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Abstract

Product Logicll is an axiomatic extension oféjek’s Basic Fuzzy Logic BL coping with the 1-tautologies when the strong
conjunction& and implication— are interpreted by the product of reals in [0, 1] and its residuum respectively. In this paper

we investigate expansions of Product Logic by adding into the language a countable set of truth-constants (one truth-constant
7 for eachr in a countabldI-subalgebra’ of [0, 1]) and by adding the corresponding book-keeping axioms for the truth-
constants. We first show that the corresponding loHi(8) are algebraizable, and hence complete with respect to the variety

of II(C)-algebras. The main result of the paper is the canonical standard completeness of these logics, that is, theorems of
I1(C) are exactly the 1-tautologies of the algebra defined over the real unit interval where the truth-constants are interpreted
as their own values. It is also shown that they do not enjoy the canonical strong standard completeness, but they enjoy it
for finite theories when restricted to evaluafdedformulas of the kind® — ¢, whereT is a truth-constant ang a formula

not containing truth-constants. Finally we consider the loglgs(C), the expansion ofI(C) with the well-known Baaz’s
projection connectivé\, and we show canonical finite strong standard completeness for them.

Keywords Non-classical logic, fuzzy logic, Product Logic, truth-constants, standard completeness.

1 Introduction

Fuzzy logical systems in a narrow sense are systems of mathematical many-valued logic aiming at
providing a formal basis to Zadeh’s fuzzy logic. The most popular are calculi with values in the
real unit interval [0, 1] defined by a conjunctiénand an implication— interpreted respectively by

a left-continuous t-normx and its residuum=, and where negation is definedag = ¢ — 0,

with 0 being the falsity truth-constant. Among this class of systems, knovtmasn based fuzzy
logics there are three outstanding logics. Two of them were already defined before fuzzy logic was
born, namely the well-known infinitely-valued tukasiewicz Logic aniadél Logic, also known as
Dummett Logic, which turn out to correspond to the calculi defined by the so-called Lukasiewicz
t-normz x y = max(0,z + y — 1) and minimum t-norme *; y = min(z,y) and their residua
respectively. Much later, already motivated by research on fuzzy logic, the many-valuedIlogic
corresponding to the product t-norm«; y = x - y and its residuum, calleBroduct Logi¢ was
axiomatized by Hjek et al. in [17, 15]. All these logics enjogtandardcompleteness, that is,

1A t-norm x is a binary operation on [0, 1] which is commutative, associative, nondecreasing in both arguments and
satisfyingz « 1 = z forall z € [0, 1].

Vol. 16 No. 2,© The Author, 2006. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org
doi:10.1093/logcom/exi075



206 On Product Logic with Truth-constants

completeness with respect to interpretations over the algebra on the unit real interval [0, 1] defined
by the corresponding t-norm and its residuum. These three logics play a crucial role due to the fact
that any continuous t-norm is an ordinal sum of isomorphic copies of tukasiewicz, minimum and
product t-norms. In [15], Bjek introduced the Basic Fuzzy Logic BL as a common fragment of
the above mentioned three many-valued logics. In fact, it was an axiomatization of the tautologies
common to all calculi defined by continuous t-norms.

T-norm based fuzzy logics are basically logicsocoimparative truth In fact, the residuums-
of a (left-continuous) t-normx satisfies the condition = y = 1 if, and only if , z < y for all
z,y € [0,1]. This means that a formula — 1 is a logical consequence of a theory if the truth
degree ofp is at most as high as the truth degreeyoin any interpretation which is a model of
the theory. This is fine, but in some situations one might also be interested to explicitly represent
and reason with partial degrees of truth. To do so, one convenient and elegant way is to introduce
truth-constants into the language. This approach actually goes back to Pavelka [25] who built a
propositional many-valued logical system which turned out to be equivalent to the expansion of
tukasiewicz Logic by adding into the language a truth-constdot eachreal r € [0, 1], together
with a number of additional axioms. Although the resulting logic is not strongly complete (like
tukasiewicz Logic), Pavelka proved that his logic, which we shall call PL, is complete in a weaker
sense. Namely, by defining theith degreeof a formulay in a theoryT” as

|| ¢ ||7= inf{e(y) | e evaluation model of T}

and theprovability degreeof ¢ in T" as

| @ |r=sup{r | T FpL T — ¢},

Pavelka proved that these two degrees coincide. This kind of completeness is usually known as
Pavelka-style completeness, and strongly relies on the continuity of Lukasiewicz truth functions.
Novak extended Pavelka’'s approach to tukasiewicz first order logic [22, 23].

Later, Hajek [15] showed that Pavelka's logic PL could be significantly simplified while keeping
the completeness results. Indeed he showed it is enough to extend the language only by a countable
number of truth-constants, one for eaeltional in [0, 1], and by two additional axiom schemata,
called book-keeping axioms:

T&S > T xS

T8 T=3
wherex and=- are the tukasiewicz t-norm and its residuum respectively. He called this new system
Rational Pavelka Logic, RPL for short. Moreover, he proved that RPL is strongly complete for finite
theories.

Similar rational expansions for other continuous t-norm based fuzzy logics can be analogously
defined, but Pavelka-style completeness cannot be obtained since tukasiewicz Logic is the only
fuzzy logic whose truth-functions are a continuous t-norm and a continuous resfdlAmong

2An easy argument shows that for logics based on other continuous t-norms Pavelka style completeness does not hold.
Let L. be the logic of a continuous t-norg(not isomorphic to Lukasiewicz t-norm) and its residussn(as defined in [11]).
Then it is known that the induced negatiow = = = 0 is not continuous ix = 0, i.e.sup{—z | z > 0} < =0 = 1.
Let p be a propositional variable and &t = {p — 7 | » > 0}. One can show thdtp — 0||7 # |p — 0|7. Indeed,
lp — O|lr = inf{e(p) = 0 | e(p) < rforallr > 0} =0 = 0 = 1, and we show thap — 0|7 < 1. For this,
it is enough to prove thal’ I/ 7o — (p — 0) for anyrg < 1 such thatrg > sup{—z | = > 0} (such an element
exists because is not isomorphic to Lukasiewicz t-norm). Suppose not. In such a case, there would exist a finite theory
To C T such thatly - 75 — (p — 0). Then, by soundnessy < —e(p) for any evaluatiore such that(p) < s, where
s =min{r | ¥ — p € Tp}, which is a contradiction (e.g. takép) = s).
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different works in this direction we may cite [15] where an expansioid-@f (the expansion of
Godel Logic with Baaz'’s projection connective) with a finite number of rational truth-constants,

and [10] where the authors define logical systems obtained by adding (rational) truth-constants to
G .. (Godel Logic with an involutive negation) and Ib(Product Logic) andl... (Product Logic with

an involutive negation). In the case of the rational expansior$ andIl. an infinitary inference

rule (from{y — 7 : r € QN [0,1]} infer ¢ — 0) is introduced in order to get Pavelka’s style
completeness.

Rational truth-constants have been also considered in some stronger logics like in thelggic £
[11], a logic that combines the connectives from both t ukasiewicz and Product logics plus the truth-
constantl /2, and in the logic Pt [18], a logic which combines tukasiewicz Logic connectives plus
the Product Logic conjunction (but not implication), as well as in some closely related logics.

More recently, in [12] some of the authors have considered the expansioadsl @nd weak
Nilpotent Minimum logics (and some of its axiomatic extensions) with rational truth-constants. It is
proved there that these logics are canonical standard complete (that is, complete with respect to the
corresponding algebra defined over the real unit interval where the truth-constants are interpreted as
their own values) for theorems as well as for finite theories when restricted to formulas of the kind
7 — ¢, wherer denotes the truth-constantand is a formula without truth-constants. Actually,
these kinds of formulas have been extensively considered in other frameworks for reasoning with
partial degrees of truth, like in Nék's evaluated syntax formalism based on tukasiewicz Logic
[24] or in fuzzy logic programming [26]. In particular, these formulas can be seen as a special kind
of Novak's evaluatedformulas, which are expressiongA wherea is a truth value (from a given
algebra) andd is a formula that may contain truth-constants again, and whose interpretation is that
the truth-value of4 is at leastz. Hence our formulas — ¢ would be expressed agy in Novak's
evaluated syntax. On the other hand, formulas- ¢ wheny is a Horn-like rule of the form
b1&...&b,, — h also correspond to typical fuzzy logic programming rulest...&b, — h,r),
wherer specifies a lower bound for the validity of the rule. Finally, truth-degrees in the syntax also
appear in Gerla’s framework of abstract fuzzy logics [13] which is based on the notion of fuzzy
consequence operators over fuzzy sets of formulas, where the membership degree of formulas are
again interpreted as lower bounds of their truth degrees.

In this paper we consider general expansiate Pavelka of the Product Logit with countable
subsets of truth-constants closed by the Product Logic truth-functians, we prove canonical
standard completeness for them. More specifically, after some preliminaries in the next section,
in Section 3 we define the logid(C) as the expansion of Product Logic with a countable set of
truth-constants, indexed by elements of a countBbiibalgebra of [0, 1], and the corresponding
variety of II(C)-algebrasII(C)-algebras are judi-algebras having elements interpreting the truth-
constants and satisfying the book-keeping equations. We show there are two tHij€s-afgebras,
namely type | algebras, where different truth-constants are interpreted by different elements of the
algebra, and type Il algebras where all constamigh > 0 are interpreted by the top element of the
algebra. In Section 4 we study the standH(@)-algebras, i.e. th&El(C)-algebras on [0, 1], proving
that the variety generated by them is indeed generated bgahenical standardI(C)-algebra
[0, 1]11(cy, I-€ the standarti(C)-algebra where the truth-constants are interpreted as their own values.
This is used in Section 5 to prove that the loBi¢C) has the canonical standard completeness, i.e.
completeness for theorems with respect to the canonical standard algebrgc), and we obtain,
as a side result, that any linearly ordedg(’)-algebra of type | is partially embeddable into the
canonical standari(C)-algebra. In Section 6, we study the issue of canonical finite strong standard
completeness, in particular for the sublanguage of evaldatésrmulas. Finally, in Section 7, we

3Considered for the first time in [3], where only very preliminary results are presented.
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extend the previous results for the expansions of Product Logic augmented withghgection
connective. We conclude with some final remarks and open questions for future research.

2 Prdiminaries

Our general logical framework is the so-called Product Lddidefined in [17] as a propositional
logic in the languagel = {&,—,0}. Other usual connectives are definable, in partictlis
P =, mpisp = 0,p NPisp&(p — 1Y), o Vis (¢ — ¥) — ) A((¥ — ¢) — ¢), and
p=vyis(e — ¥) A (Y — ). We will denote byF'm . the set of well-formed formulas built over
the languageS and a countable set of propositional variabiés-. Axioms ofII are:

(Al) (¢ =)= (¥ —=x)— (¢ —X)
(A2)  (p&t)) — ¢
(A3)  (p&rp) — (&)
(Ad)  (p&(p — 1)) — (P&(p — »))
(A5a) (¢ — (¥ — X)) — ((p&p) — x)
(ASb)  ((p&t)) — x) — (¢ — (¥ — x))
(A6) ((p—¥)—=x) = (P =) = Xx) = X)
(A7) 0—¢
(I11) == — [((p&t) — (p&x)) — (¥ — X)]
(I12)  (pA=p)—0

The rule of inference ofl is modus ponens

We note that (A1)—(A7) defines, together withodus ponensHajek’s Basic Fuzzy LogidB L
[15]. This emphasizes that is in fact the extension aB L with axioms(IT1) and(I12). Moreover,
adding toB L the axiomsy — p&p or =—p — ¢ we obtain @del Logic and tukasiewicz Logic
respectively.

The (finitary) notion of proof il is as usual from the above axioms and inference rul&. i
an arbitrary theory we shall writ€ -1 ¢ to denote that there exists a proof@from 7.

The algebraic semantics for the Product LoHiés given by the variety oProduct algebrasin
shortlI-algebras, which is a subvariety of the variety/i-algebras (cf. [15]), which provides an
algebraic semantics for BL logic. 8L-algebrad = (4,®,=, A, V,0,1) is a bounded commuta-
tive pre-linear integral residuated lattice satisfying the divisibility condition

rANy=z0 (x=y)
forall z,y € A. Then all-algebra is a just a BL-algebra such that foraall, z € A:
ez AN x=0
eif x £0thenx ©®y =2 ® zimpliesy = z.

The only finite non-trivial chain (i.e. linearly ordered algebra) in the varietyff-afigebras is the two-
element Boolean algebra. The so-cal&andardll-algebrais the algebra on the unit real interval
defined by the standard product and its residufimi]; = ([0, 1], min, max, -, =, 0, 1), where

- denotes the standard product of real numbersaard; y = 1if 2 < y andz =5 y = y/z
otherwise.

4These are the original axioms given in [17, 15]. Later Cintula gave in [7] a simpler axiomatization repEdipgnd
(I12) by the axiom——¢ — ((¢ — (p&v)) — (P&—-—1)). Very recently, Montagnat al. [21] also provided this
alternative axiom~¢ V ((¢ — (&) — ) to replace(Il1) and(I12).
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Product algebras are closely related to ordered Abelian groups [15], in fact a linearly diidered
algebra without the 0 can be identified with the negative cone of a linearly ordered Abelian group.
Namely, given a linearly ordered Abelian grodp= (G,®,1,<),letCone=(G) ={zr € G | z <
1} and define the structui®(G) = (Cone (G) U {0}, ®', =&, min, max, 0, 1) where0 is a new
element and the operations are defined as follows:

r® y=z®y, forz,y € Cone (G)
0@'z=2® 0=0,forallz € Cone™(G) U {0}

1, if either x =0 or x < y for z,y € Cone™ (G)
r=gy=1 yRa ! ifx>yforx,ye Cone (G)
0, ifz € Cone™(G)andy =0

wherez~! denotes the inverse afwith respect to the group operation ThenP(G) is a product

algebra. And conversely, given a linearly ordefédalgebraA, there is a linearly ordered grogp
such thatd = P(G).

Given all- algebraAd = (A,®,=,A,V,0,1) an A-evaluatione is a mapping : Var — A
which extends to arbitrary formulas by means of the algebra operations:

e(0)=0
e(pdey)) = e(p) © e(y)
elp = ) = e(p) = e(¥).
An A-evaluatione is an.4-model of a formulap if e(¢) = 1. ¢ is an.A-tautology ife(p) = 1

for all A-evaluations. If T is a theory, we writd" =4 ¢ whene(yp) = 1 for all A-evaluations
which are a model of all formulas ifi.

Completeness results for logic [17, 15] read as follows. For any finite thedfyand formulap
the following conditions are equivalent:

() Tt

(i) T =4 o for eachlI-algebraA;
(iii) T =4 ¢ for each linearly orderetl-algebraA;
(V) T o1 ¢-

Actually the equivalence between (i), (ii) and (iii) also holds true for arbitrary theories.

3 Expanding Product Logic with truth-constants

Let C be a countable subset of [0, 1] such that (C, -, =11, min, max, 0, 1) is a (product) subal-
gebra of[0, 1];;. Relevant examples of sefare:

(i) the set|0, 1]p = QN [0, 1] of rational numbers in [0, 1],

(i) the setsN Play, ... am] ={aj* - ... a2 | 21, ..., 2m € Z,ai* - ... - aZm < 1} U {0, 1}, for
anyreald) < a; <...<an, <1,
(iii) the setsRP[ay,...,am| = {al* - ...-alm | r1,. ..y € Qa]* - ... -alm < 1} U{0,1} for

anyreald) < a; <...<a, <1

DEFINITION 3.1 o
Given such &, consider a countable sét = {¢ | ¢ € C} of truth-constants and the expanded
languagec = £ U C. The expansion of Product Logic with truth-constants from the algélisa
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denoted agI(C) and it is the logic defined by the Hilbert-style calculus in the languagevhose
axioms are the axioms of Product Lodicplus the followingbook-keeping axioms

r-Ss
=r=mas

&

—

|

=l
@l ||

forall 7, s € C, and the only inference rule modus ponensiNVe will use the notatiofr;(c) to refer
to proofs inII(C).

Like in Product Logic, the following form of the local deduction theorem holdd¥):
[, 4 Fre) ¢ iff there existsn such thall” Fryey Y™ —

for any setl’ of II(C)-formulas andI(C)-formulasty andy. As usualy™ is an abbreviation of
& . &

DEFINITION 3.2
A TI(C)-algebrais a structured = (A, ®, =, A, V, {T4},cc), whered = (A, 0, =,

A, \/,GA,TA) is all-algebra, and the following book-keeping equations
ozt =731
T =54 ==t

hold for anyr, s € C. A will be calledstandardwhen A = [0, 1].

Relevant examples of standdidC)-algebras for a gived are the algebrf, 1]y = ([0,1], -,
=17, min, max, {r},cc) and the algebrf, ”E(C) = ([0,1], -, =11, min, max, {F},cc) Wherer =
1forallr € C\ {0}.

Given all(C)-algebraA, an.A-evaluatiore is just an.A-evaluation which is extended ley7) =
74 for all » € C. The notions of4-model,.A-tautology and logical consequenieg, are then as in
the case ofI logic.

One can check that the lodit{C) is algebraizable (cf. [12]) and its equivalent algebraic semantics
is given by the variety ofI(C)-algebras. As a consequence of this we have the following result.

THEOREM 3.3 (General completeness)
LetT be an arbitrary theory ovéi(C) and lety be a formula ofI(C). Then the following conditions
are equivalent:

o T'Friey ¥
o T |=4 ¢ for all I1(C)-algebrasA,
o T =4 o for all linearly orderedI(C)-algebrasA .

From this result, and using the standard completeness of Product Logic and the above mentioned
local deduction theorem fai(C), one can show that tH&(C) logics are conservative expansions of
IT (similarly to [12, Proposition 9] in the context of expansions of any axiomatic extension of MTL
with rational truth-constants).

COROLLARY 3.4
I1(C) is a conservative expansion Of i.e. if I' U {¢} is a set oflI-formulas, therl" Frycy ¢ iff
T l_H @,
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The main aim of this paper is to refine the above general completenessivier) showing
that we can restrict ourselves not only to linearly ordered algebras but to a single linearly ordered
I1(C)-algebra, the so-callezhnonical standardI(C)-algebra.

DEFINITION 3.5
The canonical standardI(C)-algebrais the algebrd0, 1]r;(¢y over the standard Product algebra
interval [0, 1];; where the truth-constants are interpreted as their own values, i.e.

[07 ”H(C) - ([07 1]7 Y =T, IHiIl, max, {T}TEC)'

The following are some general results about the structure of linearly ortlgt8dalgebras.

LEMMA 3.6
Let A= (4, ®,=,A,V, {T4},cc) be all(C)-chain. Then:

(i) Either74 < 34 for anyr, s € C such that < s, or74 = 1" for all r > 0.

(i) Ais finite iff A = {0, 1"}

PROOF. Assumer, s € C are such thab < r < s and7* = 54. Sincer < s,7/s =s =g r < 1.
Hence, for any € (0, 1), there exists: such thats = )" < t. By the book-keeping axioms we
have(s =1 r)”A <. But(s =q r)"A = A = 74" =T henca” =T (ii) follows from

the fact that the only finite non-trividll-algebra is the two-element Boolean algebra, and it can be
expanded to &I(C)-chain by interpreting the truth-constants in the second way descrifey il
DEFINITION 3.7

Let C be infinite and letd be a linearly orderedll(C)-algebra. We say is of type lif 74 # 54 for
anyr # s. Otherwise, iff4 = T forallr > 0, we sayA is of type Il

Clearly, the canonical standalt{C)-algebral0, 1] is of type I, while the algebrf, 1]1*-1(@ is
the unique (up to isomorphism) standdf¢’)-algebra of type Il .

4 TI(C)-algebrason [0, 1]

In this section we study thE(C)-algebras on the real unit interval [0, 1]. The results will be used in
Section 5 to prove the canonical standard completeness df(thelogics.
The first result is related to the so-called Hion’s Lemma (see [14, Lemma 4.1.6]).

LEMMA 4.1

Let C' be a subset ofo, 1] containing 0 and 1 and closed under the product of real numbers. Let
g:C —[0,1] satisfyg(z - y) = g(x) - g(y) forall z,y € C andg(z) < g(y) for all z,y € C such
thatz < y. Then there exists € R™ such thay(r) = r* forall r € C.

PrROOF By the assumptions oy we have for allr, s € C, r,s > 0 and for alli, j € N:

(i) if r* < s7 theng(r)! < g(s)’;
(i) if r* > s7 theng(r)! > g(s)?.

Using logarithms in statements (i) and (ii) we get the following equivalent statements#fgj allN:

(i")ifi-Inr —j-lns <0theni-lng(r) — j-Ing(s) <0,
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(iyifi-Inr —j-lns > 0theni-lng(r) —j-Ing(s) >0,

or equivalently,

(i")if & > o2 thent > ots)

Jj = l?g(z‘))’
H e g 1 i ng(s
(i”)if % < o then% < TYIGE

The fact that these inequalities hold for all natural numbgismplies that

Ins  Ing(s)
Inr  Ing(r)
Indeed, if s > iﬁggjg then there is a rational numbérsuch thatj22 > * > %. This

contradicts (if). Similarly, 2£ < ii;‘iﬁfi contradicts (i”).

Finally, taking an arbitrary strictly positivee C and lettinge = ln g(r)/ In r, the above equality
leads to

g(s) — S(X
for eachs € C. This ends the proof. [ |

THEOREM4.2

Let A be allI(C)-algebra ovel0, 1];; of type I. ThenA is isomorphic to the canonical standard
algebral0, 1]r;(¢), i.e. the canonical standaid(C)-algebra over0, 1] is the only standardl(C)-
algebra of type | up to isomorphism.

PrROOF EachlI(C)-algebraA over|0, 1] of type | defines an embedding C' — [0, 1] by putting

g(r) = 7" which, due to the book-keeping axioms, is obviously a morphism with respect to product:
g(r-s) =754 =74.54 = g(r) - g(s). Moreover, sinced is of type |, by Lemma 3.6 we have
g(r) < g(s) for everyr < sin C. By Lemma 4.1, there exists a positive rgauch that* = 7

for eachr € C. Therefore, the mapping : [0,1] — [0,1] defined ash(z) = ='/# defines an
isomorphism fromA to [0, 1] c). [ |

From the above results it is already clear that the variety generated fy(ehealgebras on [0,
1] is the varietyV ([0, 1}ri(c), [0, 1]5;¢)) generated by the algebris 1]ric) and[0, 1] ¢. In the
rest of this section, we prove that this variety is in fact equalt®, 1]ic)). This will be achieved
by proving that|0, 1]1’;(6) belongs to the variety generated [y 1);;c). In order to prove this
in Theorem 4.5, we need a method to convert a nonsatisfying evaluatidm II(C)-formula in
[0, 1];:1(6) to a nonsatisfying evaluatiori of the same formula if0, 1]r;(¢y. This is achieved in the
following paragraphs concluded by the specific result in Proposition 4.4.

Let e be an evaluation offf(C)-formulas on the type Il algebra, 1]f; ). In particular, for every

r € C\ {0}, we havee(F) = 1. Consider the following set of evaluatiom§ on the canonical
standard algebr@, 1]i;(c), parametrized by positive real numbers R*, defined as follows:

e ¢}(T) = r for every truth-constant symba
e ¢, (z) = (e(x))" for every propositional variable,
e composite formulas are evaluated according to the operatidfslif ).

We are going to prove that #(¢) < 1, thene,(¢) < 1 for everyt large enough. We start by
making the following remarks.
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The set0, 1]®" of all functions fromR* into [0, 1] becomes &l-algebra with the operationsind
=1 defined pointwise and with the constant functibas bottom and the constant functibas top.
Let F C [0,1]%" be the set of all functiong : R* — [0, 1] satisfying the following condition:

(E) There aré) < ¢ < 1 andty > 0 such that < f(t) for all t > ¢.

Itis immediate to verify that" is an implicative filter of thdI-algebrg0, 1]]R+ (see [5, Lemma 1.5]).
Hence the congruence relation definedbyn [0, 1}R+, f~giff f=ng€ Fandg =y f € F,
turns out to be defined as

f ~ giffthereared < ¢,d < 1andty > 0suchthat- f(t) < g(¢t) < f(t)/dforall ¢t > t.

Indeed, ifc < f(t) = g(t) fort > t1, thenc- f(t) < ¢(¢), and ifd < g(¢t) = f(t), then
g(t) < f(t), fort > to. Thereforec- f(t) < g(t) < f(t)/d ,fort > max(ty,t2).

LEMMA 4.3

The congruence relation satisfies:

() f ~ 0iff there existsty such thatf(¢) = 0 forall t > ¢,
(i) If f ~ gthenlim;_ . g(t) = 0iff lim;_o f(¢) =0

PROOF Both statements are straightforward using the above equivalence. [ |

PROPOSITION4.4
Let e ande, be defined as above. For every formuléet g, (t) = (e(¢))! andf,(t) = e,(¢). Then
we havefy ~ gg4. In particular, ife(¢) < 1, thenlim,_. €}(¢) = 0.

PROOF Let us proceed by induction on the complexitygof

1. Constants.

r=0. gg(t) =e(0)" =0andf5(t) = e,(0) =0, and0 ~ 0.

r>0. g=(t) = (e(F))! = 1" =1 and f=(t) = e}(¥) = r, and obviously- ~ 1.
2. Variables.

Direct consequence of the definitiofi,(¢t) = g..(t)).
3. ¢ = (P1&yo).

Gunsews (1) = e(Ur&iha)’ = e(1h1)" - e(1h2)" = gy, (t) - gy, (1)
Firgens () = € (1&tpa) = €4 (1) - €4 (P2) = fu, (£) - fu, (1)
Since~ is a congruence, if we suppose tifat ~ g4, and fy, ~ g4,, we can conclude that
f¢'1&1/)2 ~ i1 &apa -

4.6 = (Y1 — P2).
Gupr s (1) = €(th1 = ¥2)" = (e(th1) = e(1h2))" = e(¥1)" = e(¥2)" = gy, () = g, (1)
Fin—ua () = €(th1 = P2) = e; (1) = €f(th2) = fu, () = Fi, (D).
Using again the fact that is a congruence, from the hypothegis ~ g, and fy, ~ gy,, we
Obtainfd,l_,w,z ~ Gopy —sapg -

The first statement of the proposition is proved. The second statement follows from the first state-
ment and (i) of Lemma 4.3. [ |

THEOREM4.5
[0,1]fy¢y € V([0,1]ric)), hence the variety generated by the clas§lf)-algebras over the unit
real intervall0, 1] is V ([0, 1]r(c))-
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PROOF. Lety be notvalid in[0, 1] ). There exists an evaluatieron[0, 1]7; ., such that(y) < 1.

By the above propositiodim;_. e;(¢) = 0 as well, hence for every large enougte;(p) < 1.
Sincee; is an evaluation of0, 1], ¢ is not valid in[0, 1] c).

5 Standard completenessresults

We recall the assumption that in what follo@stands for an arbitrary countable product subalgebra
of [0, 1] such thaC' # {0, 1}, including the cas€' = [0, 1]p.

In this section we prove the canonical standard completened$@fin Theorem 5.4 (i. e. we
prove that the theorems &f(C) coincide with the tautologies of the canonical standard algebra
[0, 1]11(¢y) using a result on partial embeddability (Theorem 5.3) for type | linearly ordE¥€q-
algebras intd0, 1]i¢). Theorem 5.3 extends the known partial embeddability results for MV and
Product algebras based on the Gurevich-Kokorin theorem for Abelian ordered groups (cf. [15]).

To show that the logid¢I(C) has the canonical standard completeness we need, due to Theorem
3.3, to show the following. For everfI(C)-formula ¢, if there exists a linearly ordered(C)-
algebraA and anA-evaluatiore such thae(¢) < T, we can find an evaluatiost on the canonical
standardI(C)-algebra such that(¢) < 1. In order to achieve this, we need to embed the values of
all subformulas of into [0, 1] in such a way that the existing products and residues are preserved.
We will do it first for a general finite set of values it

Let E be a finite subset afl. Denote byC; the set{r € C' | 74 € E}. LetCy, be thell-algebra
generated by'r. Note that thdI-algebra generated by is naturally aH(CNE)-aIgebra. Le@* be
(7E without0.

In the proof of the next proposition we make use of the ordered Abelian dftp;. . obtained
as the lexicographic product &fcopies of the multiplicative groups of positive reals. Its definition
and some results on ordered Abelian groups are gathered in the Appendix.

PROPOSITIONS.1
Let A be a linearly orderetll(C)-algebra of type | and |eF be a finite subset ofl. Let Ag be the
linearly orderedI(Cy)-algebra generated by. ThenAy is isomorphic to d1(Cy )-algebraD such
that the following is satisfied:

e D = P(G) with G being a subgroup ofR*)E _, wherek is an integer,

lex?
e there is an integetl and a real numbet > 0 such that for every € @* we haver? =
wa(’FO‘),

where, for anyr € (0,1] and naturall < I < k, wi(z) = (1,...,1,2,1,...,1) € (RT)* with =
being at coordinate with index

PrROOF Taking Ag as all-algebra, there is a linearly ordered Abelian gr@ipsuch thatdg =

P(G’), i.e. Ag\ {0} is the negative cone of a linearly ordered grdilp Since Ay is finitely

generated, so i§’. Hence, applying Theorem A.1 there is a natdralich thaig’ is isomorphic to
a subgrougg of (R1)F _ (see the Appendix for the definition ¢R*)%  and the result).

lex lex
Then Ag is also isomorphic (through a mappingto P(G) asII-algebras. For every ¢ Cky
define7P(9) = ,(74). Using this,P(G) is aIl(Cp)-algebra isomorphic todz. Therefore, for
simplicity, we may assume from now thdtz = P(G).
SinceCy is an ArchimedeaiiI-algebra, there is a unique< k such that for each element',

r < landr € (’JVE* we haver? = (1,...,1,ay, ...,a;) With a; < 1. Indeed, suppose s € 6’7;*
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such thats < r < 1 and7* = (1,..,1,a;,...,ax) ands* = (1,...,1,bj,...,bx) with i > ;.
There is a natural: such that-™ < s, but obviously(FA)m =(1,.,1,(a)™, ey (ak)™) >iex
(1,...,1,b;, ..., b) = 54, contradiction.

Let f1,..., fx : CE* — RT be functions such that for eache CE* we haver? = (fi(r), ...,

fx(r)). Due to the validity of the book-keeping axioms, for eaclf; : 51;* — R* is a homomor-
phism for the product. According to the above paragrafplis the first of the functiong; which
is not the constant 1. Since the algebta is all(Cg)-algebra of type | and, by the previous para-

graph, fi(r) < 1 for everyr < 1,r € Cg , f; is one-to-one and preserves the order (indeed if
fi(r) = fi(s) for somer > s, thenf;(r = s) = 1). Hence, by Lemma 4.1; is a power and we
have

A= (1,1, .07, fra1(r), oo fu(r)) (%)
for some reaby > 0.

Now let M = {z; | (21, ..., 21,2111, ..., ) € G} be the set of all-components of elements of
G. By its definition,M with the multiplication is a subgroup &, which is generated by the set of
res, forr € @* and additionally by a finite number of valugscoming from the elements df.
Now, define mappingg; 1, ..., gr : M — RT as follows:

1. putg;(r®) = f;(r) forall r € Cy
2. using Lemma A.2 (see Appendix), extegicto the subgroup generated BE*

3. finally, applying Lemma A.3 (see Appendix) for theomponent of each element &f which
is not an interpretation of an element(@f;, extendy; to the whole)M.

As a result, we get a homomorphigmfrom M to R for eachj € {l + 1, ..., k}.
Finally, define a new mapping: G — (R*)* by putting

h((fEl, ey LUy L4l eeey l’k)) = (xla "'7wl7xl+l/gl+1(xl)a 7xk/gk(ml))

We claim that, so defined, is a monomorphism. Indeed, since #jés are homomorphisms for the
product onM, h is a homomorphism for the product gnas well. If two elements of differ in z;
fori < [, then their images are ordered in the same way, since thédostdinates are not changed
by h. If two elements off agree in the first coordinates and the first different coordinate:jfor
i > [, then their images are ordered in the same way, sinég again the first differing coordinate
andz; is divided by the same number in both images.

Therefore,h(G) is a subgroup of R*)X  which is isomorphic tog. Consider thel-algebra

lex
D = P(h(G)). By construction ofh, we haveh(7*) = wy (r®) for everyr € Cr . Hence, by
defining?? = h(7*) = wy, (r*) for everyr € Crz , D becomes fﬂ(@;)—algebra, and moreover,
D is isomorphic taAdg. This ends the proof of Proposition 5.1. [ |

In the following we show that there is a partial isomorphism of Hr@{l;v;)-algebra of the special
form guaranteed by Proposition 5.1 into the canonical staridéfg-algebra.

PROPOSITIONS.2
LetG be subgroup of R*)¥,_such thaD = P(G) is all(C)-algebra, withr? = w;, ,(r®) for every

lex
r € C*, for some natural and positive reaty, and0” = (0, %.,0). Then for everyfinite subsetF
of D there is a mapping : E — [0, 1] satisfying the following four conditions
(i) q preserves the order.
(i) ¢(FP) = rforall r € Cp.
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(i) If z,y,x xy € FEtheng(z) - q(y) = q(z x y).
(iv) If z,y,2 = y € E theng(z) = q(y) = q(z = y).

ProoF. The candidates fay are restrictions td of functionsg : G — R of the form
g((xlvx% ceey lk)) = (‘,Lil ! 1’;2 Tt xi’k)BV

wheree;, 3 > 0. Each of these functions is a homomorphism w.r.t. the product dfience, for
every choice of; andg, the restriction of; to F satisfies (iii). By the assumption, for everye C*
7P = w1 (r*). Hence, for every choice af andj, we havey(7P) = r*='8, wherea - ¢; - 3 > 0.
By choosings = 1/(« - ¢;), we obtain that the restriction gfto E satisfies (ii).

Let us prove that it is possible to choose thein such a way that the restriction gfto £
satisfies (i). Let us classify the pairs of distinct value&iaccording to the first indei, where the
values differ. Pairs which satisfiyy = k are ordered correctly for any positive valuespf Pairs
satisfyingio = & — 1 may be put into the right order by choosing ; = 1 ande; small enough to
guarantee that the difference (measured as a ratio) ifkthel)th coordinate is always larger than
the difference in thé-th coordinate. In fact, if the exponents_; = 1, ¢, guarantee the right order
of the pairs withio = k£ — 1, then the exponents,_; = t,t - g, for any positivet, guarantee the
order as well. Hence, when it is necessary to put the pairsiwith £ — 2 into the right order, we
chooses;,_o = 1 andt small enough so that the difference in tfie— 2)-th coordinate is always
larger than the differences contributed @y— 1)-th andk-th coordinates. Since we preserve the
ratio betweerr;,_; andey, we do not destroy the already correct order of pairs wjith- £ — 1. We
proceed in a similar way for pairs with smaller and smaller

The condition (iv), the preservation of existing implicationsAnis a consequence @f being
order preserving (i) and the preservation of existing products (iii). [ |

THEOREM 5.3 (Partial embeddability for typell(C)-algebras)

Let A be a linearly orderedl(C)-algebra of type | and leE be a finite subset ofi. Then there
exists a one-to-one mappifg: £ — [0, 1] satisfying the following conditions:

(i) h preserves the order.

(i) h(74) = rforallr € Cg.

(i) If z,y,z € Eandz = x x y thenh(x) - h(y) = h(z).

(iv) If z,y,z € Fandz = 2 = y thenh(z) =1 h(y) = h(z).

PROOF LetD be the algebra guaranteed by Proposition 5.1 appligtstoLet £’ be the image off

under the isomorphism betwegh:; andD. Applying Proposition 5.2 t® andE’ with C = Cg, we
obtain an embedding, whose composition with the above isomorphism has the required properties
of h.

In the following, this mapping will be called apartial embeddindof the partial algebra ovelt
into [0, 1]i(¢)). The existence of a partial embedding for typH(C)-algebras extends the known
partial embeddability results for MV and Product algebras based on the Gurevich-Kokorin theorem
for Abelian ordered groups (cf [15]).

THEOREM5.4 (Canonical standard completeness)
The logicII(C) has the canonical standard completeness.

PROOF. Lety be all(C) formula such that/r; ¢y . We can further assume contains some truth
constantr with 0 < r < 1 as subformula, otherwise the standard completeness of Product Logic
does the job. By general completeness, there is a linearly oriiEt&dalgebrad and an evaluation
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e on A such thate(yp) < T*. The task is to find an evaluatia# on the canonical standafdl(C)-

algebral0, 1]y such thae’(¢) < 1. Let E = {e(v)) | ¢ is a subformula ofp} U {GA,TA}. We
consider the following cases:

Case 1:Ais of type I.
By applying Theorem 5.3 we obtain a partial embeddingf E into [0,1]. Now define a
[0, 1]11(cy-evaluatiore’ by putting

¢/ (z) = h(e(p)), if x is a prop. variable in ¢
| arbitrary, otherwise

It is easy to check then, by the propertiesipthate’ (¢) = h(e(y)) < 1.

Case 2:Ais of type Il.
By the well-known results ofl-algebras (see [4]), there is a partial embeddfngf £ into the
standardI-algebra0, 1] and the evaluation’ on [0, 1)1 defined as follows
¢(p) = { flelp)), if p is a propositional variable in

arbitrary, otherwise

is such that’(¢*) < 1, wherey* is theII-formula obtained fromp by replacing all truth-
constants with 0 < r by 1. Now, the evaluation” on [0, 1]f; ., the standardI(C)-algebra of
type Il, such that” (p) = ¢’(p) for all propositional variablep satisfiese’ (¢*) = €’ (¢) < 1.
Then, by Theorem 4.5, there is also an evaluatiénon the canonical standaid(C)-algebra
[0, 1]11(cy such thae () < 1. This ends the proof of Case 2 and hence of the theorem as well.

6 Finitestrong completenessresults

Since Product Logic has no strong standard completeness for arbitrary theories this is also true
for II(C), butII(C) does not even enjoy canonical strong standard completeness for finite theories.
Namely, for any rationad < » < 1 and any propositional variabje 7 /1) p but it trivially holds
that? =0 11, p Since there is no evaluation which is a modefot.ooking at this example, one
could think that the reason for failure is that the theory ugee; {7}, is somewhat special, in the
sense that it is not satisfiable. Unfortunately, being satisfiable is not a sufficient condition for strong
standard completeness as the following example, taken from [12], shows.

LetT = {7V p}, where0 < r < 1 andp is a propositional variable. Itis clear tHAtis satisfiable
for any evaluatiore such thae(p) = 1, and thatl" F[O,l}n(c) p. ButagainT I7ry(cy p since if so, by
the deduction and canonical standard completeness theorefigdyrit should also be true that,
for somek, thent=( 1, ., (7 V p)* — p, which is false for any evaluation witt(p) < *.

However, we can still show some interesting results. Namely, we will first show that finite strong
completeness holds for the semantics obtained by considering simultaneouslyCthalgebras
[0, 1]11(c) and[0, 1] ), but it does not hold for the semantics defined by just one of these algebras.
And moreover, this result cannot be improved. Nevertheless, as usual we will continue referring to
this kind of completeness asandardsince anylI(C)-algebra ovef0, 1] is proved to be isomorphic
to one of these two . Secondly, we will show that we can indeed prove canonical finite strong
standard completeness when we restrict ourselves to formulas of the kind

T —
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wherey is all-formula, i.e. a formula without truth-constants (different frorand1). We will use
the namegradedor evaluatedlI-formulas to refer to this kind formulas. Such a formala> ¢ is
also denoted in the literature as the fairr).

THEOREMG6.1 (Finite strong standard completenes$I(f))
For anyl1(C)-formulay and any finite set dfl(C)-formulasl’, we havel’ by ¢ iff T' o 1), ¢
andI’ ':[071];1(6 V2

PROOF. Soundness is obvious. Suppdse/rc) . Sincel is finite, without loss of generality
we can assume it consists of a single formula (the conjunction of the formulgs #ay . Thus
we suppose ey »- By general completeness, there is a linearly ordérédl)-algebrad and

an A-interpretatione such thate(x) = T ande(p) < T*. Take the finite sef = {e() | ¥

subformula ofp or x} U {GA, TA}. We distinguish two cases:

(1) If Ais of type |, i.e. ifr,s € C with r < s, then7 < 354, then from the result of partial
embeddability (Theorem 5.3) there is a partial embeddingX — [0, 1]. Thus, we can define the
[0, 1]11(cy-evaluatione’ by e’ (x) = h(e(x)) for any variable x appearing ip or o) ande’(z) = 1
otherwise. Obviously'(x) = 1 ande’(¢) < 1. Hencex (o 1], #-

(2) Supposed is alI(C)-algebra of type Il, i.e.74 = foralr e C— {0}. Then there
is a partial embedding (as Product algebragf X into the standardI-algebral0, 111, and since

h(TA) =1, h o e can be easily extended to a fifll, 1]7; .,-evaluatione’ such that’(x) = 1 and

¢/(p) < 1. Hencey %[0,1];(6) ©. [ |

As mentioned before, it turns out that this finite strong completeness cannot be improved in the
sense that it cannot be proved with respect to the semantics given by a single algebra. Namely, given
r € C such thad < r» < 1, we have already seen that/ 7 |:[071]H(C> pbutp VT g p.

1(c)

Converselyp HOJ];&(C) p AT butp F&[o,l]n@ PAT.
Next we will show that we can improve the finite strong standard completeness result when we

restrict ourselves to gradddétformulas. Indeed the following canonical finite strong standard com-

pleteness result holds:

{?i — ©; ‘ 1= 1,..,’/1} }_H(C) 55—
if, and only if,

{Fl — ©; | 1= ]., ..,TL} >:[0=1]H(C) S — ”ll)
wherey; andy arell-formulas, i.e. formulas not containing truth-constants different focand1.

Actually, as always, one direction (soundness) is easy due to the book-keeping axioms. To prove
the converse direction

If {Fi — ©; | 1 =1, ..,TL} ’:[0»1]1'1(6) 55— then

{Ti — ¥ ‘ 1= 1,..,n} }_H(C) S — 1[)
it is enough to combine Theorem 6.1 with the following result.

LEMMA 6.2

{7 — @i li=1,..n} Fpae § = Y then{Tt — o1, 70 = o} Fpagg, 5 = ¢

ProOF Without loss of generality we may assume> 0 for all ¢ ands > 0. SupposeF; —
Ply-e T — On} %[071];[(@ s — 1 Then there exists f, 1];(C)-evaluatione such that (1 —
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v1) =...=e(T, — pn) = 1lande(s — ¢) < 1. Sincee(r;) = e(s) = 1 for all 4, we also have
e(p1) =...=e(pp) =lande(yp) < 1.

Assumee(y) = 0. Then, lettinge’ be the[0, 1] ¢)-evaluation defined by'(p) = e(p) for any
propositional variable, we havee' (77 — 1) = ... = ¢/(F, — ¢,) = 1 ande’(v¥) = 0, hence
{Fl — Q1,5 Tn — (Pn} I#[O,l]n(c) 55— l/}

Assumee()) > 0. Leta € R such that(e(¢))® < s. Then the[0, 1]y c)-evaluatione/,
wheree’(p) = (e(p))* for any propositional variablg, is such that’(7; — ¢;) = 1 for all i but
e'(s — 1) < 1,hence{T1 — ¢1,....,Tn = @} 010, S — ¥- ||

Finally, as a direct consequence of Theorem 6.1 and the above lemma we can state the following
completeness result.

COROLLARY 6.3 (Canonical finite strong standard completeness for evaluated formulas)
For anyIl-formulase;, ..., ., % and anyry, ...,r,, s € C, itholds that{t; — ¢; | i = 1,2,..,n}
}_H(C) 55— if and Only if {Fi — ©; ‘ 1=1,2, ..,n} ':[071]1_[(@ 5 — ).

The result also holds if we restrict the language to formulas of ¢ype 7 such thaty is a formula
of I, i.e. ¢ does not contain a truth-constant different fromlL. In such a case the result of the
corresponding Lemma 6.2 is valid due to the fact that forranyo, it follows thaty — 7 is trivially
a tautology ovefo, ”1*-1((:)-

Nevertheless the result is not true if in the restricted language we allow formulas of both types as
the following example shows. Namely, it is obvious that the semantical deduction

p—q —TEq—p

is valid over the canonical standalitiC)-algebra but not ovel0, 1]f; ., if r < 1.

To see that it is valid over the canonical standd(d)-algebra we need only to take into account
that if the residuated implication function is less than 1, the first value has to be greater than the
second, i.e. for all evaluation such thdp — ¢) < r < 1, thene(q) < e(p). On the other hand,
over [0, 1]; ) the premiss is always valid(r) = 1 for anyr > 0) and thus the deduction is not
valid.

7 Expanding ITA with truth-constants

A natural extension of the considered logical framework is to introduce the well-known Baaz's
connective into the logic. In such a case, instead of the Product Lbgiee take as starting point
the logicIla, the expansion ofl with the A connective as done in [15] by adding the following
axiom schemata:

(A1) ApV-Ap

(A2) A(p V) = (ApV AY)

(A3) Ap—yp

(Ad) Ap — AAp

(A5) Al — ) — (Ap — AY)

and the rule of necessitation: from derive Ap. The algebraic semantics ®fa is given by

the variety oflla-algebras. Alla-algebra is a structuréd, ®,=,A,V,A,0,1), where(A4, ®,
=,A,V,0,1) is all-algebra satisfying the following conditions for anyy € A:
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Az V-Azr=1
AzVy)=(AxVAy) =1
Ar=z=1

Az = AAx =1
(Az0A(z=y)=Ay=1
Al =1.

The standardI-algebra is the expansion of the standard Product algébté; with the unary
operation defined bAl = 1 andAx = 0forall z < 1.

The (finite strong) standard completeness of Product Logic easily extehlls (see [15, Theo-
rem 4.1.13]). Moreovell is also a conservative expansionlb{see [6]) .

As before, given a countable subgetof [0, 1] such thatC = (C, -, =, min, max,0,1) is a
(product) subalgebra df), 1], we define the logidIa (C) as the expansion di(C) with the A
connective by adding the aboyA1) — (A5) axioms, the necessitation rule farand the following
book-keeping axioms

AT =6(r)
for everyr € C, whered is the unary function in [0, 1] defined by{z) = 1 if = 1 anddj(z) =0
otherwise. Actually, it is enough to add just one book-keeping axiom for a particular cofstant
ro < 1. Indeed, for any € C such thab < s < 1, there exists a naturalsuch that™ < r(, hence
5" — T is provable inlI(C). Now, by applying theA axioms, the formuldAs)” — A7 can be
derived, hence;(As)” as well, and by reasoning i one finally derives-As, which is in fact the
book-keeping axiom fog sinced(s) = 0.

As for the algebraic counterpartlk (C)-algebrais a structutd = (A4, ©, =, A, V, {74} ,cc, A),
where(A4, ®, =, A, V, {74} ,cc) isall(C)-algebraandA, ©, =, A, V, GA, TA, A)is allx-algebra,
satisfying further the corresponding book-keeping equations

AFA = 5
for eachr € C. It is clear then that if4 is a linearly orderedIa (C)-algebra,A7 = 0 for all
1>recd.

One can check again that the logia (C) is also algebraizable with equivalent algebraic seman-
tics given by the variety ofl A (C)-algebras and thdia (C)-algebras still decompose as subdirect
product of linearly ordered ones.

THEOREM 7.1 (General completeness)
Let T' be an arbitrary theory ovdiia (C) and lety be a formula offIo (C). Then the following
conditions are equivalent:

e ') ¥
o T =4 pforall IIa(C)-algebraA;
o T |=4 ¢ for all linearly orderedI (C)-algebraA.

Thecanonical standardIa (C)-algebrais the algebrd0, 1], () over the unit real interval [0, 1]
where the truth-constants are interpreted as their own values, i.e.

[0, 1]r1(ey = ([0, 1], -, =11, min, max, {r},cc, D).

Contrary tolI(C)-chains, as the following lemma shows, truth-constants cannot collaptg (i)
chains, and hence th&C)-reducts oflTA (C) chains are always of type I.
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LEMMA 7.2
Let A= (A, ®,=,A,V, {74} ec, A) be alla (C)-chain. Therr4 < 54 for anyr, s € C such that
r <Ss.

PROOF Letr < sand lett = s — r. If 7 = 54, thens® = 74 = T, hencel” = T*, hence

A(ZA) =T". But, sincet < 1, this is in contradiction with the fact thaX(ZA) =0"forallt < 1.1

THEOREM 7.3 (Canonical standard completeness)
The logiclIa (C) has the canonical standard completeness, that is, for any fopmtig, ) « if,

and only if, =g 1), ) ©-

PROOF By a simple application of the partial embedding resultTi¢c)-algebras, taking into ac-
count Lemma 7.2, that is, the simplification due to the fact that there an1i6)-algebras of Type
1. i

The issue of (finite) strong completeness now is easier thanliiff. Indeed, recalling the form
of the deduction theorem fdia, ¥ b, ¢ iff Fo, Ay — ¢, one can easily prove the following.

COROLLARY 7.4 (Canonical finite strong standard completeness)
For anyITa (C) formulay and any finite set ofla (C)-formulasT, it holds thatl’ Fr, ¢) o iff

r ):[O:I]HA(C) -

Analogously to thdI(C) logic, one can easily show th&lia (C) is a conservative expansion of
ITA, and hence ofl as well. However]I (C) is a conservative expansiondfC) only at the level
of theorems, not for theories.

THEOREM7.5
The following statements hold:

(i) IIA(C) is a conservative expansion Gfy .
(ii) If ¢ is aformula oflI(C), thenl-r, (¢) ¢ if, and only if, - ) .
(iii) There existy, v formulas oflI(C) such that) -, (¢) v andw e -

PROOE (i) As for the non-trivial implication, lefl” U {¢} be in the language dfia, and assume
T Fria(e) @- Then there exists a finit€; C T' such thatl’; -y, (¢) @, hencel’; =, ¢y ¢. This
means that every evaluatienon [0, 1], ¢y Which is model ofT is also model ofp. But each
evaluation o0, 1];;, determines an evaluation ¢ 1];, () respecting the values of formulas of
ITa, and viceversa. Hence we also h&Vek=, ¢, and by completeness ofa, Ty F11, ¢, thus
T by, paswell

(i) Let o be a formula in the language oif(C) and assuméy; ¢y . By canonical standard com-
pleteness, there is an evaluatioon the canonical standard algeldal]r ) such thak(p) < 1.
But this evaluatiore can be trivially extended to an evaluation [0n1]y, ¢y, hencelr, ¢y ¢, and
thUSVHA(C) ©.

(iii) For any r < 1, it holds that t-y, (¢) 0 but¥ () 0. [ |

To conclude, let us remark that strong standard completene$b.f@®) does not hold. In fact,
this is a consequence thHt (C) is a conservative expansion Bf, andII does not enjoy strong
standard completeness.
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8 Final remarks

After the study of the expansions of tukasiewicz Logic anttlél Logic with truth constants in
[25, 15] and in [12] respectively, in this paper we have studied the expansion with truth-constants
of Product Logic, the other main fuzzy logic based on a continuous t-norm. Following [12], the ap-
proach we have used is based on the fact that the IbQi€$ are algebraizable and thus we can study
their associated variety of algebras. Like in the case of Product algéh@salgebras are subdirect
product of linearly ordered ones. Thus we have completeness results w.r.t. the class of chains of the
variety. The main results of the paper are related to canonical standard completeness of the logics
I1(C). We have proved canonical standard completeness and some finite strong completeness results.
These results are mainly based on the embeddability of any finite ga(Gatalgebra of type | into
the canonical standaidd(C)-algebral0, 1]r¢), generalization tdI(C)-algebras of the well-known
result forII-chains. Moreover we have proved canonical finite strong standard completeness when
we restrict ourselves to formulas of type— ¢ whereyp is a formula of Product Logic, i.e. with-
out additional truth-constants. In addition, we have considered the expansions of those logics with
Baaz'sA connective, calledIa (C), showing that the resulting logic has the canonical finite strong
standard completeness. Actually, this result could be also easily proved in an analogous way for the
corresponding expansions of Lukasiewicz ari@tél logics with truth-constants anl

As suggested by one referee, an alternative approach to proving canonical standard completeness
for II(C) could be to add truth constants to the analytic hypersequent catélider Product Logic
defined in [20], namely, definingII(C) by adding extra rules t&/11 to deal with truth-constants
and show thatp is derivable inGII(C) iff ¢ is valid in the canonical standaid(C)-algebra. The
result would then follow by showing that derivability @II(C) implies derivability inII(C).

A closely related logic to Product Logic is the so-cal@dncellative Hoop Logi¢9], CHL for
short. CHL is thed-free fragment of Product Logic extended with the cancellation axiom

(o — &) — 1.

Its algebraic semantics is given by the variety of cancellative hoops, whose linearly ordered elements
are exactly Product chains without the 0. CHL is complete with respect to the standard cancellative
hoop, the real semi-open inter@l, 1] endowed with the restriction of Product Logic truth functions.

For any countable Product subalgeraf [0, 1)1, one could define the logic CHC ™), which is

the expansion of CHL with truth-constants fraift = C \ {0}, in a completely analogous way we

have definedI(C) from II. And moreover, a careful checking would show that all the results we
have proved fofI(C) could be easily transferred to CKL ™).

As for future work, observe that, from the results in [11], it is possible to axiomatically define the
logic of any particular continuous t-norm and its residuum. Then, the partial embeddability result,
which now holds for the expansions of the three main continuous t-norms logics with truth-constants,
could be extended to the expansion of any logic of a continuous t-norm with truth-constants. From
there, we plan a general study of the expansions of any continuous t-norm logic with truth-constants.

It has been suggested by Petr Cintula (personal communication) to consider the extehigion of
logics with the inference rule

R, : from7 derivel

for a particular0 < r < 1. Call the resulting logidI(C)*. Notice that, sinc& is Archimedean,

all the rulesR;, for any0 < s < 1, are derivable ifI(C)*. The consequence of the addition of
such an inference rule is to discard HI(C)-algebras of type Il as possible algebraic models, as it
happens ifIa(C), since the rule forbids the collapsing of truth-constants. Therefore, it remains as
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an interesting task to study in more detail the loHiC)*, which is inbetweerdI(C) andIIA (C),
and whose class of corresponding algebras is not a variety but a quasivariety.
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Appendix
A Someresultson ordered Abelian groups

In this appendix we list some results on ordered Abelian groups that are used in the paper. Some of them are particular cases
of most general results about ordered Abelian groups but we give the results we need and some of the proofs for the reader’s
convenience.

For the first result we recall the definition of the ordered group obtained as the lexicographic product of copies of the 0.a.g
of the positive real numbers with the natural order and the product opek&ibn-, <). For any naturak, we denote by
(R*)fez = ((RH)*, e, (1, k., 1), <jez) the linearly ordered Abelian group defined on the Cartesian productopies
of the positive real® T, with e being the coordinatewise multiplication and with,,. the lexicographic order. Note that
the= e operation in thdl-algebraP (R+ fm), with (0, ., 0) as bottom element, is defined as follows:

—_ (17'”71)7 if (a17~~'7ak) Slex (b17"'7bk')
(@1,..,ax) = o (b1, .., by) *{ (1,.., 1,b;/aj, .., by /ay), otherwise

wherej is the smallest index for which; > b;.
The following result is a consequence of well-known Hahn’s theorem, which is a more general result (see e.g. [14,
Theorem 4.C]). However, a direct proof of the next theorem can be found in [16, Theorem 7.3.15].

THEOREMA.1

If G is a finitely generated ordered Abelian group, tiiérs isomorphic to a subgroup ()R*’)fw.

The second result is given in the following lemma.

LEMMA A.2
Let H be a subgroup dR*. Any functiont : H N (0,1] — R such that(x - y) = t(x) - t(y) for all z,y in H N (0,1]
may be extended to a group homomorphiém H — R+,

ProOF Definet’ : H — R as follows:

vy =), ifz<1
t(@) = { 1/t(1/z), ifz>1

For anyz,y € H, one (and only one) of the identities

t(1/z) = t(l/z-1/y)-Uy)
t(1/z) - t(l)y) = t(1/z-1/y)

is well defined and satisfied, and implies a corresponding identitythitistead of. Since for every € H t/(1/z)-t'(2)
1, we may derive’(z - y) = t/(z) - t/(y) in each of the cases.

tlz-y) = t) - ty)
tz-y)-t(l/z) = ty)
tz-y)-tl/y) = t(2)
t(l/y) = t(l/z-1/y)- t(z)
(
(

Finally the third result is a consequence of the fact that an Abelian group is injective if and only if it is divisible, see [19,
Proposition 3, Section 4.2]. Sin& is abelian and divisible, the next lemma follows. For the reader’s convenience, we
provide a simple elementary proof of the particular case we need.
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LEMMA A.3
Let H be a subgroup dRt, 2 € R \ H and letH’ be the subgroup generated Byandz. Then every homomorphism
t : H — R* may be extended to a homomorphigm H’ — Rt.

PROOF. Ifthereisnon > 1 suchthat:™ € H, then defing’(x) arbitrarily. Every element off’ has a unique decomposition
asz® - a, wherei is an integer and € H, so we may defin¢ (z* - a) = t/(z)? - t(a) and this yields a homomorphism on
H'.

If there is somex > 1 such thatt™ € H, denote by the smallest natural number with this property. For every intéger
we haver’ € H iff n dividesi. For every integet and everya € H definet’ (¢* - a) = t(x™)%/" - t(a). Let us prove that
this is a correct definition. 1£? - a = =7 - b for integersi, j anda, b € H, then there is a naturalsuchthatj =i — k - n
andb = a - . It follows thatt(z™)7/™ - t(b) = t(z™)"/™~* . t(a) - t(z™)* = t(x™)/™ - t(a). Moreover, the mapping
t" is clearly a homomorphism oH’. |
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