponding adjoint. The completeness of MTL
with respect to left-continuous t-norms was proved by Jenei and Montagna
[23]. Adding the double negation axiom one obtains the involutive monoidal
t-based logic, IMTL, which corresponds to involutive left-continuous t-norms.
[15]. These logics are algebraizable in the sense of Blok and Pigozzi [3], and
the corresponding algebraic semantics are the varieties MTL and IMTL of
MTL-algebras and of IMTL-algebras, respectively.

MTL is an axiomatic extension of Höhle Monoidal Logic [21]. Hence
MTL is a variety of residuated lattices and IMTL is a variety of involutive
residuated lattices or Girard monoids (see [21]).

∗The second author was partially supported by grants MTM2004-03101 and TIN2004-
07933-C03-02 of M.E.C. of Spain

Special issue of Studia Logica in memory of Willem Johannes Blok
Edited by Joel Berman, W. Dziobiak, Don Pigozzi, and James Raftery
Received June 29, 2005, Accepted December 7, 2005

Studia Logica (2006) 83: 155–179 c©Springer 2006



156 R. Cignoli and A. Torrens

It turns out that Hájek Basic Fuzzy Logic (BL for short) [19], the logic
of continuous t-norms [5] (see also [12]), is an axiomatic extension of MTL.
The involutive basic fuzzy logic coincides with ÃLukasiewicz infinite-valued
logic [19]. Hence the variety BL of BL-algebras is a subvariety of MTL, and
the variety MV of MV-algebras is a subvariety of IMTL. Other interesting
axiomatic extension of IMTL is the minimum nilpotent logic, which is the
logic corresponding to Fodor’s nilpotent minimum left-continuous t-norm
(see [16]). The algebraic semantics of this logic is the variety NM of NM-
algebras. This variety is investigated in [18].

We say that a variety V of MTL-algebras has the Boolean retraction
property provided each algebra in V admits a homomorphism onto the sub-
algebra of its Boolean elements. Varieties of BL-algebras with the Boolean
retraction property were investigated in [9], with the purpose of obtaining
information on the structure of free algebras in such varieties. Our aim in
this paper is to show how the results of [9] can be generalized to obtain
information on the structure of free algebras in varieties of MTL-algebras.
We also correct some erroneous statements in that paper.

It was shown in [9, Theorem 4.5] that a variety V of BL-algebras has the
Boolean retraction property if and only the equation in the title, which was
introduced by Di Nola and Lettieri [14] in the context of MV-algebras, holds
in V. This result remains true for varieties of MTL-algebras satisfying also
the equation

¬¬(¬¬x → x) = >.

In the light of the results of [11] (see also [9]), we call the MTL-algebras sat-
isfying this equation Glivenko MTL-algebras. Since BL-algebras, in contrast
to MTL-algebras, are hoops (in the sense of [2]), BL is a subvariety of the
variety of Glivenko MTL-algebras (see [9, Lemma 1.3]). We call DL-algebras
the Glivenko MTL-algebras satisfying the Di Nola - Lettieri equation. The
class of these algebras is a variety, denoted by DL. Important examples of
DL-algebras are the pseudocomplemented MTL-algebras, characterized by
the equation x ∧ ¬x = ⊥, and the involutive MTL-algebras satisfying Di
Nola - Lettieri equation.

If A is a DL-algebra, then the kernel of the Boolean retract inherits
a structure of a generalized MTL-algebra (roughly speaking, MTL-algebras
without a bottom), equipped with a unary operation δ induced by the double
negation. This leads us to define kernel DL-algebras as generalized MTL-
algebras equipped with an extra unary operation δ satisfying some equations.
The kernel DL-algebra corresponding to the kernel of the Boolean retract of
a DL-algebra A is denoted P (A).
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Generalizing the construction given in [9, Theorem 3.9], to each kernel
DL-algebra A we associate a directly indecomposable DL-algebra S(A),
such that P (S(A)) = A. In particular, taking as δ the identity, we obtain
an involutive DL-algebra ι(A), and taking as δ the constant function >, we
obtain a pseudocomplemented MTL-algebra σ(A). To each variety V of DL-
algebras, the kernel DL-algebras A such that S(A) ∈ V form a variety V?.

The Boolean retraction property implies that free algebras in varieties of
DL-algebras can be represented as weak Boolean products of directly inde-
composable DL-algebras, over a Stone space. When V is a variety of either
pseudocomplemented MTL-algebras or involutive DL-algebras, we show that
the directly indecomposable algebras appearing in the Boolean product de-
composition are of the form S(A), with A a free algebra in V?. We apply
these results to give explicit descriptions of free algebras in varieties of Gödel
algebras, nilpotent minimum algebras, product algebras and some varieties
of MV-algebras. In this last case, the results given here rectify the erroneous
assertions of [9].

Although familiarity of the reader with residuated lattices and MTL
algebras is assumed, some basic results, which are needed in the paper,
are collected in Section 1, including the necessary background on Boolean
products.

1. Preliminaries

An integral residuated lattice-ordered commutative monoid, or residuated
lattice for short, is an algebra A = 〈A, ∗,→,∨,∧,>〉 of type 〈2, 2, 2, 2, 0〉
such that 〈A, ∗,>〉 is a commutative monoid, L(A) = 〈A,∨,∧,>〉 is a lattice
with greatest element >, and the following residuation condition holds:

x ∗ y ≤ z, iff x ≤ y → z (1)

where x, y, z denote arbitrary elements of A and ≤ is the order given by the
lattice structure, which is called the natural order of A.

It is well known that residuated lattices form a variety, that we shall
denote by RL. Indeed, the residuation condition can be replaced by the
following equations:

x = x ∧ (y → (x ∗ y) ∨ z)), (2)
z = (y ∗ (x ∧ (y → z))) ∨ z. (3)

Following [25], residuated lattices satisfying the equation x∗y = x∧y will be
called generalized Heyting algebras. They were called Brouwerian algebras
in [13].
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In the next lemma we list, for further reference, some well known conse-
quences of (1) that will be used through this paper.

Lemma 1.1. The following properties hold true in any residuated lattice A,
where x, y, z denote arbitrary elements of A:

(i) x ≤ y if and only if x → y = >,
(ii) > → x = x,
(iii) (x ∗ y) → z = x → (y → z). ¤

A bounded residuated lattice is an algebra A = 〈A, ∗,→,∨,∧,>,⊥〉 of
type 〈2, 2, 2, 2, 0, 0〉 such that 〈A, ∗,→,∨,∧,>〉 is a residuated lattice and
⊥ is the smallest element of the lattice L(A). The class of all bounded
residuated lattice will be represented by BRL

Notice that bounded generalized Heyting algebras are precisely the Heyt-
ing algebras, i. e., the algebras of intuitionistic logic (see, for instance [25]).

By a residuated chain (bounded residuated chain) we understand a resid-
uated lattice (bounded residuated lattice) A whose natural order is total,
i. e., given a, b in A, a ≤ b or b ≤ a.

On a bounded residuated lattice A we define a unary operation ¬ by the
prescription:

¬x = x → ⊥, for all x ∈ A. (4)

An involutive residuated lattice(or integral, commutative Girard monoid [21])
is a bounded residuated lattice that satisfies the double negation equation:

¬¬x = x. (5)

It follows from Lemma 1.1.(iii) that in an involutive residuated lattice the
operations ∗ and → are related as follows:

x ∗ y = ¬(x → ¬y), (6)
x → y = ¬(x ∗ ¬y). (7)

Notice that involutive Heyting algebras coincide with Boolean algebras.

On each bounded residuated lattice A we consider the term x ⊕ y :=
¬(¬x ∗ ¬y). It follows that 〈A,⊕,⊥〉 is a commutative monoid. Moreover
when A is involutive, ⊕ is the dual of ∗, and the following equation holds
in A:

x⊕ y = ¬x → y. (8)

As usual, we shall write 2x in place of x⊕ x and x2 in place of x ∗ x.

By an implicative filter or i-filter of a residuated lattice A we understand
a subset F ⊆ A satisfying the following two conditions:
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F1) > ∈ F ,

F2) For all x, y ∈ A, if x ∈ F and x ≤ y, then y ∈ F .

F3) If x, y are in F , then x ∗ y ∈ F .

Alternatively, i-filters may be defined as subsets F of A satisfying F1) and
F4): If x and x → y belong to F , then y ∈ F . It follows that each i-filter
F is the universe of a subalgebra of A, that we shall denote F . For each
X ⊆ A we denote by 〈X〉 the i-filter generated by X, i.e., the intersection
of all i-filters containing X. For each x ∈ A, we shall write 〈x〉 instead of
〈{x}〉.

An i-filter F is proper provided F 6= A. When A is a bounded residuated
lattice, an i-filter F is proper if and only if ⊥ 6∈ F .

A prime i-filter is a proper i-filter such that x ∨ y ∈ F implies x ∈ F
or y ∈ F . The next result is well known, and can be proved by standard
techniques.

Lemma 1.2. Each proper i-filter of a residuated lattice A is an intersection
of prime i-filters. In particular, {>} is the intersection of all prime i-filters
of A. ¤

Given an i-filter F of a residuated lattice A, the binary relation θ(F ) :=
{(x, y) ∈ A×A : (x → y) ∗ (y → x) ∈ F} is a congruence relation on A such
that F is the congruence class of >. As a matter of fact, the correspondence
F 7→ θ(F ) is an order isomorphism from the set of i-filters of A onto the
set of congruences of A, with both sets ordered by inclusion. We will write
simply A/F instead of A/θ(F ), and x/F will denote the equivalence class
determined by x ∈ A.

Let A be a residuated lattice and let F be a proper i-filter of A. It is easy
to check that if the quotient A/F is a residuated chain, then F is prime. If
A satisfies the following prelinearity equation:

(x → y) ∨ (y → x) = >, (9)

then one has that for each prime i-filter F of A, the quotient A/F is a
residuated chain. Since residuated chains satisfy (9), taking into account
Lemma 1.2 obtain the next lemma:

Lemma 1.3. A residuated lattice A satisfies the prelinearity equation (9) if
and only if it is isomorphic to a subdirect product of residuated chains. ¤

Bounded residuated lattices satisfying the prelinearity equation were
baptized MTL-algebras by Esteva and Godo [16]. Clearly they are the
bounded residuated lattices isomorphic to subdirect products of bounded
residuated chains. For coherence, we shall call the (not necessarily bounded)
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residuated lattices satisfying (9) generalized MTL-algebras, or GMTL-alge-
bras for short. Notice that they are termwise equivalent to basic semihoops
as defined in [17], and to prelinear semihoops as defined in [26] . The variety
of GMTL-algebras will be denoted by GMTL. Heyting algebras satisfying
(9) are called linear Heyting algebras in [20, 25]. But we prefer to follow
Hájek’s nomenclature [19], and call them Gödel algebras. Accordingly, we
call generalized Gödel algebras the generalized Heyting algebras satisfying
(9). The corresponding varieties will be denoted by G and GG, respectively.

An IMTL-algebra [16] is an involutive MTL-algebra, i. e., an MTL-
algebra satisfying the double negation equation (5). IMTL-algebras are the
subdirect products of involutive residuated chains.

Given a bounded residuated lattice A, B(A) will denote the set of com-
plemented elements of the bounded lattice L(A). That is, x ∈ B(A) if and
only if there is y ∈ A such that x∨ y = > and x∧ y = ⊥. It is shown in [24]
that B(A) is the universe of a subalgebra of A, denoted B(A), which is a
Boolean algebra. If x, y are in B(A), then x∗y = x∧y and x → y = ¬x∨y.

In general, an algebra A is called directly indecomposable iff A has more
than one element and whenever it is isomorphic to a direct product of two
algebras A1 and A2, then either A1 or A2 is the trivial algebra with just
one element.

The next result is proved in [24, Proposition 1.5].
Lemma 1.4. A bounded residuated lattice A is directly indecomposable if and
only if B(A) is the two-element Boolean algebra. ¤

By a Stone space we understand a totally disconnected compact Haus-
dorff space X. As usual, a subset of X that is simultaneously open and
closed will be called clopen.

We recall that a weak Boolean product of a family (Ax : x ∈ X) of
algebras over a Stone space X is a subdirect product A of the given family
such that the following conditions hold:

(i) if a, b ∈ A, then [[a = b]] = {x ∈ X : a(x) = b(x)} is open,
(ii) if a, b ∈ A and Z is a clopen in X, then a ¹Z ∪ b ¹X\Z∈ A.

An algebra A is representable as weak Boolean product when it is isomor-
phic to a weak Boolean product. As explained in [4], weak Boolean products
are the global sections of (not necessarily Hausdorff) sheaves of algebras over
Boolean spaces.

Since the variety of bounded residuated lattices admits 2/3-minority term
(see[24]), then it is arithmetical and it has the Boolean Factor Congruence
property. Therefore each nontrivial bounded residuated lattice can be rep-
resented as a weak Boolean product of directly indecomposable bounded
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residuated lattices [1]). We are going to give an explicit description of this
representation. Firstly, note that the following lemma can be obtained in a
standard way (see, for instance, [6]):

Lemma 1.5. Let A be a bounded residuated lattice, and let F be a filter of
the Boolean algebra B(A), then :

∼F = {(x, y) ∈ A2 : x ∧ z = y ∧ z for some z ∈ F}
is a congruence relation on A that coincides with the congruence relation
given by the implicative filter 〈F 〉 generated by F . Moreover, if F is a prime
filter (i.e., an ultrafilter) of B(A), then B(A/∼F ) = {⊥/∼F ,>/∼F }. ¤

We write A/〈F 〉 in place of A/∼F , and so x/〈F 〉 = x/ ∼F for the
equivalence class of x ∈ A. We will represent by Sp B(A) the set of all prime
filters (ultrafilters) of the Boolean algebra B(A). With these notations we
have:

Theorem 1.6. Each nontrivial bounded residuated lattice A is representable
as the weak Boolean product of the family (A/〈F 〉 : F ∈ Sp B(A)) over the
Stone space Sp B(A). ¤

2. Glivenko MTL-algebras and DL-algebras

It is shown in [11], that the variety of bounded residuated lattices is a nat-
ural expansion of the quasivariety of bounded BCK-algebras. Since MTL is
subvariety of BRL, the next theorem follows from [11, Theorem 46].

Theorem 2.1. For each A ∈ BRL the following are equivalent:

(i) The equation ¬¬(¬¬x → x) = > holds in A.
(ii) If we consider the set Reg(A) := {a ∈ A : ¬¬a = a}, and for each

? ∈ {∗,∧,∨}, the term u ?∗ v =: ¬¬(u ? v), then:

(a) Reg(A) = 〈Reg(A), ∗∗,→,∨∗,∧∗, 1, 0〉 is an involutive residuated
lattice, and

(b) ¬¬ : A → Reg(A) : a 7→ ¬¬a is a homomorphism from A onto
Reg(A). ¤

A bounded residuated lattice satisfying the equation

¬¬(¬¬x → x) = > (10)

will be called a Glivenko residuated lattice. If it is an MTL-algebra, then it
will be called a Glivenko MTL-algebra.

In the case of Glivenko MTL-algebras, the operations ∨∗ and ∧∗ defined
in Theorem 2.1 coincide with ∨ and ∧, respectively.
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Examples of Glivenko MTL-algebras are the involutive MTL-algebras,
and the pseudocomplemented MTL-algebras, i. e., MTL-algebras satisfying
the equation

x ∧ ¬x = ⊥. (11)

If A is pseudocomplemented MTL-algebra, then for each a ∈ A, ¬a is the
pseudocomplement of a in the lattice L(A).

BL-algebras, that is, the MTL-algebras satisfying the hoop equation:

x ∗ (x → y) = y ∗ (y → x). (12)

are also examples of Glivenko MTL-algebras. Indeed, it is shown in [9](see
also [10]) that they satisfy (10). Involutive BL-algebras coincide with MV-
algebras [19].

Our next aim is to give a method to obtain Glivenko MTL-algebras
starting from GMTL-algebras.

Let A be a GMTL-algebra. A map δ : A → A is dl-admissible provided
that for any a, b ∈ A it satisfies:

(δ1) a → δ(a) = > (δ4) δ(a ∧ b) = δ(a) ∧ δ(b)
(δ2) δ(δ(a)) = δ(a) (δ5) δ(a ∨ b) = δ(a) ∨ δ(b)
(δ3) δ(a → b) = a → δ(b) (δ6) δ(a ∗ b) = δ(δ(a) ∗ δ(b)).

Theorem 2.2. Given a GMTL-algebra A = 〈A, ∗,→,∨,∧,>〉 and a dl-
admissible δ : A → A, on the set S(A, δ) := (A× {1}) ∪ (δ[A]× {0}) define
the binary operations ¯, ⇒, t and u by the following prescriptions, where
a, b denote arbitrary elements of A:

〈a, i〉 t 〈b, j〉 = 〈b, j〉 t 〈a, i〉 =




〈a ∨ b, 1〉 if i = j = 1,
〈a ∧ b, 0〉 if i = j = 0,
〈b, 1〉 if i < j.

(13)

〈a, i〉 u 〈b, j〉 = 〈b, j〉 u 〈a, i〉 =




〈a ∧ b, 1〉 if i = j = 1,
〈a ∨ b, 0〉 if i = j = 0,
〈a, 0〉 if i < j.

(14)

〈a, i〉 ¯ 〈b, j〉 = 〈b, j〉 ¯ 〈a, i〉 =




〈a ∗ b, 1〉 if i = j = 1,
〈>, 0〉 if i = j = 0,
〈b → a, 0〉 if i < j.

(15)

〈a, i〉 ⇒ 〈b, j〉 =





〈a → b, 1〉 if i = j = 1,
〈b → a, 1〉 if i = j = 0,
〈δ(a ∗ b), 0〉 if i > j,
〈>, 1〉 if i < j.

(16)
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If 1 = 〈>, 1〉 and 0 = 〈>, 0〉, then the algebra

S(A, δ) = 〈S(A, δ) = (A× {1}) ∪ (δ[A]× {0}),¯,⇒,t,u,1,0〉
is a directly indecomposable Glivenko MTL-algebra, such that Reg(S(A, δ))
= δ[A]× {0, 1}, and Reg(S(A, δ)) = S(δ[A], δ).

Proof. First, observe that conditions (δ 1) − (δ 6) guarantee that the op-
erations are well defined. For instance, (δ 3) implies that 〈a, 0〉 ¯ 〈b, 1〉 ∈
δ[A] × {0}. It is routine to verify that 〈S(A, δ),¯,1〉 is a commutative
monoid and that 〈S(A, δ),t,u,1,0〉 is a bounded lattice whose partial or-
der is given by 〈a, i〉 v 〈b, j〉 iff 〈a, i〉 ⇒ 〈b, j〉 = 1.

To prove the residual condition

(a, i)¯ (b, j) ≤ (c, k) iff (a, i) ≤ (b, j) ⇒ (c, k)

we are going to check only the case i = 0, j = 1, k = 0, because the remaining
cases are straightforward.

Firstly, note that from (δ1), (δ2) and (δ4) (or (δ5)), it follows that for
b ∈ A and a ∈ δ[A], b ≤ a iff δ(b) ≤ a. Now if a, c ∈ δ[A] and b ∈ A, then
〈a, 0〉 ¯ 〈b, 1〉 v 〈c, 0〉 iff 〈b → a, 0〉 v 〈c, 0〉 iff c ≤ b → a iff c ∗ b ≤ a iff
δ(c ∗ b) ≤ a iff 〈a, 0〉 v 〈δ(c ∗ b), 0〉 = 〈b, 1〉 ⇒ 〈c, 0〉.

It follows at once from the definitions of ⇒ and u that the prelinearity
equation, which holds in A, also holds in S(A, δ). Therefore S(A, δ) is a
MTL-algebra.

If ∼ 〈x, i〉 =: 〈x, i〉 ⇒ 0, then for a ∈ A, and b ∈ δ[A], we have that

∼ 〈a, 1〉 = 〈δ(a), 0〉, and ∼∼ 〈a, 1〉 = 〈δ(a), 1〉 (17)
∼ 〈b, 0〉 = 〈b, 1〉 and ∼∼ 〈b, 0〉 = 〈b, 0〉 (18)

Hence it follows from (δ 3) that S(A, δ) satisfies the equation

¬¬(x → y) = x → ¬¬y (19)

which in bounded BCK-algebras, and a fortiori, in bounded residuated lat-
tices, is equivalent to (10) (see [11, Lemma 3.3]). It is clear 0 and 1 are the
only boolean elements in S(A, δ), hence it is directly indecomposable.

Finally, observe that from (17) and (18) it follows that ∼∼ 〈a, i〉 = 〈a, i〉
iff a ∈ δ[A], hence Reg(S(A, δ)) = δ[A]× {0, 1}.
Remark 2.3. The construction of S(A, δ) generalizes the construction given
in [9, Theorem 3.9] in the context of BL-algebras. For δ = idA, it coincides
with a construction of Jenei [22] (see also [26]) of disconnected rotations of
ordered semigroups.
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As an immediate consequence of the above theorem we obtain
Corollary 2.4. Under the hypothesis of Theorem 2.2 we have:
(1) S(A, δ) is an IMTL-algebra if and only if δ = idA, the identity function

on A.
(2) S(A, δ) is pseudocomplemented if and only if δ = δ>, where δ> is the

constant function >, i. e., δ>(x) = > for all x ∈ A. ¤
For each GMTL-algebra A and each δ : A → A dl-admissible, a straight-

forward computation shows that the equation

(2x)2 = 2(x2), i.e., (¬x → ¬¬x)2 = ¬(x2) → ¬¬(x2) (20)

holds in S(A, δ). We shall denote by DL the subvariety of the variety of
Glivenko MTL-algebras determined by the equation (20). MTL-algebras
satisfying (20) are called BP0 MTL-algebras in [27].

We call the algebras in DL DL-algebras, and the DL-algebras whose
natural order is total, DL-chains. From Lemma 1.3 we obtain:
Lemma 2.5. Each DL-algebra is isomorphic to a subdirect product of DL-
chains. ¤
Remark 2.6. Notice that in a DL-algebra A, the equation (20) prevents the
existence of an element x ∈ A such that x = ¬x.
Example 2.7. Since the equations (¬x → ¬¬x)2 = ¬¬x = ¬(x2) → ¬¬(x2)
hold in every pseudocomplemented chain, we have that the variety of pseu-
docomplemented MTL-algebras is a subvariety of DL.
Example 2.8. The subvariety of the variety of MV-algebras generated by
Chang’s algebra (see [14]) is the variety of involutive DL-algebras determined
by the hoop equation (5.11) This example will be considered in more detail
in Section 5.2.
Example 2.9. The subvariety of the variety of Nilpotent Minimum algebras
(NM-algebras for short) generated by the algebra [0, 1]− (see [18]) is the
subvariety of DL determined by the nilpotent minimum equation:

((x ∗ y) → ⊥) ∨ ((x ∧ y) → (x ∗ y)) = >. (21)

We shall return to this example in Section 5.1.

3. The operator ∇ and kernel DL-algebras

On each DL-algebra A we define an operator∇ : A → A by the prescription:

∇x = (2x)2 = (¬x → ¬¬x)2 for all x ∈ A.

Observe that for a ∈ A, ∇a = ∇¬¬a and by (20), ∇a = ¬(a2) → ¬¬a2.
Notice also that when A is a pseudocomplemented MTL-algebra, ∇x = ¬¬x
for all x ∈ A (see Example 2.7).
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Lemma 3.1. The following properties hold in a DL-chain C, where a, b de-
note arbitrary elements of C:

(i) ∇a ∈ {>,⊥} for each a ∈ C,
(ii) ∇ is monotonic,
(iii) ∇(a ∨ b) = ∇a ∨∇b,
(iv) ∇(a ∧ b) = ∇a ∧∇b,
(v) ∇(a ∗ b) = ∇a ∗ ∇b,

Proof. Notice that by Remark 2.6, for each a ∈ C, ¬a < a ≤ ¬¬a or
a ≤ ¬¬a < ¬a. If ¬a < a, then ∇a = (¬a → ¬¬a)2 = >2 = >, and if
a < ¬a, then a2 = ⊥, and by (20), ∇a = ⊥. This proves (i). To prove (ii),
suppose a ≤ b. Hence ¬b ≤ ¬a, and ¬b ∗ (¬a → ¬¬a) ≤ ¬a ∗ (¬a → ¬¬a) ≤
¬¬a ≤ ¬¬b. Then by (1), ¬a → ¬¬a ≤ ¬b → ¬¬b, and we have proved
(ii). Items (iii) and (iv) are immediate consequences of (ii). To prove (v),
suppose first that ∇a ∗ ∇b = >. Hence ∇a = ∇b = >, and by (i), ¬a < a
and ¬b < b, and by (20) we also have ¬a2 < ¬¬a2 and ¬b2 < ¬¬b2. If
a ≤ b, then ¬(a ∗ b) ≤ ¬a2 < a2 ≤ a ∗ b, and ∇(a ∗ b) = >. In a similar way
we show that ∇(a ∗ b) = > when b ≤ a. Suppose now that ∇(a ∗ b) = >.
Then ¬a ≤ ¬(a ∗ b) < a ∗ b ≤ a ≤ ¬¬a, and similarly, ¬b < ¬¬b. Hence
∇a ∗∇b = >. We have shown that ∇(a ∗ b) = > if and only if ∇a ∗∇b = >,
and by (i), this implies (v).

Theorem 3.2. For each A ∈ DL, ∇ is a homomorphism from A onto B(A)
satisfying ∇∇x = x. In other words, ∇ is a retract from A onto B(A).

Proof. By Lemmas 3.1 and 2.5, the equations ∇(x∨ y) = ∇x∨∇y, ∇(x∧
y) = ∇x∧∇y, and ∇(x∗y) = ∇x∗∇y hold in any DL-algebra. Let a, b ∈ A.
Taking into account (20) and (19), we have

∇¬a = ¬(¬a)2 → ¬¬(¬a)2 = ¬(¬(¬a)2 ∗ ¬(¬a)2) = ¬(2(a2)) = ¬∇a.

Hence ∇ also preserves ¬, and since

∇(a → b) = ∇¬¬(a → b) = ∇(a → ¬¬b) = ∇¬(a ∗ ¬b) = ¬(∇a ∗ ¬∇b),

∇(x → y) = ∇x → ∇y also holds. Hence ∇ is a homomorphism. By (i) of
Lemma 3.1 the equation ∇x ∨ ¬∇x = > holds in all DL-chain, then again
by Lemma 2.5, it also holds in A. Hence ∇x ∈ B(A) for each x ∈ A. On
the other hand, if z ∈ B(A), then ∇z = (¬z → z)2 = z2 = z. Hence ∇ is
onto B(A), and the equation ∇∇x = ∇x holds in A.

Remark 3.3. If a variety V of MTL-algebras has the Boolean retraction
property, then all algebras in V satisfy equation (20). Indeed, let C be
a residuated chain in V. By hypothesis, there is a homomorphism ∇ :
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C → B(C) = {⊥,>}. If ∇a = >, then ¬a < a. This implies that a ⊕
a = ¬(¬a ∗ ¬a) = >. Since ∇a = > implies ∇a2 = >, we also have
¬(¬a2 ∗¬a2) = >. Therefore (2a)2 = 2(a2) = >. If ∇a = ⊥, then ∇¬a = >.
Hence a ≤ ¬¬a < ¬a, and a2 = ⊥. Since we also have ∇(¬a)2 = >, then
2a2 = ¬(¬a ∗ ¬a) < ¬a ∗ ¬a. Therefore (2a)2 = ⊥ = 2(a2). Hence (20)
holds in C. Since V is generated by the residuated chains that it contains,
it follows that (20) holds in all algebras in V.

Let A be a DL-algebra. Since ∇ is a homomorphism from A onto B(A),
∇−1({>}) = {x ∈ A : ∇x = >} is an i-filter of A, that we shall denote by
A>. Consequently, it is the universe of a subalgebra A> of the GMTL-
algebra given by the {→, ∗,∧,∨,>}-reduct of A. Moreover, one has that
the quotient A/A> ∼= B(A). Notice that A> = {x ∈ A : ¬x ≤ ¬¬x}.

The next result follows directly from Theorem 2.2.

Lemma 3.4. For each GMTL-algebra A and each dl-admissible map δ : A →
A, the correspondence x 7→ 〈x, 1〉 defines an isomorphism ϕA from A onto
S(A, δ)>, such that ϕA(δ(x)) = ¬¬ϕA(x). ¤
Theorem 3.5. Let A be a DL-algebra. Then

(i) The restriction of ¬¬ to A> is a dl-admissible map from A> into A>.
(ii) The function ψA : S(A>,¬¬) → A defined for each 〈x, i〉 ∈ S(A>,¬¬)

by the prescription

ψA(x, i) =
{

x if i = 1,
¬x if i = 0,

is an injective homomorphism from S(A>,¬¬) into A. It is surjective
(i. e., an isomorphism onto A) iff A is directly indecomposable.

Proof. Since any DL-algebra is a Glivenko MTL-algebra, (1) follows from
Theorem 2.1 and the remarks following it. In order to prove (2), note first
that if a, b are in A>, then ¬a < b. Indeed, since A> is an i-filter, a∗b ∈ A>.
Hence, taking into account Remark 2.6, one has ¬a ≤ ¬(a ∗ b) < a ∗ b ≤ b.
Notice that since b ≤ ¬¬b, this implies that ¬a ∗ ¬b = ⊥. Now it is rou-
tine to prove that ψA : S(A>,¬¬) → A is an injective homomorphism. If
ψA is onto, then B(S(A>,¬¬)) and B(A) are isomorphic Boolean alge-
bras, and since B(S(A>,¬¬)) = {>,⊥}, by Lemma 1.4 it follows that A
is directly indecomposable. Conversely, suppose that A is directly indecom-
posable. Then B(A) = {>,⊥}, and hence A = ∇−1({>}) ∪ ∇−1({⊥}) =
ψA(S(A>,¬¬)).

Remark 3.6. From the above theorem and Theorem 2.2 it follows that if A
is a directly indecomposable DL-algebra, then A \A> ⊆ Reg(A).
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We say that an algebra H = 〈H, ∗,→,∨,∧, δ,>〉 of type 〈2, 2, 2, 2, 1, 0〉
is a kernel DL-algebra (KDL-algebra for short) provided the reduct H− =
〈H, ∗,→,∨,∧,>〉 is a GMTL-algebra and δ : A → A is dl-admissible. Ob-
serve that any KDL-algebra H can be given as a pair H = (A, δ), with
H− = A ∈ GMTL and δ a dl-admissible unary operation. That the class
KDL of kernel DL-algebras is a variety in the language {∗,→,∨,∧, δ,>}
follows from the definition of dl-admissible map.

For each GMTL-algebra A, (A, idA) and (A, δ>) are KDL-algebras. If
A is the Boolean algebra with two atoms, say a and b, and δ : A → A is
defined as δ(⊥) = δ(a) = a, and δ(b) = δ(>) = >, then (A, δ) is an example
of a KDL-algebra such that idA 6= δ 6= δ>.

Let (A1, δ1), (A2, δ2) be KDL-algebras, and let h be a homomorphism
from (A, δ1) into (A, δ2). By defining S(h)(x, i) = 〈h(x), i〉 for all 〈x, i〉 ∈
S(A1, δ1) one obtains a homomorphism S(h) : S(A1, δ1) → S(A2, δ2). It
is easy to verify that S defines a functor from the category KDL of KDL-
algebras and homomorphisms into the category DL of DL-algebras and ho-
momorphisms.

For each DL-algebra A, let P (A) = (A>,¬¬), and for each morphism
h : A1 → A2 in DL, let P (h) be the restriction of h to A>

1 . Since for each
x ∈ A>, > = h(∇x) = ∇h(x), and h(¬¬x) = ¬¬h(x), we have that P (h)
is a homomorphism from P (A1) into P (A2). As a matter of fact, P is a
functor from DL to KDL.

Taking into account Lemma 3.4 it follows that if h : (A1, δ1) → (A2, δ2)
denotes a morphism in KDL, then the following diagram is commutative:

(A1, δ1)
h−→ (A2, δ2)

ϕA1 ↓ ↓ ϕA2

P (S(A1, δ1))
P (S(h))−→ P (S(A2, δ2)).

(22)

Then we have that the family of isomorphisms ϕ defines an natural equi-
valence from IKDL, the identity functor on KDL, to PS.

Analogously, taking into account Theorem 3.5, it follows that for each
morphism h : A1 → A2 in DL, the following diagram commutes:

A1
h−→ A2

ψA1 ↑ ↑ ψA2

S(P (A1))
S(P (h))−→ S(P (A2)).

(23)
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Then the family of monomorphisms ψ defines a natural transformation from
SP to IDL. By Theorem 3.5, this natural transformation is an equivalence
if we restrict the functor P to the full subcategory of DL whose objects are
the directly indecomposable DL-algebras.

Summing up, we have that

The categories of KDL-algebras and of directly indecomposable DL-
algebras are equivalent.

Remark 3.7. Observe that Corollary 2.4 implies that the functors S and P
also define a natural equivalence between the categories of GMTL-algebras
and involutive DL-algebras, and a natural equivalence between the categories
of GMTL-algebras and pseudocomplemented MTL-algebras PMTL. Conse-
quently, the categories of involutive DL-algebras and pseudocomplemented
MTL-algebras are equivalent.

Remark 3.8. Let A be a directly indecomposable DL-algebra, and let X be
a set of generators of A. The set Y := (A>∩X)∪ (A>∩¬X) also generates
A. Indeed, let H be the subalgebra of A generated by Y . If x ∈ X ∩ A>,
then x ∈ H. If x 6∈ A>, then ¬x ∈ H, and by Remark 3.6, this implies that
x = ¬¬x ∈ H. Hence X ⊆ H, and H = A. Notice that, in particular, Y
generates the KDL-algebra P (A) = (A>,¬¬)

With each class K of DL-algebras, we associate the class K? of KDL-
algebras (A, δ) such that S(A, δ) is in K.

Theorem 3.9. For each subvariety V of DL, V? is a subvariety of KDL.

Proof. Let V be a subvariety of DL. We need to prove that V? is closed
under subalgebras, direct products and homomorphic images. By the con-
struction of S, V? is closed under subalgebras. If h is a homomorphism
from (A, δ) onto a KDL-algebra (U , δ′), then S(h) is a homomorphism from
S(A, δ) onto S(U , δ′) ∈ V. Hence (U , δ′) ∈ V?. Therefore we have shown
that V? is closed under subalgebras and homomorphic images.

Suppose now that ((Aλ, δλ) : λ ∈ Λ) is a family of algebras in V?, and
let (A, δ) =

∏
λ∈Λ(Aλ, δλ). Since in (A, δ), δ(x)(λ) = δλ(x), the elements of

S(A, δ) are pairs 〈f, i〉 with i ∈ {0, 1} and

f : Λ →
⋃

λ∈Λ

Aλ : λ 7→
{

f(λ) ∈ Aλ if i = 1,
f(λ) ∈ δ[Aλ] if i = 0.

Let f?
i : λ → ⋃

λ∈Λ S(Aλ, δλ) be defined by the prescription f?
i (λ) = 〈f(λ), i〉.

Then the correspondence 〈f, i〉 7→ f?
i is an embedding from S(A, δ) into∏

λ∈Λ S(Aλ, δλ) ∈ V. Then S(A, δ) is in V, and hence (A, δ) ∈ V?.
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Example 3.10 (BL-algebras). The variety DBL of DL-algebras given by the
hoop equation (12), i. e., the variety of BL-algebras given by equation (20),
has been investigated in [9]. From [9, Theorem 3.9] it follows:

Let (A, δ) be a KDL-algebra. Then S(A, δ) is a DBL-algebra if and
only if the following hold:

(BLa) A is a generalized BL-algebra (GBL-algebra), i.e.,
a GMTL-algebra satisfying the hoop equation (12).

(BLb) The equations δ(x∗y) = δ(x)∗δ(y), x → δ(x∗y) =
δ(y) are satisfied.

Now we recall from [2] that a hoop is an algebra H = 〈H, ∗,→,>〉 such that
〈H, ∗,>〉 is a commutative monoid that satisfies the following identities:

HO1 x → (y → z) = (x ∗ y) → z,
HO2 x → x = >,
HO3 x ∗ (x → y) = y ∗ (y → x).

A hoop is cancellative provided it satisfies the identity:

CHO y → (y ∗ x) = x.

Each cancellative hoop becomes a GMTL-algebra by defining x ∧ y =
x ∗ (x → y), x ∨ y = ((x → y) → y) (see [2]). The variety of cancellative
hoops will be denoted by CHO. Summarizing the above we can state:

Let D be a DL-algebra. Then D is a DBL-algebra if and only if D> is
generalized BL-algebra, and Reg(D) is a subalgebra of D belonging
to CHO.

We shall return to this example in Section 5.2.

4. Free algebras

In what follows given a variety W of algebras, we shall denote by FW(X)
the |X|-free algebra in W, i. e., the free algebra in W over a set X of free
generators of cardinal |X|. Moreover, B will denote the variety of Boolean
algebras.

Given a subvariety V of DL, since by Theorem 3.2 the mapping x 7→ ∇(x)
is a retract from FV(X) onto B(FV(X)), taking into account that FV(∅) =
{>,⊥}, we immediately obtain that (cf [9, Theorem 5.1]):

Theorem 4.1. For each subvariety V of DL, B(FV(X)) is the free Boolean
algebra over the set ∇X = {∇x : x ∈ X}, and the sets X and ∇X have
the same cardinal. That is B(FV(X)) is isomorphic to the |X|-free Boolean
algebra. ¤
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Since the Stone space of the free Boolean algebra over X is the Cantor
space 2X , the ultrafilters of FB(X) are in one-one correspondence with the
subsets of X. Hence, as in [9, Corollary 5.2], we have:

Corollary 4.2. Let V be a subvariety of DL. If X 6= ∅, then the corre-
spondence:

U 7→ SU = {x ∈ X : ∇(x) ∈ U}
is a bijection from the set of ultrafilters of B(FX(V)) into the power set of
X. The inverse mapping is given by

S 7→ US = ultrafilter generated by ∇S ∪ {¬∇(x) : x ∈ X \ S}. ¤
By Lemma 1.5, for each S ⊆ X, FV(X)/〈US〉 is directly indecomposable,

hence by Theorem 3.5, FV(X)/〈US〉 ∼= S(P (FV(X)/〈US)). Consequently,
by Theorem 1.6, we obtain

Theorem 4.3. For each variety V of DL-algebras and for each set X, the
free algebra FV(X) is isomorphic to the weak Boolean product of the family
(S(P (FV(X)/〈US〉)) : S ⊆ X) over the Cantor space 2X . ¤

The remaining of the paper will be devoted to investigate the structure
of the KDL-algebras P (FV(X)/〈US〉) =

(
(FV(X)/〈US〉)>,¬¬)

, where V is a
variety of DL-algebras.

Lemma 4.4. For each S ⊆ X, the set (S ∪ ¬(X \ S))/〈US〉 generates the
KDL-algebra P (FV(X)/〈US〉), where for Y ⊆ X ∪¬X, Y/〈US〉 = {y/〈US〉 :
y ∈ Y }.
Proof. By the definition of US , one has X/〈US〉 ∩ (FV(X))/〈US〉)> =
S/〈US〉. Taking into account that ∇¬x = ¬∇x ∈ US for each x ∈ X \ S,
one also has ¬(X/〈US〉) ∩ (FV(X)/〈US〉)> = ¬(X \S)/〈US〉. Since X/〈US〉
generates S(P (FV(X)/〈US〉)) = S

(
FX(V)/〈US〉)>,¬¬)

, the result follows
from Remark 3.8.

By Lemma 2.5, each variety V of DL-algebras is generated by the DL-
chains contained in V. Hence if V 6= B, V has to contain DL-chains with
more than two elements. Any such chain C ∈ V will be called a test chain
for V. In every test chain C, we can find an element a ∈ C such that
¬a < a < >. Such a will be called a test element.

With the notations of Corollary 4.2, for each variety V of DL-algebras
we have:

Lemma 4.5. For each S ⊆ X one has:

(i) For each y ∈ X, y/〈US〉 6= >/〈US〉.
(ii) For each y ∈ S, y/〈US〉 6= ⊥/〈US〉.
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(iii) If y, z are in X and y 6= z, then y/〈US〉 = z/〈US〉 implies that y, z are
in X \ S.

Proof. Observe that for each α in FV(X), α ∈ 〈US〉 if and only if there are
finite sets T ⊆ S and W ⊆ X \ S such that T ∪W 6= ∅ and

∧

t∈T

∇t ∧
∧

w∈W

¬∇w ≤ α. (24)

Let C be a test algebra in V, and let a ∈ C be a test element. To prove
(i) suppose that y ∈ 〈US〉 (absurdum hypothesis). Let T, W as in (24), with
α = y, and let f : X → C be the function defined as follows:

f(x) =
{

a if x ∈ X \W,
⊥ if x ∈ W.

(25)

If there were a homomorphism f̂ : FV(X) → C extending f , then f̂ would
assign the value > to the left member of (24), while f̂(y) ∈ {a,⊥}. Since this
contradicts the inequality (24), f cannot be extended to a homomorphism,
in contradiction with the definition of free algebra. Hence we conclude that
y 6∈ 〈US〉, and (i) holds. To prove (ii), suppose that y ∈ S and ¬y ∈ 〈US〉.
Let T,W as in (24) with α = ¬y. Since y 6∈ W ⊆ X \ S, we can show that
the same function f defined by (25) cannot be extended to a homomorphism
f̂ : FV(X) → C, and this proves (ii). To prove (iii), suppose that y → z ∈
〈US〉. Let T, W as in (24), with α = y → z. If y 6∈ W , then the function
f : X → C defined as follows:

g(x) =





a if x ∈ X \ ({y} ∪W );
> if x = y,
⊥ if x ∈ W.

cannot be extended to a homomorphism ĝ : FV(X) → C. Hence if (y → z)
and (z → y) are in 〈US〉, then y and z are in X \ S.

Taking into account Lemma 4.4, from the above result we obtain that if
for each variety V of DL-algebras and each S ⊆ X, we define

S̃V := {x ∈ X \ S : x/〈US〉 6= ⊥/〈US〉}, (26)

then we have that (S ∪ ¬S̃V)/〈US〉 generates P (FV(X)/〈US〉).
Let V be a variety of pseudocomplemented MTL-algebras. It follows

from the definition of 〈US〉 that if x ∈ X \S, then ¬x = ¬¬¬x = ¬∇x ∈ US ,
i. e., x/〈US〉 = ⊥/〈US〉. Hence S̃V = ∅.
Theorem 4.6. For each variety V of pseudocomplemented MTL-algebras,
and for each set X, if S ⊆ X, then
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P (FV(X)/〈US〉) ∼= FV?(S/〈US〉)
and the sets S and S/〈US〉 have the same cardinal.

Proof. Given (A, δ) ∈ V? and a function f : S/〈US〉 → A, let f̄ : X →
S(A, δ) be defined by the prescription:

f̄(x) =
{ 〈f(x/〈US〉), 1〉 if x ∈ S,
〈>, 0〉 if x ∈ X \ S.

Since S(A, δ) ∈ V, there is a unique homomorphism ḡ : FV(X) → S(A, δ)
which extends f̄ . Since {∇x : x ∈ S} ∪ {¬∇x : x ∈ X \ S} ⊆ ker ḡ =
ḡ−1({>}), it follows that 〈US〉 ⊆ ker(ḡ). Therefore the correspondence
α/〈US〉 7→ ḡ(α) gives a homomorphism h : FX(V)/〈US〉 → S(A, δ), and
P (h) gives a homomorphism from P (FV(X)/〈US〉) into A that extends f .
Since S̃V = ∅, S/〈US〉 generates P (FV(X)/〈US〉). Therefore P (FV(X)/〈US〉)
is the free algebra in V? over S/〈US〉, and it follows from Lemma 4.5 that S
and S/〈US〉 have the same cardinal.

To simplify the notation, given a GMTL-algebra A, in what follows
we shall write σ(A) to represent the pseudocomplemented MTL-algebra
S(A, δ>) (see Corollary 2.4). Moreover, |S| will denote the cardinal of a set
S. With these notations, and having into account that free algebras in a
variety are isomorphic if and only if their sets of free generators have the
same cardinal, from Theorems 4.3 and 4.6, we have:

Corollary 4.7. For each set X, and for each nontrivial variety V of pseu-
docomplemented MTL-algebras the free algebra FV(X) is isomorphic to the
weak Boolean product of the family (σ(FV∗(|S|)) : S ∈ 2X) over the Cantor
space 2X . ¤

Since weak Boolean products over a finite set coincide with direct prod-
ucts, we have:

Corollary 4.8. For each variety V of pseudocomplemented MTL-algebras,
and for each finite cardinal k ≥ 1, FV(k) =

∏
r≤k

σ(FV?(r))(
k
r). ¤

Lemma 4.9. Let V be a subvariety of DL. If V is not a variety of pseudo-
complemented MTL-algebras, then for each S ⊆ X, S̃V = X \ S, and the
sets X and (S ∪ ¬S̃)/〈US〉 have the same cardinal.

Proof. Suppose that y ∈ X \ S and that y/〈US〉 = ⊥/〈US〉. Since V is
not a variety of pseudocomplemented MTL-algebras, there is a non pseu-
docomplemented test chain C ∈ V, and a test element a ∈ C such that
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⊥ < ¬a < a ≤ ¬¬a < >. Let T, W be as in (24) of the proof of Lemma 4.5
with α = ¬y, and define f : X → C by the prescription

f(x) =
{

a if x ∈ X \W,
¬a if x ∈ W.

If there were a homomorphism f̂ : FV(X) → C extending f , then f̂ would
assign the value > to the left member of (24), while f̂(¬y) ∈ {a,¬a}, contra-
dicting the inequality (24). Hence f cannot be extended to a homomorphism,
in contradiction with the definition of free algebra. Therefore S̃V = X \ S.
In the proof of (iii) in Lemma 4.5 we have shown that for y, z in X, y 6= z,
if y → z ∈ 〈US〉, then y ∈ X \ S. Let us see now that z ∈ S. Indeed, let
T,W be as in (24), with α = y → z, and let a be the same test element as
before. If z 6∈ T , then the function g : X → C defined as follows

g(x) =





a if x ∈ T ,
⊥ if x = z,
¬a if x ∈ X \ (T ∪ {z}).

cannot be extended to a homomorphism ĝ : FV(X) → C. Hence y → z ∈
〈US〉 implies that z ∈ T ⊆ S. Consequently, y/〈US〉 = z/〈US〉 would imply
that y, z are simultaneously in S and X \ S, absurdum. Similar arguments
show that y, z in S and y 6= z imply that ¬y/〈US〉 6= ¬z/〈US〉 and y/〈US〉 6=
¬z/〈US〉. Hence |X| = |(S ∪ ¬S̃)/〈US〉|.
Remark 4.10. In the proof of [9, Lemma 5.6] it is erroneously stated that
for each variety of BL-algebras with the Boolean retraction property and
for each S ⊆ X, S/〈US〉 generates P (FV(X)/〈US〉). Hence the results of §5
of that paper apply only to varieties of pseudocomplemented BL-algebras.
The results corresponding to varieties of MV-algebras should be replaced by
those given in Section 5.2 of the present paper.

Theorem 4.11. For each variety V of involutive DL-algebras, and for each
set X, if S ⊆ X, then

P (FV(X)/〈US〉) ∼= FV?((S ∪ ¬S̃V)/〈US〉)
and the sets X and (S ∪ ¬S̃V)/〈US〉 have the same cardinal.

Proof. Let (A, δ) ∈ V?. Since δ = idA, given a function f : (S/〈US〉) → A,
we can define a function f̄ : → X → S(A, δ) by the prescription:

f̄(x) =
{ 〈f(x/〈US〉), 1〉 if x ∈ S,

〈f(¬x/〈US〉), 0〉 if x ∈ S̃V = X \ S.

Since S(A, δ) ∈ V, there is a unique homomorphism ḡ : FV(X) → S(A, δ)
which extends f̄ . Since {∇x : x ∈ S} ∪ {¬∇x : x ∈ X \ S} ⊆ ker ḡ =
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ḡ−1({>}), it follows that 〈US〉 ⊆ ker(ḡ). Therefore the correspondence
α/〈US〉 7→ ḡ(α) gives a homomorphism h : FX(V)/〈US〉 → S(A, δ), and
P (h) gives a homomorphism from P (FV(X)/〈US〉) into A that extends f .
Since (S ∪ S̃V)/〈US〉 generates P (FV(X)/〈US〉), it is the free algebra in V?

over (S ∪ S̃V)/〈US〉. Finally, it follows from Lemma 4.9 that the sets X and
(S ∪ S̃V)/〈US〉 have the same cardinal.

If for each GMTL-algebra A, ι(A) denotes the involutive DL-algebra
S(A, idA), then we have:

Corollary 4.12. For each non trivial variety V of involutive DL-algebras
and for each cardinal κ ≥ 1, the free algebra FV(κ) is isomorphic to the weak
Boolean power of the family (ι(FV?(κ)) : S ∈ 2κ) over the Cantor space 2κ.

¤
Corollary 4.13. For each variety V of involutive DL-algebras and for each
finite cardinal k ≥ 1, FV(k) ∼= (ι(FV?(k))2

k
. ¤

5. Examples

In this section we shall apply the results of the previous sections to describe
the free algebras in varieties of DL-algebras obtained by applying the con-
struction given in Theorem 2.2 to Gödel algebras and to cancellative hoops.

5.1. From Gödel algebras

Recall that GG represents the variety of generalized Gödel algebras and G
the variety of Gödel algebras.

It is well known that each totally ordered set 〈C,≤〉 with greatest element
> admits a unique generalized Heyting algebra structure, which is given by

the operations x ∗ y = min(x, y), and x → y =
{ > if x ≤ y

y if x > y
. The chain

C endowed this structure will be denoted by C. If C is infinite, then C
generates the variety GG, and σ(C) generates the variety G.

Since generalized Gödel algebras satisfy the hoop equation (12), they
satisfy condition (BLa) of Example 3.10, and since the constant function δ>
trivially satisfies condition (BLb), we have

Lemma 5.1. Let A be a GMTL-algebra. Then σ(A) is a Gödel algebra if
and only if A is a generalized Gödel algebra. ¤

Note that from the above lemma we deduce that the categories of gen-
eralized Gödel algebras and of directly indecomposable Gödel algebras are
equivalent.
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For each integer n ≥ 1, let Cn = [1, n] ∩ Z, where Z denotes the set of
integers. GGn will denote the subvariety of GG generated Cn. For each
n ≥ 1, consider the equation

(En)
∧

i<n
((xi → xi+1) → xi+1) →

∨
i<n+1

xi = >.

It is well known (see, for instance [13]) that GGn is the subvariety of GG
characterized by (En). Observe, that for each n > 1, Cn is a Gödel chain by
taking 1 = ⊥, and σ(Cn−1) ∼= Cn, i.e., C>

n = Cn−1. Then if Gn represents
the subvariety of G, generated by the Gödel chain of cardinal n > 1,we have
Theorem 5.2. G? = GG, and for each integer k ≥ 1, G?

k+1 = GGk. ¤
The next result follows from the above theorem and Corollary 4.7.

Theorem 5.3. For each set X, FG(X) is isomorphic to the weak Boolean
product of the family (σ(FGG(S)) : S ∈ 2X) over the Cantor space 2X . ¤

The next corollary is a consequence of Corollary 4.8 and Theorem 5.2.
The same description of FGn(k) for n ≥ 2 and k a finite cardinal was obtained
by Davey [13, Theorem 5.5] by a different method.
Corollary 5.4. For each finite cardinal k ≥ 1, one has

(i) FG2(k) = σ(C1)2
k

.

(ii) For each n ≥ 2, FGn+1(k) =
∏
r≤k

σ(FGGn(r))(
k
r). ¤

Remark 5.5. To obtain a full description of finitely generated free algebras
in Gn, we can use the following characterization of finitely generated free
algebras in GGn that appears in [13, Theorem 5.3]:

(i) FGG2(k) = (C2)2
k−1, for all finite cardinals k.

(ii) For n ≥ 3, FGG(0) = C1, and for a finite k ≥ 1,

FGGn(k) =
k−1∏

s=0

σ∗(FGGn−1(s))
(k

s),

where σ∗(A) denotes the {→,∨,∧,>}-reduct of σ(A).
Our next aim is to analyse the class of involutive DL-algebras obtained

from generalized Gödel algebras. We start by recalling that a nilpotent min-
imum algebra (NM-algebra for short) is an IMTL-algebra A that satisfies
the nilpotent minimum equation (21) of Example 2.9. We will represent by
DLN the variety of DL-algebras that satisfy the nilpotent minimum equa-
tion (21), i. e., the variety of nilpotent minimum algebras generated by the
algebra [0, 1]− (see Example 2.9).
Lemma 5.6. Let A be a Generalized MTL-algebra. Then ι(A) is a NM-
algebra if and only if A is a generalized Gödel algebra.
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Proof. Observe for each a, b ∈ A,

((〈a, 1〉 ¯ 〈b, 1〉) ⇒ 0) t ((〈a, 1〉 u 〈b, 1〉) ⇒ (〈a, 1〉 ¯ 〈b, 1〉)) = 1

holds if and only if (a ∧ b) → (a ∗ b) = >, i. e., if and only if A is a
generalized Heyting algebra. Consequently, if ι(A) is a NM-algebra, then
A, is a generalized Gödel algebra. Suppose now that A is a generalized
Gödel algebra, then ι(A) is a involutive DL-algebra and for any a, b ∈ A,

((〈a, i〉 ¯ 〈b, j〉) ⇒ 0) t ((〈a, i〉 u 〈b, j〉) ⇒ (〈a, i〉 ¯ 〈b, j〉)) = 1

holds when i = j = 1, and when i = j = 0. When i < j, it holds if and only
it satisfies (b → a) ∨ ((b → a) → a) = >. Since this last equality holds for
any a, b in any generalized Heyting chain, it holds in all generalized Gödel
algebras. Hence the nilpotent minimum equation (21) holds in ι(A).
Remark 5.7. It follows from the above lemma that the restrictions of the
functors S (ι) and P define an equivalence between the categories of di-
rectly indecomposable DL-algebras satisfying (21) and of generalized linear
Heyting algebras.

When A is the semi-closed real interval (1
2 , 1] endowed with is natural

structure of generalized Heyting algebra, then the NM-algebra ι(A) coincide
with the algebra [0,1]−, that Gispert [18] showed generates the variety DLN.
For each integer n ≥ 1, DLNn will represent the subvariety of DLN generated
by the NM-algebra ι(Cn). The algebras ι(Cn) coincide with the algebras
A2n defined by Gispert in [18], who proved that DLNn ⊆ DLNn+1, and that⋃

n≥1DLNn = DLN. It follows from [18, Theorem 3], that equation (En)
also characterizes DLNn as a subvariety of DLN.
Theorem 5.8. DLN? = GG, and for each integer n ≥ 1, DLN?

n = GGn.
Proof. Let V be a subvariety of DLN. By Theorem 3.9 and Lemma 5.6
one has that V? is a variety of generalized Gödel algebras. Since for any
generalized Gödel chain C, ι(C) ∈ DLN, all generalized Gödel chains are
in DLN?, hence DLN? = GG. Let n ≥ 1 and let C be a generalized Gödel
chain. Since equation (En) holds in ι(C) if and only if it holds in ι(C)> ∼= C,
it follows that C ∈ GLH?

n if and only if C ∈ GLHn.
Theorem 5.9. For each cardinal κ ≥ 1, the free algebra FG(κ) is isomorphic
to the weak Boolean power of the family (ι(FGG(κ)) : S ∈ 2κ) over the Cantor
space 2κ. ¤

Combining Corollary 4.13, Theorem 5.8 and [13, Theorem 5.3] (see Re-
mark 5.5), we obtain:
Corollary 5.10. For each finite cardinal k one has:

(i) FDLN1(k) = ι(C1)2
k

.
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(ii) FDLN2(k) = ι(C2
2k−1)

2k

.

(iii) For each n ≥ 3,

FDLNn(k) = (ι(FGGn(k))2
k

=


ι

(
k−1∏

s=0

σ∗(FGGn−1(s)

)(k
s)




2k

.

Notice that since σ(C1) and ι(C1) are, up isomorphisms, the two-el-
ement Boolean algebra, (i) of corollaries 5.4 and 5.10, give the well known
structure of Boolean algebras with k free generators.

5.2. From Cancellative Hoops

We recall from example 3.10, that in a each cancellative hoop A = 〈A, ∗,→,
>〉 hoop becomes a residuated lattice with the meet and join defined as
follows x ∧ y = x ∗ (x → y), x ∨ y = ((x → y) → y). From [9, Theorem 3.9]
(see example 3.10) we deduce that for all A ∈ CHO, σ(A) and ι(A) are
BL-algebras. Moreover, it is a routine to proof (cf. [22, Theorem 6]):
Theorem 5.11. Let A be a MTL-algebra, then the following are equivalent:

(i) A is a cancellative hoop
(ii) σ(A) is a product algebra, that is, a Pseudocomplemented BL-algebra

(= BL-algebra satisfying (11)) in which the following equation holds:

(¬¬x ∗ (x → (x ∗ y)) → y = > (27)

(iii) ι(A) is a MV-algebra
In what follows, PL represents the class of product algebras and CMV

represents class MV-algebras that satisfies the equation (20). It is well known
that B is the only nontrivial proper subvariety of PL and of CMV. Then we
have
Corollary 5.12. If K ∈ {BL,CMV}, then K? = CHO. ¤

Let G be a lattice ordered abelian group, `-group for short. The negative
cone G− := {x ∈ G : x ≤ 0} is a cancellative hoop G− under the operations
x∗y = x+y, x → y = (y−x)∧0, and > = 0. Negative cones of `-groups are
the most general examples of cancellative hoops. Indeed, every cancellative
hoop is isomorphic to the negative cone of an `-group, that is unique up to
isomorphisms (see [2]). It is also known that if Z denote the additive group
of the integers with its usual order, then σ(Z−) generates the variety PL
(see [8]), and ι(Z−) coincides with the MV-algebra Sω

2 that, as shown in
[14], generates the variety CMV.
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Taking into account Corollaries 4.7 and 4.8, we obtain (cf [8]):
Corollary 5.13.
1. The free algebra FPL(X) is isomorphic to the weak Boolean product of the

family (σ(FCHO(S)) : S ∈ 2X) over the Cantor space 2X .

2. for each finite cardinal k ≤ 1 FPL(k) ∼= ∏
r≤k

σ((FCHO(r))(
k
r). ¤

Taking into account Corollaries 4.12 and 4.13, we obtain
Corollary 5.14. For each cardinal κ ≥ 1,
1. The free algebra FCMV(κ) is isomorphic to the weak Boolean power of the

family (ι(FCHO(κ)) : S ∈ 2κ) over the Cantor space 2κ.
2. If κ is finite cardinal, then FCMV(κ) ∼= (ι(FCHO(κ)))2

κ

. ¤
By dualizing the results of [7], we obtain a description of free cancellative

hoops with κ free generators in terms of piecewise linear functions from
(Z−)κ into Z−. In particular, FCHO(1) = Z−. Hence FPL(1) = C2 × σ(Z−)
and FCMV(1) = σ(Z−)2.
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[21] Höhle, U., ‘Commutative, residuated l-monoids’, in U. Höhle and E. P. Klement,
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