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Abstract
Product LogicΠ is an axiomatic extension of H́ajek’s Basic Fuzzy Logic BL coping with the 1-tautologies when the strong
conjunction& and implication→ are interpreted by the product of reals in [0, 1] and its residuum respectively. In this paper
we investigate expansions of Product Logic by adding into the language a countable set of truth-constants (one truth-constant
r for eachr in a countableΠ-subalgebraC of [0, 1]) and by adding the corresponding book-keeping axioms for the truth-
constants. We first show that the corresponding logicsΠ(C) are algebraizable, and hence complete with respect to the variety
of Π(C)-algebras. The main result of the paper is the canonical standard completeness of these logics, that is, theorems of
Π(C) are exactly the 1-tautologies of the algebra defined over the real unit interval where the truth-constants are interpreted
as their own values. It is also shown that they do not enjoy the canonical strong standard completeness, but they enjoy it
for finite theories when restricted to evaluatedΠ-formulas of the kindr → ϕ, wherer is a truth-constant andϕ a formula
not containing truth-constants. Finally we consider the logicsΠ∆(C), the expansion ofΠ(C) with the well-known Baaz’s
projection connective∆, and we show canonical finite strong standard completeness for them.

Keywords: Non-classical logic, fuzzy logic, Product Logic, truth-constants, standard completeness.

1 Introduction

Fuzzy logical systems in a narrow sense are systems of mathematical many-valued logic aiming at
providing a formal basis to Zadeh’s fuzzy logic. The most popular are calculi with values in the
real unit interval [0, 1] defined by a conjunction& and an implication→ interpreted respectively by
a left-continuous t-norm1 ∗ and its residuum⇒, and where negation is defined as¬ϕ = ϕ → 0,
with 0 being the falsity truth-constant. Among this class of systems, known ast-norm based fuzzy
logics, there are three outstanding logics. Two of them were already defined before fuzzy logic was
born, namely the well-known infinitely-valued Łukasiewicz Logic and Gödel Logic, also known as
Dummett Logic, which turn out to correspond to the calculi defined by the so-called Łukasiewicz
t-normx ∗Ł y = max(0, x + y − 1) and minimum t-normx ∗G y = min(x, y) and their residua
respectively. Much later, already motivated by research on fuzzy logic, the many-valued logicΠ
corresponding to the product t-normx ∗Π y = x · y and its residuum, calledProduct Logic, was
axiomatized by H́ajek et al. in [17, 15]. All these logics enjoystandardcompleteness, that is,

1A t-norm ∗ is a binary operation on [0, 1] which is commutative, associative, nondecreasing in both arguments and
satisfyingx ∗ 1 = x for all x ∈ [0, 1].
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completeness with respect to interpretations over the algebra on the unit real interval [0, 1] defined
by the corresponding t-norm and its residuum. These three logics play a crucial role due to the fact
that any continuous t-norm is an ordinal sum of isomorphic copies of Łukasiewicz, minimum and
product t-norms. In [15], H́ajek introduced the Basic Fuzzy Logic BL as a common fragment of
the above mentioned three many-valued logics. In fact, it was an axiomatization of the tautologies
common to all calculi defined by continuous t-norms.

T-norm based fuzzy logics are basically logics ofcomparative truth. In fact, the residuum⇒
of a (left-continuous) t-norm∗ satisfies the conditionx ⇒ y = 1 if, and only if , x ≤ y for all
x, y ∈ [0, 1]. This means that a formulaϕ → ψ is a logical consequence of a theory if the truth
degree ofϕ is at most as high as the truth degree ofψ in any interpretation which is a model of
the theory. This is fine, but in some situations one might also be interested to explicitly represent
and reason with partial degrees of truth. To do so, one convenient and elegant way is to introduce
truth-constants into the language. This approach actually goes back to Pavelka [25] who built a
propositional many-valued logical system which turned out to be equivalent to the expansion of
Łukasiewicz Logic by adding into the language a truth-constantr for eachreal r ∈ [0, 1], together
with a number of additional axioms. Although the resulting logic is not strongly complete (like
Łukasiewicz Logic), Pavelka proved that his logic, which we shall call PL, is complete in a weaker
sense. Namely, by defining thetruth degreeof a formulaϕ in a theoryT as

|| ϕ ||T= inf{e(ϕ) | e evaluation model of T}
and theprovability degreeof ϕ in T as

| ϕ |T= sup{r | T �PL r → ϕ},
Pavelka proved that these two degrees coincide. This kind of completeness is usually known as
Pavelka-style completeness, and strongly relies on the continuity of Łukasiewicz truth functions.
Novák extended Pavelka’s approach to Łukasiewicz first order logic [22, 23].

Later, H́ajek [15] showed that Pavelka’s logic PL could be significantly simplified while keeping
the completeness results. Indeed he showed it is enough to extend the language only by a countable
number of truth-constants, one for eachrational in [0, 1], and by two additional axiom schemata,
called book-keeping axioms:

r&s↔ r ∗ s
r → s↔ r ⇒ s

where∗ and⇒ are the Łukasiewicz t-norm and its residuum respectively. He called this new system
Rational Pavelka Logic, RPL for short. Moreover, he proved that RPL is strongly complete for finite
theories.

Similar rational expansions for other continuous t-norm based fuzzy logics can be analogously
defined, but Pavelka-style completeness cannot be obtained since Łukasiewicz Logic is the only
fuzzy logic whose truth-functions are a continuous t-norm and a continuous residuum.2 Among

2An easy argument shows that for logics based on other continuous t-norms Pavelka style completeness does not hold.
Let L∗ be the logic of a continuous t-norm∗ (not isomorphic to Łukasiewicz t-norm) and its residuum⇒ (as defined in [11]).
Then it is known that the induced negation¬x = x⇒ 0 is not continuous inx = 0, i.e. sup{¬x | x > 0} < ¬0 = 1.

Let p be a propositional variable and letT = {p → r | r > 0}. One can show that‖p → 0‖T �= |p → 0|T . Indeed,
‖p → 0‖T = inf{e(p) ⇒ 0 | e(p) ≤ r for all r > 0} = 0 ⇒ 0 = 1, and we show that|p → 0|T < 1. For this,
it is enough to prove thatT �	 r0 → (p → 0) for any r0 < 1 such thatr0 > sup{¬x | x > 0} (such an element
exists because∗ is not isomorphic to Łukasiewicz t-norm). Suppose not. In such a case, there would exist a finite theory
T0 ⊆ T such thatT0 	 r0 → (p → 0). Then, by soundness,r0 ≤ ¬e(p) for any evaluatione such thate(p) ≤ s, where
s = min{r | r → p ∈ T0}, which is a contradiction (e.g. takee(p) = s).
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different works in this direction we may cite [15] where an expansion ofG∆ (the expansion of
Gödel Logic with Baaz’s projection connective∆) with a finite number of rational truth-constants,
and [10] where the authors define logical systems obtained by adding (rational) truth-constants to
G∼ (Gödel Logic with an involutive negation) and toΠ (Product Logic) andΠ∼ (Product Logic with
an involutive negation). In the case of the rational expansions ofΠ andΠ∼ an infinitary inference
rule (from {ϕ → r : r ∈ Q ∩ [0, 1]} infer ϕ → 0) is introduced in order to get Pavelka’s style
completeness.

Rational truth-constants have been also considered in some stronger logics like in the logic ŁΠ1
2

[11], a logic that combines the connectives from both Łukasiewicz and Product logics plus the truth-
constant1/2, and in the logic PŁ [18], a logic which combines Łukasiewicz Logic connectives plus
the Product Logic conjunction (but not implication), as well as in some closely related logics.

More recently, in [12] some of the authors have considered the expansion of Gödel and weak
Nilpotent Minimum logics (and some of its axiomatic extensions) with rational truth-constants. It is
proved there that these logics are canonical standard complete (that is, complete with respect to the
corresponding algebra defined over the real unit interval where the truth-constants are interpreted as
their own values) for theorems as well as for finite theories when restricted to formulas of the kind
r → ϕ, wherer denotes the truth-constantr andϕ is a formula without truth-constants. Actually,
these kinds of formulas have been extensively considered in other frameworks for reasoning with
partial degrees of truth, like in Novák’s evaluated syntax formalism based on Łukasiewicz Logic
[24] or in fuzzy logic programming [26]. In particular, these formulas can be seen as a special kind
of Novák’s evaluatedformulas, which are expressionsa/A wherea is a truth value (from a given
algebra) andA is a formula that may contain truth-constants again, and whose interpretation is that
the truth-value ofA is at leasta. Hence our formulasr → ϕ would be expressed asr/ϕ in Novák’s
evaluated syntax. On the other hand, formulasr → ϕ whenϕ is a Horn-like rule of the form
b1&...&bn → h also correspond to typical fuzzy logic programming rules(b1&...&bn → h, r),
wherer specifies a lower bound for the validity of the rule. Finally, truth-degrees in the syntax also
appear in Gerla’s framework of abstract fuzzy logics [13] which is based on the notion of fuzzy
consequence operators over fuzzy sets of formulas, where the membership degree of formulas are
again interpreted as lower bounds of their truth degrees.

In this paper we consider general expansionsà la Pavelka of the Product LogicΠ with countable
subsets of truth-constants closed by the Product Logic truth-functions,3 and we prove canonical
standard completeness for them. More specifically, after some preliminaries in the next section,
in Section 3 we define the logicΠ(C) as the expansion of Product Logic with a countable set of
truth-constants, indexed by elements of a countableΠ-subalgebraC of [0, 1], and the corresponding
variety ofΠ(C)-algebras.Π(C)-algebras are justΠ-algebras having elements interpreting the truth-
constants and satisfying the book-keeping equations. We show there are two types ofΠ(C)-algebras,
namely type I algebras, where different truth-constants are interpreted by different elements of the
algebra, and type II algebras where all constantsr with r > 0 are interpreted by the top element of the
algebra. In Section 4 we study the standardΠ(C)-algebras, i.e. theΠ(C)-algebras on [0, 1], proving
that the variety generated by them is indeed generated by thecanonical standardΠ(C)-algebra
[0, 1]Π(C), i.e the standardΠ(C)-algebra where the truth-constants are interpreted as their own values.
This is used in Section 5 to prove that the logicΠ(C) has the canonical standard completeness, i.e.
completeness for theorems with respect to the canonical standard algebra[0, 1]Π(C), and we obtain,
as a side result, that any linearly orderedΠ(C)-algebra of type I is partially embeddable into the
canonical standardΠ(C)-algebra. In Section 6, we study the issue of canonical finite strong standard
completeness, in particular for the sublanguage of evaluatedΠ-formulas. Finally, in Section 7, we

3Considered for the first time in [3], where only very preliminary results are presented.
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extend the previous results for the expansions of Product Logic augmented with the∆ projection
connective. We conclude with some final remarks and open questions for future research.

2 Preliminaries

Our general logical framework is the so-called Product LogicΠ defined in [17] as a propositional
logic in the languageL = {&,→, 0}. Other usual connectives are definable, in particular1 is
ϕ → ϕ, ¬ϕ is ϕ → 0, ϕ ∧ ψ is ϕ&(ϕ → ψ), ϕ ∨ ψ is ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ), and
ϕ ≡ ψ is (ϕ → ψ) ∧ (ψ → ϕ). We will denote byFmL the set of well-formed formulas built over
the languageL and a countable set of propositional variablesV ar. Axioms ofΠ are4:

(A1) (ϕ→ ψ) → ((ψ → χ) → (ϕ→ χ))
(A2) (ϕ&ψ) → ϕ
(A3) (ϕ&ψ) → (ψ&ϕ)
(A4) (ϕ&(ϕ→ ψ)) → (ψ&(ψ → ϕ))

(A5a) (ϕ→ (ψ → χ)) → ((ϕ&ψ) → χ)
(A5b) ((ϕ&ψ) → χ) → (ϕ→ (ψ → χ))
(A6) ((ϕ→ ψ) → χ) → (((ψ → ϕ) → χ) → χ)
(A7) 0 → ϕ
(Π1) ¬¬ϕ→ [((ϕ&ψ) → (ϕ&χ)) → (ψ → χ)]
(Π2) (ϕ ∧ ¬ϕ) → 0

The rule of inference ofΠ is modus ponens.
We note that (A1)–(A7) defines, together withmodus ponens, Hájek’s Basic Fuzzy LogicBL

[15]. This emphasizes thatΠ is in fact the extension ofBL with axioms(Π1) and(Π2). Moreover,
adding toBL the axiomsϕ → ϕ&ϕ or ¬¬ϕ → ϕ we obtain G̈odel Logic and Łukasiewicz Logic
respectively.

The (finitary) notion of proof inΠ is as usual from the above axioms and inference rule. IfT is
an arbitrary theory we shall writeT �Π ϕ to denote that there exists a proof ofϕ from T .

The algebraic semantics for the Product LogicΠ is given by the variety ofProduct algebras, in
shortΠ-algebras, which is a subvariety of the variety ofBL-algebras (cf. [15]), which provides an
algebraic semantics for BL logic. ABL-algebraA = (A,�,⇒,∧,∨, 0, 1) is a bounded commuta-
tive pre-linear integral residuated lattice satisfying the divisibility condition

x ∧ y = x� (x⇒ y)

for all x, y ∈ A. Then aΠ-algebra is a just a BL-algebra such that for allx, y, z ∈ A:

• x ∧ ¬x = 0
• if x 
= 0 thenx� y = x� z impliesy = z.

The only finite non-trivial chain (i.e. linearly ordered algebra) in the variety ofΠ-algebras is the two-
element Boolean algebra. The so-calledstandardΠ-algebrais the algebra on the unit real interval
defined by the standard product and its residuum,[0, 1]Π = ([0, 1],min,max, ·,⇒Π, 0, 1), where
· denotes the standard product of real numbers andx ⇒Π y = 1 if x ≤ y andx ⇒Π y = y/x
otherwise.

4These are the original axioms given in [17, 15]. Later Cintula gave in [7] a simpler axiomatization replacing(Π1) and
(Π2) by the axiom¬¬ϕ → ((ϕ → (ϕ&ψ)) → (ψ&¬¬ψ)). Very recently, Montagnaet al. [21] also provided this
alternative axiom¬ϕ ∨ ((ϕ→ (ϕ&ψ)) → ψ) to replace(Π1) and(Π2).
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Product algebras are closely related to ordered Abelian groups [15], in fact a linearly orderedΠ-
algebra without the 0 can be identified with the negative cone of a linearly ordered Abelian group.
Namely, given a linearly ordered Abelian groupG = (G,⊗, 1,≤), letCone−(G) = {x ∈ G | x ≤
1} and define the structureP(G) = (Cone−(G) ∪ {0},⊗′,⇒⊗,min,max, 0, 1) where0 is a new
element and the operations are defined as follows:

x⊗′ y = x⊗ y, for x, y ∈ Cone−(G)
0 ⊗′ x = x⊗′ 0 = 0, for all x ∈ Cone−(G) ∪ {0}

x⇒⊗ y =




1, if either x = 0 or x ≤ y for x, y ∈ Cone−(G)
y ⊗ x−1, if x > y for x, y ∈ Cone−(G)
0, if x ∈ Cone−(G) and y = 0

wherex−1 denotes the inverse ofx with respect to the group operation⊗. ThenP(G) is a product
algebra. And conversely, given a linearly orderedΠ- algebraA, there is a linearly ordered groupG
such thatA = P(G).

Given aΠ- algebraA = (A,�,⇒,∧,∨, 0, 1) anA-evaluatione is a mappinge : V ar → A
which extends to arbitrary formulas by means of the algebra operations:

e(0) = 0
e(ϕ&ψ) = e(ϕ) � e(ψ)
e(ϕ→ ψ) = e(ϕ) ⇒ e(ψ).

An A-evaluatione is anA-model of a formulaϕ if e(ϕ) = 1. ϕ is anA-tautology ife(ϕ) = 1
for all A-evaluationse. If T is a theory, we writeT |=A ϕ whene(ϕ) = 1 for all A-evaluationse
which are a model of all formulas inT .

Completeness results forΠ logic [17, 15] read as follows. For any finite theoryT and formulaϕ
the following conditions are equivalent:

(i) T �Π ϕ;

(ii) T |=A ϕ for eachΠ-algebraA;

(iii) T |=A ϕ for each linearly orderedΠ-algebraA;

(iv) T |=[0,1]Π ϕ.

Actually the equivalence between (i), (ii) and (iii) also holds true for arbitrary theories.

3 Expanding Product Logic with truth-constants

LetC be a countable subset of [0, 1] such thatC = (C, ·,⇒Π,min,max, 0, 1) is a (product) subal-
gebra of[0, 1]Π. Relevant examples of setsC are:

(i) the set[0, 1]Q = Q ∩ [0, 1] of rational numbers in [0, 1],

(ii) the setsNP [a1, . . . , am] = {az11 · . . . · azm
m | z1, . . . , zm ∈ Z, az11 · . . . · azm

m < 1} ∪ {0, 1}, for
any reals0 < a1 < . . . < am < 1,

(iii) the setsRP [a1, . . . , am] = {ar11 · . . . · arm
m | r1, . . . , rm ∈ Q, ar11 · . . . · arm

m < 1} ∪ {0, 1} for
any reals0 < a1 < . . . < am < 1.

DEFINITION 3.1
Given such aC, consider a countable setC = {c | c ∈ C} of truth-constants and the expanded
languageLC = L ∪ C. The expansion of Product Logic with truth-constants from the algebraC is
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denoted asΠ(C) and it is the logic defined by the Hilbert-style calculus in the languageLC whose
axioms are the axioms of Product LogicΠ plus the followingbook-keeping axioms:

r&s ≡ r · s
r → s ≡ r ⇒Π s

for all r, s ∈ C, and the only inference rule ismodus ponens. We will use the notation�Π(C) to refer
to proofs inΠ(C).

Like in Product Logic, the following form of the local deduction theorem holds forΠ(C):

Γ, ψ �Π(C) ϕ iff there existsn such thatΓ �Π(C) ψ
n → ϕ

for any setΓ of Π(C)-formulas andΠ(C)-formulasψ andϕ. As usualψn is an abbreviation of
ψ& n... &ψ.

DEFINITION 3.2
A Π(C)-algebrais a structureA = (A,�,⇒,∧,∨, {rA}r∈C), whereA = (A,�,⇒,

∧,∨, 0A, 1A) is aΠ-algebra, and the following book-keeping equations

rA � sA = r · sA
rA ⇒ sA = r ⇒Π sA

hold for anyr, s ∈ C. A will be calledstandardwhenA = [0, 1].

Relevant examples of standardΠ(C)-algebras for a givenC are the algebra[0, 1]Π(C) = ([0, 1], ·,
⇒Π,min,max, {r}r∈C) and the algebra[0, 1]∗Π(C) = ([0, 1], ·,⇒Π,min, max, {r}r∈C) wherer =
1 for all r ∈ C \ {0}.

Given aΠ(C)-algebraA, anA-evaluatione is just anA-evaluation which is extended bye(r) =
rA for all r ∈ C. The notions ofA-model,A-tautology and logical consequence|=A are then as in
the case ofΠ logic.

One can check that the logicΠ(C) is algebraizable (cf. [12]) and its equivalent algebraic semantics
is given by the variety ofΠ(C)-algebras. As a consequence of this we have the following result.

THEOREM 3.3 (General completeness)
LetT be an arbitrary theory overΠ(C) and letϕ be a formula ofΠ(C). Then the following conditions
are equivalent:

• T �Π(C) ϕ;

• T |=A ϕ for all Π(C)-algebrasA;

• T |=A ϕ for all linearly orderedΠ(C)-algebrasA .

From this result, and using the standard completeness of Product Logic and the above mentioned
local deduction theorem forΠ(C), one can show that theΠ(C) logics are conservative expansions of
Π (similarly to [12, Proposition 9] in the context of expansions of any axiomatic extension of MTL
with rational truth-constants).

COROLLARY 3.4
Π(C) is a conservative expansion ofΠ, i.e. if Γ ∪ {ϕ} is a set ofΠ-formulas, thenΓ �Π(C) ϕ iff
Γ �Π ϕ.
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The main aim of this paper is to refine the above general completeness whenT = ∅ showing
that we can restrict ourselves not only to linearly ordered algebras but to a single linearly ordered
Π(C)-algebra, the so-calledcanonical standardΠ(C)-algebra.

DEFINITION 3.5
The canonical standardΠ(C)-algebra is the algebra[0, 1]Π(C) over the standard Product algebra
interval[0, 1]Π where the truth-constants are interpreted as their own values, i.e.

[0, 1]Π(C) = ([0, 1], ·,⇒Π,min,max, {r}r∈C).

The following are some general results about the structure of linearly orderedΠ(C)-algebras.

LEMMA 3.6
LetA = (A,�,⇒,∧,∨, {rA}r∈C) be aΠ(C)-chain. Then:

(i) Either rA < sA for anyr, s ∈ C such thatr < s, or rA = 1A for all r > 0.

(ii) A is finite iff A = {0A, 1A}.

PROOF. Assumer, s ∈ C are such that0 < r < s andrA = sA. Sincer < s, r/s = s ⇒Π r < 1.
Hence, for anyt ∈ (0, 1), there existsn such that(s ⇒Π r)n < t. By the book-keeping axioms we

have(s⇒Π r)n
A ≤ t

A
. But (s⇒Π r)n

A
= (sA ⇒ rA)n = 1A, hencet

A = 1A. (ii) follows from
the fact that the only finite non-trivialΠ-algebra is the two-element Boolean algebra, and it can be
expanded to aΠ(C)-chain by interpreting the truth-constants in the second way described in(i).

DEFINITION 3.7
LetC be infinite and letA be a linearly orderedΠ(C)-algebra. We sayA is of type I if rA 
= sA for

anyr 
= s. Otherwise, ifrA = 1A for all r > 0, we sayA is of type II.

Clearly, the canonical standardΠ(C)-algebra[0, 1]Π(C) is of type I, while the algebra[0, 1]∗Π(C) is
the unique (up to isomorphism) standardΠ(C)-algebra of type II .

4 Π(C)-algebras on [0, 1]

In this section we study theΠ(C)-algebras on the real unit interval [0, 1]. The results will be used in
Section 5 to prove the canonical standard completeness of theΠ(C) logics.

The first result is related to the so-called Hion’s Lemma (see [14, Lemma 4.1.6]).

LEMMA 4.1
Let C be a subset of[0, 1] containing 0 and 1 and closed under the product of real numbers. Let
g : C → [0, 1] satisfyg(x · y) = g(x) · g(y) for all x, y ∈ C andg(x) < g(y) for all x, y ∈ C such
thatx < y. Then there existsα ∈ R+ such thatg(r) = rα for all r ∈ C.

PROOF. By the assumptions ong, we have for allr, s ∈ C, r, s > 0 and for alli, j ∈ N:

(i) if ri ≤ sj theng(r)i ≤ g(s)j ;
(ii) if ri ≥ sj theng(r)i ≥ g(s)j .

Using logarithms in statements (i) and (ii) we get the following equivalent statements for alli, j ∈ N:

(i′) if i · ln r − j · ln s ≤ 0 theni · ln g(r) − j · ln g(s) ≤ 0,
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(ii ′) if i · ln r − j · ln s ≥ 0 theni · ln g(r) − j · ln g(s) ≥ 0,

or equivalently,

(i′′) if i
j ≥ ln s

ln r then i
j ≥ ln g(s)

ln g(r) ,

(ii ′′) if i
j ≤ ln s

ln r then i
j ≤ ln g(s)

ln g(r) .

The fact that these inequalities hold for all natural numbersi, j implies that

ln s
ln r

=
ln g(s)
ln g(r)

.

Indeed, if ln s
ln r > ln g(s)

ln g(r) , then there is a rational numberij such thatln sln r > i
j > ln g(s)

ln g(r) . This

contradicts (ii′′). Similarly, ln s
ln r <

ln g(s)
ln g(r) contradicts (i”).

Finally, taking an arbitrary strictly positiver ∈ C and lettingα = ln g(r)/ ln r, the above equality
leads to

g(s) = sα

for eachs ∈ C. This ends the proof.

THEOREM 4.2
Let A be aΠ(C)-algebra over[0, 1]Π of type I. ThenA is isomorphic to the canonical standard
algebra[0, 1]Π(C), i.e. the canonical standardΠ(C)-algebra over[0, 1] is the only standardΠ(C)-
algebra of type I up to isomorphism.

PROOF. EachΠ(C)-algebraA over[0, 1]Π of type I defines an embeddingg : C → [0, 1] by putting
g(r) = rA which, due to the book-keeping axioms, is obviously a morphism with respect to product:
g(r · s) = r · sA = rA · sA = g(r) · g(s). Moreover, sinceA is of type I, by Lemma 3.6 we have
g(r) < g(s) for everyr < s in C. By Lemma 4.1, there exists a positive realβ such thatrA = rβ

for eachr ∈ C. Therefore, the mappingh : [0, 1] → [0, 1] defined ash(x) = x1/β defines an
isomorphism fromA to [0, 1]Π(C).

From the above results it is already clear that the variety generated by theΠ(C)-algebras on [0,
1] is the varietyV([0, 1]Π(C), [0, 1]∗Π(C)) generated by the algebras[0, 1]Π(C) and [0, 1]∗Π(C). In the
rest of this section, we prove that this variety is in fact equal toV([0, 1]Π(C)). This will be achieved
by proving that[0, 1]∗Π(C) belongs to the variety generated by[0, 1]Π(C). In order to prove this
in Theorem 4.5, we need a method to convert a nonsatisfying evaluatione of a Π(C)-formula in
[0, 1]∗Π(C) to a nonsatisfying evaluatione′ of the same formula in[0, 1]Π(C). This is achieved in the
following paragraphs concluded by the specific result in Proposition 4.4.

Let e be an evaluation ofΠ(C)-formulas on the type II algebra[0, 1]∗Π(C). In particular, for every
r ∈ C \ {0}, we havee(r) = 1. Consider the following set of evaluationse′t on the canonical
standard algebra[0, 1]Π(C), parametrized by positive real numberst ∈ R+, defined as follows:

• e′t(r) = r for every truth-constant symbolr,

• e′t(x) = (e(x))t for every propositional variablex,

• composite formulas are evaluated according to the operations in[0, 1]Π(C).

We are going to prove that ife(φ) < 1, thene′t(φ) < 1 for everyt large enough. We start by
making the following remarks.
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The set[0, 1]R
+

of all functions fromR+ into [0, 1] becomes aΠ-algebra with the operations· and
⇒Π defined pointwise and with the constant function0 as bottom and the constant function1 as top.

Let F ⊆ [0, 1]R
+

be the set of all functionsf : R+ → [0, 1] satisfying the following condition:

(E) There are0 < c ≤ 1 andt0 > 0 such thatc ≤ f(t) for all t ≥ t0.

It is immediate to verify thatF is an implicative filter of theΠ-algebra[0, 1]R
+

(see [5, Lemma 1.5]).
Hence the congruence relation defined byF on [0, 1]R

+
, f ∼ g iff f ⇒Π g ∈ F andg ⇒Π f ∈ F ,

turns out to be defined as

f ∼ g iff there are0 < c, d ≤ 1 andt0 > 0 such thatc · f(t) ≤ g(t) ≤ f(t)/d for all t > t0.

Indeed, ifc ≤ f(t) ⇒ g(t) for t > t1, thenc · f(t) ≤ g(t), and if d ≤ g(t) ⇒ f(t), then
d · g(t) ≤ f(t), for t > t2. Thereforec · f(t) ≤ g(t) ≤ f(t)/d, for t > max(t1, t2).

LEMMA 4.3
The congruence relation∼ satisfies:
(i) f ∼ 0 iff there existst0 such thatf(t) = 0 for all t > t0
(ii) If f ∼ g thenlimt→∞ g(t) = 0 iff limt→∞ f(t) = 0.

PROOF. Both statements are straightforward using the above equivalence.

PROPOSITION4.4
Let e ande′t be defined as above. For every formulaφ let gφ(t) = (e(φ))t andfφ(t) = e′t(φ). Then
we havefφ ∼ gφ. In particular, ife(φ) < 1, thenlimt→∞ e′t(φ) = 0.

PROOF. Let us proceed by induction on the complexity ofφ.

1. Constants.
r = 0. g0(t) = e(0)t = 0 andf0(t) = e′t(0) = 0, and0 ∼ 0.
r > 0. gr(t) = (e(r))t = 1t = 1 andfr(t) = e′t(r) = r, and obviouslyr ∼ 1.

2. Variables.
Direct consequence of the definition (fx(t) = gx(t)).

3. φ = (ψ1&ψ2).
gψ1&ψ2(t) = e(ψ1&ψ2)t = e(ψ1)t · e(ψ2)t = gψ1(t) · gψ2(t).
fψ1&ψ2(t) = e′t(ψ1&ψ2) = e′t(ψ1) · e′t(ψ2) = fψ1(t) · fψ2(t).
Since∼ is a congruence, if we suppose thatfψ1 ∼ gψ1 andfψ2 ∼ gψ2 , we can conclude that
fψ1&ψ2 ∼ gψ1&ψ2 .

4. φ = (ψ1 → ψ2).
gψ1→ψ2(t) = e(ψ1 → ψ2)t = (e(ψ1) ⇒ e(ψ2))t = e(ψ1)t ⇒ e(ψ2)t = gψ1(t) ⇒ gψ2(t).
fψ1→ψ2(t) = e′t(ψ1 → ψ2) = e′t(ψ1) ⇒ e′t(ψ2) = fψ1(t) ⇒ fψ2(t).
Using again the fact that∼ is a congruence, from the hypothesisfψ1 ∼ gψ1 andfψ2 ∼ gψ2 , we
obtainfψ1→ψ2 ∼ gψ1→ψ2 .

The first statement of the proposition is proved. The second statement follows from the first state-
ment and (ii) of Lemma 4.3.

THEOREM 4.5
[0, 1]∗Π(C) ∈ V([0, 1]Π(C)), hence the variety generated by the class ofΠ(C)-algebras over the unit
real interval[0, 1] is V([0, 1]Π(C)).
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PROOF. Letϕ be not valid in[0, 1]∗Π(C). There exists an evaluatione on [0, 1]∗Π(C) such thate(ϕ) < 1.
By the above proposition,limt→∞ e′t(ϕ) = 0 as well, hence for every large enought, e′t(ϕ) < 1.
Sincee′t is an evaluation on[0, 1]Π(C), ϕ is not valid in[0, 1]Π(C).

5 Standard completeness results

We recall the assumption that in what followsC stands for an arbitrary countable product subalgebra
of [0, 1]Π such thatC 
= {0, 1}, including the caseC = [0, 1]Q.

In this section we prove the canonical standard completeness ofΠ(C) in Theorem 5.4 (i. e. we
prove that the theorems ofΠ(C) coincide with the tautologies of the canonical standard algebra
[0, 1]Π(C)) using a result on partial embeddability (Theorem 5.3) for type I linearly orderedΠ(C)-
algebras into[0, 1]Π(C). Theorem 5.3 extends the known partial embeddability results for MV and
Product algebras based on the Gurevich-Kokorin theorem for Abelian ordered groups (cf. [15]).

To show that the logicΠ(C) has the canonical standard completeness we need, due to Theorem
3.3, to show the following. For everyΠ(C)-formula φ, if there exists a linearly orderedΠ(C)-
algebraA and anA-evaluatione such thate(φ) < 1A, we can find an evaluatione′ on the canonical
standardΠ(C)-algebra such thate′(φ) < 1. In order to achieve this, we need to embed the values of
all subformulas ofφ into [0, 1] in such a way that the existing products and residues are preserved.
We will do it first for a general finite set of values inA.

LetE be a finite subset ofA. Denote byCE the set{r ∈ C | rA ∈ E}. Let C̃E be theΠ-algebra

generated byCE . Note that theΠ-algebra generated byE is naturally aΠ(C̃E)-algebra. Let̃CE
∗

be
C̃E without0.

In the proof of the next proposition we make use of the ordered Abelian group(R+)klex obtained
as the lexicographic product ofk copies of the multiplicative groups of positive reals. Its definition
and some results on ordered Abelian groups are gathered in the Appendix.

PROPOSITION5.1
Let A be a linearly orderedΠ(C)-algebra of type I and letE be a finite subset ofA. LetAE be the

linearly orderedΠ(C̃E)-algebra generated byE. ThenAE is isomorphic to aΠ(C̃E)-algebraD such
that the following is satisfied:

• D = P(G) with G being a subgroup of(R+)klex, wherek is an integer,

• there is an integerl and a real numberα > 0 such that for everyr ∈ C̃E
∗
, we haverD =

ωk,l(rα),

where, for anyx ∈ (0, 1] and natural1 ≤ l ≤ k, ωk,l(x) = (1, ..., 1, x, 1, ..., 1) ∈ (R+)k with x
being at coordinate with indexl.

PROOF. TakingAE as aΠ-algebra, there is a linearly ordered Abelian groupG′ such thatAE =
P(G′), i.e. AE \ {0} is the negative cone of a linearly ordered groupG′. SinceAE is finitely
generated, so isG′. Hence, applying Theorem A.1 there is a naturalk such thatG′ is isomorphic to
a subgroupG of (R+)klex (see the Appendix for the definition of(R+)klex and the result).

ThenAE is also isomorphic (through a mappingι) to P(G) asΠ-algebras. For everyr ∈ C̃E
definerP(G) = ι(rA). Using this,P(G) is a Π(C̃E)-algebra isomorphic toAE . Therefore, for
simplicity, we may assume from now thatAE = P(G).

SinceC̃E is an ArchimedeanΠ-algebra, there is a uniquel ≤ k such that for each elementrA,

r < 1 andr ∈ C̃E
∗
, we haverA = (1, ..., 1, al, ..., ak) with al < 1. Indeed, supposer, s ∈ C̃E

∗
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such thats < r < 1 and rA = (1, ..., 1, ai, ..., ak) and sA = (1, ..., 1, bj , ..., bk) with i > j.
There is a naturalm such thatrm < s, but obviously(rA)m = (1, .., 1, (ai)m, ..., (ak)m) >lex
(1, ..., 1, bj , ..., bk) = sA, contradiction.

Let f1, ..., fk : C̃E
∗ → R+ be functions such that for eachr ∈ C̃E

∗
we haverA = (f1(r), ...,

fk(r)). Due to the validity of the book-keeping axioms, for eachi, fi : C̃E
∗ → R+ is a homomor-

phism for the product. According to the above paragraph,fl is the first of the functionsfi which
is not the constant 1. Since the algebraAE is aΠ(C̃E)-algebra of type I and, by the previous para-

graph,fl(r) < 1 for everyr < 1, r ∈ C̃E
∗
, fl is one-to-one and preserves the order (indeed if

fl(r) = fl(s) for somer ≥ s, thenfl(r ⇒ s) = 1). Hence, by Lemma 4.1,fl is a power and we
have

rA = (1, 1, ..., rα, fl+1(r), ..., fk(r)) (∗)
for some realα > 0.

Now letM = {xl | (x1, ..., xl, xl+1, ..., xk) ∈ G} be the set of alll-components of elements of
G. By its definition,M with the multiplication is a subgroup ofR+, which is generated by the set of

rαs, forr ∈ C̃E
∗
, and additionally by a finite number of valuesxl coming from the elements ofE.

Now, define mappingsgl+1, ..., gk : M → R+ as follows:

1. putgj(rα) = fj(r) for all r ∈ C̃E
∗

2. using Lemma A.2 (see Appendix), extendgj to the subgroup generated bỹCE
∗

3. finally, applying Lemma A.3 (see Appendix) for thel-component of each element ofE, which
is not an interpretation of an element ofCE , extendgj to the wholeM .

As a result, we get a homomorphismgj fromM to R+ for eachj ∈ {l + 1, ..., k}.
Finally, define a new mappingh : G → (R+)k by putting

h((x1, ..., xl, xl+1, ..., xk)) = (x1, ..., xl, xl+1/gl+1(xl), ..., xk/gk(xl)).

We claim that, so defined,h is a monomorphism. Indeed, since thegj ’s are homomorphisms for the
product onM , h is a homomorphism for the product onG as well. If two elements ofG differ in xi
for i ≤ l, then their images are ordered in the same way, since the firstl coordinates are not changed
by h. If two elements ofG agree in the firstl coordinates and the first different coordinate isxi for
i > l, then their images are ordered in the same way, sincexi is again the first differing coordinate
andxi is divided by the same number in both images.

Therefore,h(G) is a subgroup of(R+)klex which is isomorphic toG. Consider theΠ-algebra

D = P(h(G)). By construction ofh, we haveh(rA) = ωk,l(rα) for everyr ∈ C̃E
∗
. Hence, by

definingrD = h(rA) = ωk,l(rα) for everyr ∈ C̃E
∗
, D becomes aΠ(C̃E)-algebra, and moreover,

D is isomorphic toAE . This ends the proof of Proposition 5.1.

In the following we show that there is a partial isomorphism of anyΠ(C̃E)-algebra of the special
form guaranteed by Proposition 5.1 into the canonical standardΠ(C)-algebra.

PROPOSITION5.2
LetG be subgroup of(R+)klex such thatD = P(G) is aΠ(C)-algebra, withrD = ωk,l(rα) for every

r ∈ C∗, for some naturall and positive realα, and0D = (0, k..., 0). Then for everyfinite subsetE
of D there is a mappingq : E → [0, 1] satisfying the following four conditions
(i) q preserves the order.
(ii) q(rD) = r for all r ∈ CE .
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(iii) If x, y, x ∗ y ∈ E thenq(x) · q(y) = q(x ∗ y).
(iv) If x, y, x⇒ y ∈ E thenq(x) ⇒Π q(y) = q(x⇒ y).

PROOF. The candidates forq are restrictions toE of functionsg : G → R+ of the form

g((x1, x2, ..., xk)) = (xε11 · xε22 · ... · xεk

k )β ,

whereεi, β > 0. Each of these functions is a homomorphism w.r.t. the product ofG. Hence, for
every choice ofεi andβ, the restriction ofg toE satisfies (iii). By the assumption, for everyr ∈ C∗

rD = ωk,l(rα). Hence, for every choice ofεi andβ, we haveg(rD) = rα·εl·β , whereα · εl · β > 0.
By choosingβ = 1/(α · εl), we obtain that the restriction ofg toE satisfies (ii).

Let us prove that it is possible to choose theεi in such a way that the restriction ofg to E
satisfies (i). Let us classify the pairs of distinct values inE according to the first indexi0, where the
values differ. Pairs which satisfyi0 = k are ordered correctly for any positive value ofεk. Pairs
satisfyingi0 = k − 1 may be put into the right order by choosingεk−1 = 1 andεk small enough to
guarantee that the difference (measured as a ratio) in the(k − 1)th coordinate is always larger than
the difference in thek-th coordinate. In fact, if the exponentsεk−1 = 1, εk guarantee the right order
of the pairs withi0 = k − 1, then the exponentsεk−1 = t, t · εk, for any positivet, guarantee the
order as well. Hence, when it is necessary to put the pairs withi0 = k − 2 into the right order, we
chooseεk−2 = 1 andt small enough so that the difference in the(k − 2)-th coordinate is always
larger than the differences contributed by(k − 1)-th andk-th coordinates. Since we preserve the
ratio betweenεk−1 andεk, we do not destroy the already correct order of pairs withi0 = k− 1. We
proceed in a similar way for pairs with smaller and smalleri0.

The condition (iv), the preservation of existing implications inE, is a consequence ofh being
order preserving (i) and the preservation of existing products (iii).

THEOREM 5.3 (Partial embeddability for type IΠ(C)-algebras)
Let A be a linearly orderedΠ(C)-algebra of type I and letE be a finite subset ofA. Then there
exists a one-to-one mappingh : E → [0, 1] satisfying the following conditions:
(i) h preserves the order.
(ii) h(rA) = r for all r ∈ CE .
(iii) If x, y, z ∈ E andz = x ∗ y thenh(x) · h(y) = h(z).
(iv) If x, y, z ∈ E andz = x⇒ y thenh(x) ⇒Π h(y) = h(z).

PROOF. LetD be the algebra guaranteed by Proposition 5.1 applied toAE . LetE′ be the image ofE
under the isomorphism betweenAE andD. Applying Proposition 5.2 toD andE′ withC = C̃E , we
obtain an embeddingq, whose composition with the above isomorphism has the required properties
of h.

In the following, this mappingh will be called apartial embedding(of the partial algebra overE
into [0, 1]Π(C)). The existence of a partial embedding for type IΠ(C)-algebras extends the known
partial embeddability results for MV and Product algebras based on the Gurevich-Kokorin theorem
for Abelian ordered groups (cf [15]).

THEOREM 5.4 (Canonical standard completeness)
The logicΠ(C) has the canonical standard completeness.

PROOF. Letϕ be aΠ(C) formula such that
�Π(C) ϕ. We can further assumeϕ contains some truth
constantr with 0 < r < 1 as subformula, otherwise the standard completeness of Product Logic
does the job. By general completeness, there is a linearly orderedΠ(C)-algebraA and an evaluation
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e onA such thate(ϕ) < 1A. The task is to find an evaluatione′ on the canonical standardΠ(C)-
algebra[0, 1]Π(C) such thate′(ϕ) < 1. LetE = {e(ψ) | ψ is a subformula ofϕ} ∪ {0A, 1A}. We
consider the following cases:

Case 1:A is of type I.
By applying Theorem 5.3 we obtain a partial embeddingh of E into [0, 1]. Now define a
[0, 1]Π(C)-evaluatione′ by putting

e′(x) =
{
h(e(p)), if x is a prop. variable in ϕ
arbitrary, otherwise

It is easy to check then, by the properties ofh, thate′(ϕ) = h(e(ϕ)) < 1.

Case 2:A is of type II.
By the well-known results ofΠ-algebras (see [4]), there is a partial embeddingf of E into the
standardΠ-algebra[0, 1]Π and the evaluatione′ on [0, 1]Π defined as follows

e′(p) =
{
f(e(p)), if p is a propositional variable inϕ
arbitrary, otherwise

is such thate′(ϕ∗) < 1, whereϕ∗ is theΠ-formula obtained fromϕ by replacing all truth-
constantsr with 0 < r by 1. Now, the evaluatione′′ on [0, 1]∗Π(C), the standardΠ(C)-algebra of
type II, such thate′′(p) = e′(p) for all propositional variablesp satisfiese′(ϕ∗) = e′′(ϕ) < 1.
Then, by Theorem 4.5, there is also an evaluatione′′′ on the canonical standardΠ(C)-algebra
[0, 1]Π(C) such thate′′′(ϕ) < 1. This ends the proof of Case 2 and hence of the theorem as well.

6 Finite strong completeness results

Since Product Logic has no strong standard completeness for arbitrary theories this is also true
for Π(C), butΠ(C) does not even enjoy canonical strong standard completeness for finite theories.
Namely, for any rational0 < r < 1 and any propositional variablep, r 
�Π(C) p but it trivially holds
thatr |=[0,1]Π(C)

p since there is no evaluation which is a model ofr. Looking at this example, one
could think that the reason for failure is that the theory used,T = {r}, is somewhat special, in the
sense that it is not satisfiable. Unfortunately, being satisfiable is not a sufficient condition for strong
standard completeness as the following example, taken from [12], shows.

LetT = {r∨p}, where0 < r < 1 andp is a propositional variable. It is clear thatT is satisfiable
for any evaluatione such thate(p) = 1, and thatT |=[0,1]Π(C)

p. But againT 
�Π(C) p since if so, by
the deduction and canonical standard completeness theorems forΠ(C), it should also be true that,
for somek, then|=[0,1]Π(C)

(r ∨ p)k → p, which is false for any evaluation withe(p) < rk.
However, we can still show some interesting results. Namely, we will first show that finite strong

completeness holds for the semantics obtained by considering simultaneously theΠ(C)-algebras
[0, 1]Π(C) and[0, 1]∗Π(C), but it does not hold for the semantics defined by just one of these algebras.
And moreover, this result cannot be improved. Nevertheless, as usual we will continue referring to
this kind of completeness asstandardsince anyΠ(C)-algebra over[0, 1] is proved to be isomorphic
to one of these two . Secondly, we will show that we can indeed prove canonical finite strong
standard completeness when we restrict ourselves to formulas of the kind

r → ϕ
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whereϕ is aΠ-formula, i.e. a formula without truth-constants (different from0 and1). We will use
the namegradedor evaluatedΠ-formulas to refer to this kind formulas. Such a formular → ϕ is
also denoted in the literature as the pair(ϕ, r).

THEOREM 6.1 (Finite strong standard completeness ofΠ(C))
For anyΠ(C)-formulaϕ and any finite set ofΠ(C)-formulasΓ, we haveΓ �Π(C) ϕ iff Γ |=[0,1]Π(C ϕ
andΓ |=[0,1]∗Π(C

ϕ.

PROOF. Soundness is obvious. SupposeΓ 
�Π(C) ϕ. SinceΓ is finite, without loss of generality
we can assume it consists of a single formula (the conjunction of the formulas inΓ), sayχ. Thus
we supposeχ 
�Π(C) ϕ. By general completeness, there is a linearly orderedΠ(C)-algebraA and

anA-interpretatione such thate(χ) = 1A ande(ϕ) < 1A. Take the finite setX = {e(ψ) | ψ
subformula ofϕ or χ} ∪ {0A, 1A}. We distinguish two cases:

(1) If A is of type I, i.e. ifr, s ∈ C with r < s, thenrA < sA, then from the result of partial
embeddability (Theorem 5.3) there is a partial embeddingh : X → [0, 1]. Thus, we can define the
[0, 1]Π(C)-evaluatione′ by e′(x) = h(e(x)) for any variable x appearing inϕ or ψ ande′(x) = 1
otherwise. Obviouslye′(χ) = 1 ande′(ϕ) < 1. Henceχ 
|=[0,1]Π(C)

ϕ.

(2) SupposeA is a Π(C)-algebra of type II, i.e.rA = 1A for all r ∈ C − {0}. Then there
is a partial embedding (as Product algebras)h of X into the standardΠ-algebra[0, 1]Π, and since

h(1A) = 1, h ◦ e can be easily extended to a full[0, 1]∗Π(C)-evaluatione′ such thate′(χ) = 1 and

e′(ϕ) < 1. Henceχ 
|=[0,1]∗Π(C)
ϕ.

As mentioned before, it turns out that this finite strong completeness cannot be improved in the
sense that it cannot be proved with respect to the semantics given by a single algebra. Namely, given
r ∈ C such that0 < r < 1, we have already seen thatp ∨ r |=[0,1]Π(C)

p but p ∨ r 
|=[0,1]∗Π(C)
p.

Conversely,p |=[0,1]∗Π(C)
p ∧ r butp 
|=[0,1]Π(C)

p ∧ r.
Next we will show that we can improve the finite strong standard completeness result when we

restrict ourselves to gradedΠ-formulas. Indeed the following canonical finite strong standard com-
pleteness result holds:

{ri → ϕi | i = 1, .., n} �Π(C) s→ ψ
if, and only if,

{ri → ϕi | i = 1, .., n} |=[0,1]Π(C)
s→ ψ

whereϕi andψ areΠ-formulas, i.e. formulas not containing truth-constants different from0 and1.
Actually, as always, one direction (soundness) is easy due to the book-keeping axioms. To prove

the converse direction

If {ri → ϕi | i = 1, .., n} |=[0,1]Π(C)
s→ ψ then
{ri → ϕi | i = 1, .., n} �Π(C) s→ ψ

it is enough to combine Theorem 6.1 with the following result.

LEMMA 6.2
If {ri → ϕi | i = 1, .., n} |=[0,1]Π(C)

s→ ψ then{r1 → ϕ1, . . . , rn → ϕn} |=[0,1]∗Π(C)
s→ ψ.

PROOF. Without loss of generality we may assumeri > 0 for all i ands > 0. Suppose{r1 →
ϕ1, . . . , rn → ϕn} 
|=[0,1]∗Π(C)

s → ψ Then there exists a[0, 1]∗Π(C)-evaluatione such thate(r1 →
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ϕ1) = . . . = e(rn → ϕn) = 1 ande(s → ψ) < 1. Sincee(ri) = e(s) = 1 for all i, we also have
e(ϕ1) = . . . = e(ϕn) = 1 ande(ψ) < 1.

Assumee(ψ) = 0. Then, lettinge′ be the[0, 1]Π(C)-evaluation defined bye′(p) = e(p) for any
propositional variablep, we havee′(r1 → ϕ1) = . . . = e′(rn → ϕn) = 1 ande′(ψ) = 0, hence
{r1 → ϕ1, . . . , rn → ϕn} 
|=[0,1]Π(C)

s→ ψ.
Assumee(ψ) > 0. Let α ∈ R+ such that(e(ψ))α < s. Then the[0, 1]Π(C)-evaluatione′,

wheree′(p) = (e(p))α for any propositional variablep, is such thate′(ri → ϕi) = 1 for all i but
e′(s→ ψ) < 1, hence{r1 → ϕ1, . . . , rn → ϕn} 
|=[0,1]Π(C)

s→ ψ.

Finally, as a direct consequence of Theorem 6.1 and the above lemma we can state the following
completeness result.

COROLLARY 6.3 (Canonical finite strong standard completeness for evaluated formulas)
For anyΠ-formulasϕ1, ..., ϕn, ψ and anyr1, ..., rn, s ∈ C, it holds that{ri → ϕi | i = 1, 2, .., n}
�Π(C) s→ ψ if and only if {ri → ϕi | i = 1, 2, .., n} |=[0,1]Π(C)

s→ ψ.

The result also holds if we restrict the language to formulas of typeϕ→ r such thatϕ is a formula
of Π, i.e. ϕ does not contain a truth-constant different from0, 1. In such a case the result of the
corresponding Lemma 6.2 is valid due to the fact that for anyr > 0, it follows thatϕ→ r is trivially
a tautology over[0, 1]∗Π(C).

Nevertheless the result is not true if in the restricted language we allow formulas of both types as
the following example shows. Namely, it is obvious that the semantical deduction

(p→ q) → r |= q → p

is valid over the canonical standardΠ(C)-algebra but not over[0, 1]∗Π(C) if r < 1.
To see that it is valid over the canonical standardΠ(C)-algebra we need only to take into account

that if the residuated implication function is less than 1, the first value has to be greater than the
second, i.e. for all evaluation such thate(p → q) ≤ r < 1, thene(q) < e(p). On the other hand,
over [0, 1]∗Π(C) the premiss is always valid (e(r) = 1 for any r > 0) and thus the deduction is not
valid.

7 Expanding Π∆ with truth-constants

A natural extension of the considered logical framework is to introduce the well-known Baaz’s∆
connective into the logic. In such a case, instead of the Product LogicΠ, we take as starting point
the logicΠ∆, the expansion ofΠ with the ∆ connective as done in [15] by adding the following
axiom schemata:

(∆1) ∆ϕ ∨ ¬∆ϕ
(∆2) ∆(ϕ ∨ ψ) → (∆ϕ ∨ ∆ψ)
(∆3) ∆ϕ→ ϕ

(∆4) ∆ϕ→ ∆∆ϕ
(∆5) ∆(ϕ→ ψ) → (∆ϕ→ ∆ψ)

and the rule of necessitation: fromϕ derive ∆ϕ. The algebraic semantics ofΠ∆ is given by
the variety ofΠ∆-algebras. AΠ∆-algebra is a structure(A,�,⇒,∧,∨,∆, 0, 1), where(A,�,
⇒,∧,∨, 0, 1) is aΠ-algebra satisfying the following conditions for anyx, y ∈ A:
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∆x ∨ ¬∆x = 1
∆(x ∨ y) ⇒ (∆x ∨ ∆y) = 1
∆x⇒ x = 1
∆x⇒ ∆∆x = 1
(∆x� ∆(x⇒ y)) ⇒ ∆y = 1
∆1 = 1.

The standardΠ∆-algebra is the expansion of the standard Product algebra[0, 1]Π with the unary
operation defined by∆1 = 1 and∆x = 0 for all x < 1.

The (finite strong) standard completeness of Product Logic easily extends toΠ∆ (see [15, Theo-
rem 4.1.13]). MoreoverΠ∆ is also a conservative expansion ofΠ (see [6]) .

As before, given a countable subsetC of [0, 1] such thatC = (C, ·,⇒Π,min,max, 0, 1) is a
(product) subalgebra of[0, 1]Π, we define the logicΠ∆(C) as the expansion ofΠ(C) with the ∆
connective by adding the above(∆1)− (∆5) axioms, the necessitation rule for∆ and the following
book-keeping axioms

∆r ≡ δ(r)

for everyr ∈ C, whereδ is the unary function in [0, 1] defined byδ(x) = 1 if x = 1 andδ(x) = 0
otherwise. Actually, it is enough to add just one book-keeping axiom for a particular constant0 <
r0 < 1. Indeed, for anys ∈ C such that0 < s < 1, there exists a naturaln such thatsn ≤ r0, hence
sn → r0 is provable inΠ(C). Now, by applying the∆ axioms, the formula(∆s)n → ∆r0 can be
derived, hence,¬(∆s)n as well, and by reasoning inΠ one finally derives¬∆s, which is in fact the
book-keeping axiom fors sinceδ(s) = 0.

As for the algebraic counterpart, aΠ∆(C)-algebra is a structureA = (A,�,⇒,∧,∨, {rA}r∈C ,∆),
where(A,�,⇒,∧,∨, {rA}r∈C) is aΠ(C)-algebra and(A,�,⇒,∧,∨, 0A, 1A,∆) is aΠ∆-algebra,
satisfying further the corresponding book-keeping equations

∆rA = δ(r)
A

for eachr ∈ C. It is clear then that ifA is a linearly orderedΠ∆(C)-algebra,∆r = 0 for all
1 > r ∈ C.

One can check again that the logicΠ∆(C) is also algebraizable with equivalent algebraic seman-
tics given by the variety ofΠ∆(C)-algebras and thatΠ∆(C)-algebras still decompose as subdirect
product of linearly ordered ones.

THEOREM 7.1 (General completeness)
Let T be an arbitrary theory overΠ∆(C) and letϕ be a formula ofΠ∆(C). Then the following
conditions are equivalent:

• T �Π∆(C) ϕ;

• T |=A ϕ for all Π∆(C)-algebraA;

• T |=A ϕ for all linearly orderedΠ∆(C)-algebraA.

Thecanonical standardΠ∆(C)-algebrais the algebra[0, 1]Π∆(C) over the unit real interval [0, 1]
where the truth-constants are interpreted as their own values, i.e.

[0, 1]Π(C) = ([0, 1], ·,⇒Π,min,max, {r}r∈C ,∆).

Contrary toΠ(C)-chains, as the following lemma shows, truth-constants cannot collapse inΠ∆(C)
chains, and hence theΠ(C)-reducts ofΠ∆(C) chains are always of type I.
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LEMMA 7.2
LetA = (A,�,⇒,∧,∨, {rA}r∈C ,∆) be aΠ∆(C)-chain. ThenrA < sA for anyr, s ∈ C such that
r < s.

PROOF. Let r < s and lett = s → r. If rA = sA, thensA ⇒ rA = 1A, hencet
A = 1A, hence

∆(tA) = 1A. But, sincet < 1, this is in contradiction with the fact that∆(tA) = 0A for all t < 1.

THEOREM 7.3 (Canonical standard completeness)
The logicΠ∆(C) has the canonical standard completeness, that is, for any formulaϕ, �Π∆(C) ϕ if,
and only if,|=[0,1]Π∆(C)

ϕ.

PROOF. By a simple application of the partial embedding result forΠ(C)-algebras, taking into ac-
count Lemma 7.2, that is, the simplification due to the fact that there are noΠ∆(C)-algebras of Type
II.

The issue of (finite) strong completeness now is easier than withΠ(C). Indeed, recalling the form
of the deduction theorem forΠ∆, ψ �Π∆ ϕ iff �Π∆ ∆ψ → ϕ, one can easily prove the following.

COROLLARY 7.4 (Canonical finite strong standard completeness)
For anyΠ∆(C) formulaϕ and any finite set ofΠ∆(C)-formulasΓ, it holds thatΓ �Π∆(C) ϕ iff
Γ |=[0,1]Π∆(C)

ϕ.

Analogously to theΠ(C) logic, one can easily show thatΠ∆(C) is a conservative expansion of
Π∆, and hence ofΠ as well. However,Π∆(C) is a conservative expansion ofΠ(C) only at the level
of theorems, not for theories.

THEOREM 7.5
The following statements hold:

(i) Π∆(C) is a conservative expansion ofΠ∆.

(ii) If ϕ is a formula ofΠ(C), then�Π∆(C) ϕ if, and only if,�Π(C) ϕ.

(iii) There existϕ,ψ formulas ofΠ(C) such thatψ �Π∆(C) ϕ andψ 
�Π(C) ϕ.

PROOF. (i) As for the non-trivial implication, letT ∪ {ϕ} be in the language ofΠ∆, and assume
T �Π∆(C) ϕ. Then there exists a finiteTf ⊆ T such thatTf �Π∆(C) ϕ, henceTf |=Π∆(C) ϕ. This
means that every evaluatione on [0, 1]Π∆(C) which is model ofTf is also model ofϕ. But each
evaluation on[0, 1]Π∆ determines an evaluation on[0, 1]Π∆(C) respecting the values of formulas of
Π∆, and viceversa. Hence we also haveTf |=Π∆ ϕ, and by completeness ofΠ∆, Tf �Π∆ ϕ, thus
T �Π∆ ϕ as well.
(ii) Let ϕ be a formula in the language ofΠ(C) and assume
�Π(C) ϕ. By canonical standard com-
pleteness, there is an evaluatione on the canonical standard algebra[0, 1]Π(C) such thate(ϕ) < 1.
But this evaluatione can be trivially extended to an evaluation on[0, 1]Π∆(C), hence
|=Π∆(C) ϕ, and
thus 
�Π∆(C) ϕ.
(iii) For any r < 1, it holds thatr �Π∆(C) 0 but r 
�Π(C) 0.

To conclude, let us remark that strong standard completeness forΠ∆(C) does not hold. In fact,
this is a consequence thatΠ∆(C) is a conservative expansion ofΠ, andΠ does not enjoy strong
standard completeness.
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8 Final remarks

After the study of the expansions of Łukasiewicz Logic and Gödel Logic with truth constants in
[25, 15] and in [12] respectively, in this paper we have studied the expansion with truth-constants
of Product Logic, the other main fuzzy logic based on a continuous t-norm. Following [12], the ap-
proach we have used is based on the fact that the logicsΠ(C) are algebraizable and thus we can study
their associated variety of algebras. Like in the case of Product algebras,Π(C)-algebras are subdirect
product of linearly ordered ones. Thus we have completeness results w.r.t. the class of chains of the
variety. The main results of the paper are related to canonical standard completeness of the logics
Π(C). We have proved canonical standard completeness and some finite strong completeness results.
These results are mainly based on the embeddability of any finite partialΠ(C)-algebra of type I into
the canonical standardΠ(C)-algebra[0, 1]Π(C), generalization toΠ(C)-algebras of the well-known
result forΠ-chains. Moreover we have proved canonical finite strong standard completeness when
we restrict ourselves to formulas of typer → ϕ whereϕ is a formula of Product Logic, i.e. with-
out additional truth-constants. In addition, we have considered the expansions of those logics with
Baaz’s∆ connective, calledΠ∆(C), showing that the resulting logic has the canonical finite strong
standard completeness. Actually, this result could be also easily proved in an analogous way for the
corresponding expansions of Łukasiewicz and Gödel logics with truth-constants and∆.

As suggested by one referee, an alternative approach to proving canonical standard completeness
for Π(C) could be to add truth constants to the analytic hypersequent calculusGΠ for Product Logic
defined in [20], namely, definingGΠ(C) by adding extra rules toGΠ to deal with truth-constants
and show thatϕ is derivable inGΠ(C) iff ϕ is valid in the canonical standardΠ(C)-algebra. The
result would then follow by showing that derivability inGΠ(C) implies derivability inΠ(C).

A closely related logic to Product Logic is the so-calledCancellative Hoop Logic[9], CHL for
short. CHL is the0-free fragment of Product Logic extended with the cancellation axiom

(ϕ→ ϕ&ψ) → ψ.

Its algebraic semantics is given by the variety of cancellative hoops, whose linearly ordered elements
are exactly Product chains without the 0. CHL is complete with respect to the standard cancellative
hoop, the real semi-open interval(0, 1] endowed with the restriction of Product Logic truth functions.
For any countable Product subalgebraC of [0, 1]Π, one could define the logic CHL(C−), which is
the expansion of CHL with truth-constants fromC− = C \ {0}, in a completely analogous way we
have definedΠ(C) from Π. And moreover, a careful checking would show that all the results we
have proved forΠ(C) could be easily transferred to CHL(C−).

As for future work, observe that, from the results in [11], it is possible to axiomatically define the
logic of any particular continuous t-norm and its residuum. Then, the partial embeddability result,
which now holds for the expansions of the three main continuous t-norms logics with truth-constants,
could be extended to the expansion of any logic of a continuous t-norm with truth-constants. From
there, we plan a general study of the expansions of any continuous t-norm logic with truth-constants.

It has been suggested by Petr Cintula (personal communication) to consider the extension ofΠ(C)
logics with the inference rule

Rr : from r derive0

for a particular0 < r < 1. Call the resulting logicΠ(C)�. Notice that, sinceC is Archimedean,
all the rulesRs, for any0 < s < 1, are derivable inΠ(C)�. The consequence of the addition of
such an inference rule is to discard allΠ(C)-algebras of type II as possible algebraic models, as it
happens inΠ∆(C), since the rule forbids the collapsing of truth-constants. Therefore, it remains as
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an interesting task to study in more detail the logicΠ(C)�, which is inbetweenΠ(C) andΠ∆(C),
and whose class of corresponding algebras is not a variety but a quasivariety.
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also indebted to Rostislav Horč́ık for his helpful comments and for pointing out the reference [14].
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[16] P. Hájek, T. Havŕanek, R. Jiroǔsek.Uncertainty Processing in Expert Systems. RC Press, Inc., Boca Raton, 1992.
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Appendix

A Some results on ordered Abelian groups
In this appendix we list some results on ordered Abelian groups that are used in the paper. Some of them are particular cases
of most general results about ordered Abelian groups but we give the results we need and some of the proofs for the reader’s
convenience.

For the first result we recall the definition of the ordered group obtained as the lexicographic product of copies of the o.a.g
of the positive real numbers with the natural order and the product operation(R+, ·,≤). For any naturalk, we denote by
(R+)k

lex = ((R+)k, • , (1, k..., 1),≤lex) the linearly ordered Abelian group defined on the Cartesian product ofk copies
of the positive realsR+, with • being the coordinatewise multiplication and with≤lex the lexicographic order. Note that
the⇒ • operation in theΠ-algebraP(R+k

lex), with (0, k..., 0) as bottom element, is defined as follows:

(a1, ..., ak) ⇒ • (b1, .., bk) =

{
(1, ..., 1), if (a1, ..., ak) ≤lex (b1, ..., bk)
(1, ..., 1, bj/aj , ..., bk/ak), otherwise

wherej is the smallest index for whichaj > bj .
The following result is a consequence of well-known Hahn’s theorem, which is a more general result (see e.g. [14,

Theorem 4.C]). However, a direct proof of the next theorem can be found in [16, Theorem 7.3.15].

THEOREM A.1
If G is a finitely generated ordered Abelian group, thenG is isomorphic to a subgroup of(R+)klex .

The second result is given in the following lemma.

LEMMA A.2
LetH be a subgroup ofR+. Any functiont : H ∩ (0, 1] → R+ such thatt(x · y) = t(x) · t(y) for all x, y in H ∩ (0, 1]
may be extended to a group homomorphismt′ : H → R+.

PROOF. Definet′ : H → R+ as follows:

t′(x) =

{
t(x), if x ≤ 1
1/t(1/x), if x > 1

For anyx, y ∈ H, one (and only one) of the identities

t(x · y) = t(x) · t(y)
t(x · y) · t(1/x) = t(y)

t(x · y) · t(1/y) = t(x)

t(1/y) = t(1/x · 1/y) · t(x)
t(1/x) = t(1/x · 1/y) · t(y)

t(1/x) · t(1/y) = t(1/x · 1/y)

is well defined and satisfied, and implies a corresponding identity witht′ instead oft. Since for everyz ∈ H t′(1/z)·t′(z) =
1, we may derivet′(x · y) = t′(x) · t′(y) in each of the cases.

Finally the third result is a consequence of the fact that an Abelian group is injective if and only if it is divisible, see [19,
Proposition 3, Section 4.2]. SinceR+ is abelian and divisible, the next lemma follows. For the reader’s convenience, we
provide a simple elementary proof of the particular case we need.
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LEMMA A.3
LetH be a subgroup ofR+, x ∈ R+ \H and letH′ be the subgroup generated byH andx. Then every homomorphism
t : H → R+ may be extended to a homomorphismt′ : H′ → R+.

PROOF. If there is non ≥ 1 such thatxn ∈ H, then definet′(x) arbitrarily. Every element ofH′ has a unique decomposition
asxi · a, wherei is an integer anda ∈ H, so we may definet′(xi · a) = t′(x)i · t(a) and this yields a homomorphism on
H′.

If there is somen ≥ 1 such thatxn ∈ H, denote byn the smallest natural number with this property. For every integeri,
we havexi ∈ H iff n dividesi. For every integeri and everya ∈ H definet′(xi · a) = t(xn)i/n · t(a). Let us prove that
this is a correct definition. Ifxi · a = xj · b for integersi, j anda, b ∈ H, then there is a naturalk such thatj = i− k · n
andb = a · xkn. It follows thatt(xn)j/n · t(b) = t(xn)i/n−k · t(a) · t(xn)k = t(xn)i/n · t(a). Moreover, the mapping
t′ is clearly a homomorphism onH′.

Received 2 August 2005


