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Abstract. We present results about minimization of convex functionals de-

fined over a finite set of vectors in a finite dimensional Hilbert space, that

extend several known results for the Benedetto-Fickus frame potential. Our
approach depends on majorization techniques. We also consider some pertur-

bation problems, where a positive perturbation of the frame operator of a set

of vectors is realized as the frame operator of a set of vectors which is close to
the original one.

1. Introduction

Let H be a Hilbert space. A set of vectors F = {φi}i∈I in H is a frame if there
exist a pair of constants a, b > 0 such that, for every x ∈ H,

(1) a ‖x‖2 ≤
∑
i∈I
| 〈x , φi〉 |2 ≤ b ‖x‖2.

The optimal constants a, b in (1) are called the frame bounds. We say that the
frame is tight if a = b. In general, if the inequality on the right hand side of (1)
holds for x ∈ H we say that F is a Bessel sequence. Given a Bessel sequence F
we consider its synthesis operator TF : l2(I) → H defined as TF (ei) = φi, where
{ei}i∈I is the canonical orthonormal basis of l2(I). We also consider its frame
operator given by SF = TF (TF )∗ and its Grammian, defined by GF = (TF )∗TF .

Frames where introduced by Duffin and Schaeffer [8] in their work on nonhar-
monic Fourier series. These were later rediscovered by Daubechies, Grossmann
and Meyer in the fundamental paper [7]. In recent years the study of frames has
increased considerably due to the wide range of applications in which frames play
an important role. In this note we shall focus on finite frames i.e. H = Fd where
F = C or R and I is a finite set. Note that in this setting, a frame is just a set of
generators for H.

In [4] Benedetto and Fickus introduced the notions frame force (FF) and frame
potential (FP) for a finite frame. More explicitly they defined, for F = {φi}mi=1 ⊆ H
a finite sequence of vectors

(2) FP(F) =
m∑

i,j=1

|〈φi, φj〉|2 = tr((SF )2)

It is shown in [4] that the finite unit norm tight frames are the minimizers of the
frame potential among all unit norm frames with a fixed number of vectors. If we
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now impose restrictions on the lengths of the vectors, the structure of minimizers
changes since tight frames with a prescribed set of norms may not exist. The
complete characterization of global and local minimizers for the frame potential
was done in [6].

The equality FP(F) = tr((SF )2) suggests that, more generally, we can con-
sider functionals of the form Pf (F) = tr(f(SF )), where f is a non-negative, non-
decreasing and convex function defined on [0,∞). In this context, the problem
of describing the geometrical structure of minimizers of these convex functionals
arises; surprisingly, this structure does not depend on f . In order to state the
following results we introduce the sets A(c) = {{φi}mi=1 ⊂ Cd,

∑m
i=1 ‖φi‖2 = c}

and B(a) = {{φi}mi=1 ⊂ Cd, ‖φi‖2 = ai for every i}, where a = (ai)mi=1 is a non-
increasing finite sequence of positive real numbers.

Theorem (A). Let f : R>0 → R>0 be a convex function and Pf the functional
associated to f . Let c > 0 and a = (ai)mi=1 be a non-decreasing finite sequence of
positive real numbers. Then,

a) If F ∈ A(c) is a tight frame then it is a global minimizer of Pf in A(c). If
we assume further that f is strictly convex then every global minimizer in
A(c) is tight.

b) If F ∈ B(a) is of the form

(3) {
√
ai ei}ri=1 ∪ {φi}mi=r+1

where {ei}di=1 is an o.n.b. for Cd, r is the d-irregularity of a (see definition
2.2 below) and {φi}mi=r+1 is a tight frame for span {ei}di=r+1 then, it is a
global minimizer of Pf . If we assume further that f is strictly convex then
every global minimizer in B(a) is as in (3) for some o.n.b. {ei}di=1.

It is also interesting to study the structure of the local minimizers of Pf in
the previous sets A(c) and B(a). A natural metric in this context is the vector-
vector distance d(F ,G) = max1≤i≤m ‖φi − ψi‖ for sequences F = {φi}mi=1, G =
{ψi}mi=1. But this characterization problem turns out to be quite difficult for the
local minimizers of Pf in B(a). Hence, we alternatively consider the description of
the structure of local minimizers of Pf inR(a) = {SF , F ∈ B(a)} endowed with the
norm topology. Notice that this last point of view is weaker. Indeed, ‖SF −SG‖ ≤
2
√
m max(‖TF‖, ‖TG‖) d(F ,G), where TF and SF denote the synthesis and frame

operator of F (see the beginning of section 3), while there are pairs of different
sequences that share the frame operator.

Theorem (B). Let f : R>0 → R>0 be a non decreasing strictly convex function and
Pf the functional associated to f . Let c > 0 and a = (ai)mi=1 be a non-decreasing
finite sequence of positive real numbers. Then,

a) Every local minimizer of Pf in A(c) with respect to d(·, ·) is a tight frame
and hence, a global minimizer.

b) Every local minimizer of Pf in R(a) with respect to the operator norm is of
the form (3) for some o.n.b. {ei}di=1 of Cd and hence, a global minimizer.

The previous results show that the structure of the local minimizers of Pf (when
Pf is considered as a function of the frame operators) does not depend on the
strictly convex function chosen. Unfortunately, we get only partial results related
with the local minimizers of Pf in B(a) with respect to the vector-vector distance,
for a general convex function f .
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Our approach depends on solving some perturbation problems concerning the
frame operator for a generic case of frame.

More explicitly, if F is a frame in B(a) which can not be partitioned in two
mutually orthogonal sets of vectors (i.e. its Grammian is not block-diagonal) and
Si is a sequence in Md(C)+ which converges to SF , then for every ε > 0 there
exists i0 such that, for i ≥ i0 there is a frame G ∈ B(a) such that SG = Si and
d(F ,G) ≤ ε. Our approach to this problem depends on differential geometric tools
that we describe in an appendix at the end of the paper. In the particular case of
the Benedetto-Fickus frame potential, we recover a theorem by Casazza et al. [6]
describing its local minimizers.

The paper is organized as follows: Section 2 contains preliminary facts together
with some new results about majorization of vectors in Rd that we shall need in the
sequel; Propositions 2.1 and 2.3 give a characterization of minimal points of certain
sets of vectors with respect to majorization. Section 3 is devoted to the basic facts
about frames in Cd together with some previous results from [3] about some design
problems for frames. In Section 4, some properties of the convex functions Pf
defined on frame operators are given. In this section we consider the sets of frame
operators R(c) and T (a), consisting of frame operators of elements in A(c) and
B(a) respectively. Theorems 4.6 and 4.7 deal with the characterization of global
and local minimizers for every Pf (for a non decreasing strictly convex function
f : R>0 → R>0) on R(c) and T (a). At the end of this section, some examples and
applications are given. Finally, in Section 5 we focus on the structure of minimizers
of the functions Pf when they are defined on frames instead of frame operators.
This leads to some geometrical problems which are developed in the Appendix.

Acknowledgments. We would like to thank Demetrio Stojanoff and Jorge An-
tezana for several useful comments related with the content of this note that helped
us improve its exposition.

2. Preliminares

In this section we present some basic aspects of majorization theory together
with some new results that we shall need in what follows. For a more detailed
treatment of majorization see [10]. Given b = (b1, . . . , bd) ∈ Rd, denote by b↓ ∈ Rd
the vector obtained by rearranging the coordinates of b in non increasing order. If
b, c ∈ Rd then we say that b is majorized by c, and write b ≺ c, if

k∑
i=1

b↓i ≤
k∑
i=1

c↓i k = 1, . . . , d− 1 and
d∑
i=1

b↓i =
d∑
i=1

c↓i .

Majorization is a preorder relation in Rd that occurs naturally in matrix analysis
and plays an important role in convex optimization problems.

Proposition 2.1. Let c > 0 and consider the set

(4) K(c) = {b ∈ (R>0)d :
d∑
i=1

bi = c}

Then the vector v = ( cd , . . . ,
c
d ) satisfies b � v for every b ∈ K(c). Moreover, if

b ∈ K(c) is such that b↓ 6= v, then for every 0 < ε sufficiently small, there exists
bε ∈ K(c) such that b↓ 6= b↓ε, b � bε and ‖b↓ − b↓ε‖ ≤ ε.
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Proof. The first part is a well known fact about majorization, and it is easy to
check. For the proof of the moreover part, suppose that b ∈ K(c) is such that
b 6= v, then there exists a index j, 1 ≤ j ≤ d such that b↓j > b↓j+1 were we denote
by b↓i the entries of b↓.

Let 0 < ε such that b↓j −
√

ε
2 ≥ b↓j+1 +

√
ε
2 and denote by bε the vector

bε = b↓ −
√

ε
2 ej +

√
ε
2 ej+1 were {ei}di=1 is the canonical basis in Rd. Clearly

bε ∈ K(c), b � bε, and by construction of bε, ‖b↓ − b↓ε‖2 = ε. �

Following [6] we consider the d-irregularity of a sequence as follows

Definition 2.2. Let a = (ai)mi=1 be a non increasing sequence of positive numbers
and d ∈ N with d ≤ m. The d-irregularity of a, denoted rd(a) ∈ N, is defined as

rd(a) = max
{

1 ≤ j ≤ d− 1 : (d− j)aj >
m∑

i=j+1

ai

}
,

if the set on the right is non empty, and rd(a) = 0 otherwise.

Notice that in particular, with the notations of Definition 2.2, we have:
(1) (d− j)aj ≤

∑m
i=j+1 ai, for rd(a) < j ≤ d whenever rd(a) > 0,

(2) (d− j)aj >
∑m
i=j+1 ai , for every 1 ≤ j ≤ rd(a).

Proposition 2.3. Let 0 < d ≤ m and let a = (ai)mi=1 be a non increasing sequence
of positive numbers with d-irregularity r = rd(a). Consider the set

P(a) = {b ∈ (R>0)d :
k∑
i=1

b↓i ≥
k∑
i=1

ai for 1 ≤ k ≤ d and
d∑
i=1

bi =
m∑
i=1

ai}.

Let v = (a1, . . . , ar,

d−r times︷ ︸︸ ︷
c, . . . , c ), where c = (d − r)−1

∑m
j=r+1 aj. Then v belongs to

P(a) and, for every b ∈ P(a), b � v. Moreover, if b ∈ P(a) and b↓ 6= v, then for
every 0 < ε sufficiently small, there exists bε in P(a) such that b↓ε 6= b↓, b � bε
and ‖b↓ − b↓ε‖ ≤ ε.
Proof. By the comments after Definition 2.2, v = v↓. First, we show that v ∈ P(a).
Note that

∑k
j=1 aj =

∑k
j=1 vj for 1 ≤ j ≤ r. On the other hand,

ar+1(d− r)− ar+1 = ar+1(d− (r + 1)) ≤
m∑

j=r+2

aj ⇒ ar+1 ≤ (d− r)−1
m∑

j=r+1

aj .

Therefore c ≥ ar+1 ≥ aj for every r + 1 ≤ j ≤ m. Then, for every r + 1 ≤ k ≤ d
we have

k∑
j=1

vj =
r∑
j=1

aj +
k∑

j=r+1

cj ≥
k∑
j=1

aj .

Since
∑d
j=1 vj =

∑m
j=1 aj it follows that v ∈ P(a). Let b = (bi)di=1 ∈ P(a) and,

without loss of generality, assume that b = b↓. Then, it is clear that
∑k
j=1 vj ≤∑k

j=1 bj for every 1 ≤ k ≤ r. Let α =
∑r
j=1 bj −

∑r
j=1 aj ≥ 0. Therefore

(5)

 r∑
j=1

bj −
r∑
j=1

aj

+
d∑

j=r+1

bj =
m∑

j=r+1

aj ⇒
d∑

j=r+1

(bj + (d− r)−1α) =
m∑

j=r+1

aj
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which implies, by Proposition 2.1, that (c)di=r+1 ≺ ((d− r)−1α + bi)di=r+1 ∈ Rd−r.
Then, for every r + 1 ≤ k ≤ d we have

k∑
j=1

bj =
r∑
j=1

bj −
k∑

j=r+1

(d− r)−1α+
k∑

j=r+1

(bj + (d− r)−1α)

≥
r∑
j=1

bj − α+
k∑

j=r+1

c =
r∑
j=1

aj +
k∑

j=r+1

c =
k∑
j=1

vj .

On the other hand
d∑
j=1

bj =
m∑
j=1

aj =
d∑
j=1

vj

so we see that v ≺ b. For the second part, let b ∈ P(a), b↓ 6= v. Again we assume
that b = b↓.

Claim: There exists j, 1 ≤ j ≤ d−1 such that bj > bj+1 and
∑j
i=1 bi >

∑j
i=1 ai.

It is clear that for some 1 ≤ k ≤ d − 1, bk > bk+1. Otherwise, bi = b1 for all
i which would imply that b = v (the d-irregularity of a would be 0). Denote by
bt1 ≥ bt2 ≥ . . . ≥ btm all the entries of b which satisfy btn > btn+1.

Suppose that, for every tn,
∑tn
i=1 bi =

∑tn
i=1 ai. Then, since by hypothesis kb1 =∑k

i=1 bi ≥
∑k
i=1 ai for all k ≤ t1, we have that ai = b1 = bi for all i ≤ t1. By the

same reasoning, ai = bt1+1 = bi for all t1 + 1 ≤ i ≤ t2. Finally, we get that ai = bi
for all 1 ≤ i ≤ tm moreover, bk = (d − tm)−1

∑m
i=tm+1 ai for tm + 1 ≤ k. The

definition of the irregularity of a implies that tm ≤ r (otherwise, the decreasing
order of b would be violated), but if tm ≤ r − 1, then by the comments following
Def. 2.2,

atm+1 > (d− (tm + 1))−1
m∑

i=tm+2

ai,

which in turn implies that atm+1 > (d − tm)−1
∑m
i=tm+1 ai = btm+1, which con-

tradicts b ∈ P(a). The only possible case is tm = r, but in this case, b = v, a
contradiction.

Now, given 1 ≤ j ≤ d− 1 such that bj > bj+1 and
∑j
i=1 bi >

∑j
i=1 ai, let ε such

that bj − ε/
√

2 ≥ bj+1 + ε/
√

2 and
∑j
i=1 bi − ε/

√
2 ≥

∑j
i=1 ai. Now, denote by bε

the vector b− ε/
√

2 ej + ε/
√

2 ej+1. Then is easy to see that bε satisfy the desired
properties.

�

Remark 2.4. Note that the proof of the previous claim shows that the only vector
b in P(a) such that: b↓ = (a1, a2, . . . , ak, c, . . . , c) is v.

Finally, we consider the following extension of majorization to self-adjoint opera-
tors due to Ando [2] which will be useful for the study of convex functions on frame
operators: given self-adjoint matrices B, C ∈ Md(C) we say that B is majorized
by C, and write B ≺ C if and only if λ(B) ≺ λ(C), where λ(A) ∈ Rd denotes the
d-tuple of eigenvalues of a selfadjoint matrix A ∈Md(C) counted with multiplicity
and arranged in decreasing order.
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3. Preliminaries on frames

Let H = Fd, (F = C or R), and let F = {φi}mi=1 be a set of vectors in H, we say
that F is a frame if there exist a, b > 0 such that for every vector x in H

(6) a‖x‖2 ≤
m∑
i=1

| 〈x , φi〉 |2 ≤ b‖x‖2

the optimal bounds a and b are the upper and lower frame bounds for F .
We can define the following bounded linear operator

TF : Fm → H, TF (ei) = φi, 1 ≤ i ≤ m
The positive semidefinite operators

GF := (TF )∗TF and SF := TF (TF )∗

are called Grammian and the frame operator respectively, of the sequence F =
{φi}mi=1. Throughout this note we shall consider the matrices of those operators
with respect to the canonical bases of Fm and Fd, maintaining the notation . Thus,
SF ∈Md(F)+ and GF ∈Mm(F)+.

In particular, it can be seen that the upper and lower frame bound for F are the
greatest and smallest positive eigenvalues of SF , denoted by λ1 and λd respectively.

Proposition 3.1 ([3]). Let F = {φi}mi=1 ⊆ H and let G and S be the Grammian
and frame operators of F . Then, there exists a Hilbert space H0 with dimension
m− d and an isometric isomorphism U : Fm → H⊕H0 such that

(7) UGU∗ =
(
S 0
0 0

)
H
H0

Therefore, (‖φi‖2)mi=1 ≺ (σ(SF ), 0∼) where 0∼ ∈ Rm−d.

As a consequence of Proposition 3.1 we see that, if σ(G) ∈ Fm (resp σ(S) ∈ Cd)
denote the eigenvalues of G counted with multiplicity then σ(G) = (σ(S), 0∼) where
0∼ ∈ Fm−d.

Theorem 3.2 ([3, 12]). Let S ∈ Md(F)+ and let a = (ai)mi=1 be a sequence of
positive numbers. Then, there exists a sequence {φi}mi=1 ⊂ H with frame operator
S and such that ‖φi‖ = ai for every 1 ≤ i ≤ m if and only if

k∑
i=1

a2
i ≤

k∑
i=1

λ(S)i, for 1 ≤ i ≤ d− 1, and
m∑
i=1

a2
i = tr(S).

4. Convex functions defined on frame operators.

In this section we define a family functions Pf on the set of frame operators of
sequences F in Cd, starting from a convex function f : R>0 → R>0. As a particular
case, we recover the frame potential, introduced by Benedetto and Fickus, in [4]
with a specific convex function f .

When we restrict our attention to special sets of sequences, namely, those se-
quences with a prescribed set of norms, we are able to compute the minimum value
taken by Pf on the corresponding set of frame operators and to characterize the
spectrum of minimizers of Pf , for every f non decreasing and convex function which
satisfies f(0) = 0.
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Definition 4.1. Let f : R>0 → R>0 be a non decreasing convex function. Then,
the frame potential associated to f , denoted Pf , is the functional defined on the set
of frame operators of sequences in Cd given by

(8) Pf (SF ) = tr(f(SF ))

for every F = {φi}mi=1 ⊂ Cd. In detail, if we denote by λ = (λi)di=1 the eigenvalues
of SF counted with multiplicity, then Pf (SF ) =

∑d
i=1 f(λi).

Remark 4.2. Using the relation between GF and SF shown in Proposition 3.1,
we have

tr(f(GF )) = Pf (SF ) + (m− d)f(0)

In particular, if f(0) = 0, Pf (SF ) can be computed using the Grammian matrix.

Example 4.3 (Benedetto-Fickus’s potential). Let f : R>0 → R>0 be the strictly
convex function f(x) = x2. Then, the frame potential associated to f is

(9) Pf (SF ) = tr((SF )2) = tr((GF )2) =
m∑

i, j=1

|〈φi, φj〉|2

that is, the frame potential as defined by Benedetto and Fickus in [4]

In what follows, given F = {φi}mi=1 ⊂ Cd and α ∈ C we denote by αF =
{αφi}mi=1. On the other hand, given F1 = {φi}M1

i=1, F2 = {ψi}M2
i=1 ⊂ Cd then

F1 t F2 denotes the list of M1 + M2 vectors obtained by juxtaposition of F1 and
F2. Note that, if G = αF1 t F2 then

SG = |α|2 SF1 + SF2 .

Theorem 4.4. Let f : R>0 → R be a non decreasing convex function and F1 =
{φi}M1

i=1, F2 = {ψi}M2
i=1 ⊂ Cd.

(1) If SF1 ≺ SF2 then

Pf (SF1) ≤ Pf (SF2).

(2) Assume further that f is a strictly convex function, SF1 ≺ SF2 and Pf (SF1)
= Pf (SF2). Then, there exists a unitary operator U ∈Md(C) such that

USF1U∗ = SF2 .

(3) If t ∈ [0, 1] and G = t1/2F1 t (1− t)1/2F2 then

Pf (SG) ≤ tPf (SF1) + (1− t)Pf (SF2).

(4) If G = F1 t F2 then

Pf (SG) ≥ Pf (SF1) + Pf (SF2).

Proof. The first two items are well known (see [5, 10]). The last two inequalities
above are also well known (see [1, Theorem 1-24]) for these functionals. �

Remark 4.5. For g = −f , Pg(S) = tr(g(S)) for S ∈Md(C)+ are called “entropy-
like” functionals in [1]. Notice that the minimization of the functions Pf corre-
sponds to the maximization of the entropy-like functional Pg.
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Let c > 0 and a = {ai}mi=1 be a sequence of positive elements arranged in
decreasing order. In what follows we shall consider the following sets:

A(c) = {F = {φi}mi=1 ⊂ Cd,
m∑
i=1

‖φi‖2 = tr(SF ) = c},

B(a) = {F = {φi}mi=1 ⊂ Cd, ‖φi‖2 = ai for every i}.
Observe that, by Theorem 3.2, the sets of frame operators for sequences in A(c)
and B(a) can be well characterized:

(10) T (c) = {SF , F ∈ A(c)} = {S ∈Md(C)+, λ(S) ∈ K(c)}.

(11) R(a) = {SF , F ∈ B(a)} = {S ∈Md(C)+, λ(S) ∈ P(a)}.

Theorem 4.6. Let f : R>0 → R>0 be a non decreasing convex function and Pf
the functional associated to f and let c > 0. Then, if F ∈ A(c) is a tight frame,
then

Pf (SF ) ≤ Pf (SG) ∀SG ∈ T (c).

Moreover, if in addition f is strictly convex and SF is a local minimum of Pf
considering the operator norm in T (c), then SF = c

dI so F is a tight frame.

Proof. The proof follows immediately from Proposition 2.1. Indeed, SF ∈ T (c) is
a global minimum for Pf if and only if λ(SF ) = v, i.e. SF = c

dI, which means
that F is a tight frame in A(c). On the other side, if λ = λ(SF ) 6= v, then by
Prop. 2.1 for every ε > 0 sufficiently small, there exist λε ∈ K(c) such that λε ≺ λ,
λ↓ 6= λ↓ε and ‖λ − λε‖ < ε. Thus, if SF = U∗ diag(λ)U with U unitary, it is clear
that Sε = U∗ diag(λε)U ∈ T (c) satisfies ‖SF − Sε‖ < ε and Pf (Sε) < Pf (SF ), by
Thm. 4.4.

�

Theorem 4.7. Let f : R>0 → R>0 be a non decreasing convex function and Pf the
functional associated to f . Let a = (ai)mi=1 be a non increasing sequence of strictly
positive numbers with d ≤ m. Suppose that F ∈ B(a) is of the form

(12) {
√
ai ei}ri=1 ∪ {φi}mi=r+1

where {ei}di=1 is an o.n. basis for Cd, r is the d-irregularity of a and {φi}mi=r+1 is
a tight frame for span{ei}di=r+1 with frame constant c = (d− r)−1

∑
i≥r+1

ai.

Then, SF is a global minimum for Pf in R(a). Moreover, if f is strictly convex
and SF is a local minimum for Pf in R(a) (considering the operator norm), then
F is as in (12).

Proof. Let F ∈ B(a) be of the form given in (12). Therefore, the (ordered) spectrum
of the frame operator SF is v = (a1, . . . , ar, c, . . . , c) where c = (d− r)−1

∑
i≥r+1 ai

is an eigenvalue with multiplicity d− r. Then, by the Proposition 2.3 and Theorem
4.4, we can conclude that F is a global minimum in B(a).

Now, let G = {ψi}mi=1 ∈ B(a) be such that λ(SG) = v. Then the (optimal) upper
frame bound of G is a1 and we have

‖ψ1‖4 +
∑
j>1

|〈ψj , ψ1〉|2 ≤ a1 ‖ψ1‖2 = ‖ψ1‖4
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Therefore, ψ1 is orthogonal to ψj for j 6= 1. By restriction to span{ψi}mi=2, we
deduce that 〈ψ2 , ψi〉 = 0 for i 6= 2 in the same way. Therefore we can conclude
that 〈ψi , ψj〉 = 0 for every 1 ≤ i ≤ r, j 6= i, in particular we define the orthonormal
set ei = a

−1/2
i ψi for 1 ≤ i ≤ r. We then complete it to an o.n.b. {ei}di=1.

Finally, since the frame operator restricted in the orthogonal complement of the
space spanned by {ei}ri=1 is a multiple of the identity, the rest of the frame is a
tight frame in its span. Then, G can be described as in (12).

Let SF ∈ R(a) be such that λ(SF ) is not v ∈ P(a). Therefore, by the last
statement of Prop. 2.3 and arguing as in Thm. 4.6, given ε > 0, we can find a
positive definite operator Sε ∈ R(a) such that ‖Sε − SF‖ < ε, λ(Sε) 6= λ(SF ) and
Sε ≺ SF . Then Pf (Sε) < Pf (F) for every strictly convex function f , by Theorem
4.4. In particular, by the previous paragraph, every local minimum for Pf in R(a)
is a global minimum, so it is a frame operator of a frame given by (12).

�

Theorem (A) in the Introduction is now a consequence of the identities (10),
(11) and Theorems 4.6, 4.7.

Corollary 4.8. Let F = {φi}mi=1 ∈ A(c) and let f : R>0 → R>0 be a non decreasing
convex function. We have the following inequalities:

(13) (d− 1) · f(0) + f(c) ≥ Pf (SF ) ≥ d · f(
c

d
),

And, for F ∈ B(a) we have

(14) (d− 1) · f(0) + f(
m∑
i=1

ai) ≥ Pf (SF ) ≥
r∑
i=1

f(ai) + (d− r) · f(h)

with h = (d − r)−1
∑
i≥r+1 ai. Moreover, if in addition f is strictly convex and

the lower bound is attained in (13) (respectively in (14)) then F is a tight frame
(respectively is as in (12) for some o.n.b. {ei}di=1 for Cd).

4.1. Some applications of the previous results. Let us begin with the follow-
ing example in order to illustrate the content of our previous results.

Example 4.9 (continuation of example 4.3). Let f(x) = x2 and note that, by
equation (9), if F = {φi}mi=1 ∈ A(c) then

Pf (SF ) =
m∑

i,j=1

|〈φi, φj〉|2.

Note that f is a strictly convex function and that f(λ · x) = λ2 · f(x) for every
λ ≥ 0, so we can take g(λ) = λ2. Then, equation (14) becomes

(15) 1 ≥
∑m
i=1 |〈φi, φj〉|2

(
∑m
i=1 ‖φi‖2)2

≥ d · 1
d2

=
1
d

which is the generalized Welch inequality of [13]. Moreover, by Theorem 4.8 we
deduce that the lower bound (resp the upper bound) in equation (15) is attained if
and only if F is a tight frame with frame bound c

d (resp if and only if span(F) has
dimension 1).

Of course, the function f(x) = x2 is probably the most simple function that can
be used to produce a reasonable frame potential. In the following examples we shall
investigate other choices of convex functions.
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Example 4.10 (n-th frame potential). Let n ≥ 2 and consider fn(x) = xn for
x ≥ 0. Then, f is an increasing strictly convex function and produce the n-th
frame potential given by

Pn(SF ) = tr((SF )n)
where SF is the frame operator of the sequence F = {φi}i∈m ⊂ Cd. Since f(0) = 0
then we have

(16) Pn({φi}mi=1) = tr((GF )n) =
m∑

i1,..., in=1

n∏
j=1

〈φij , φij+1〉

where we follow the convention in+1 = i1. Note that P2 is the usual frame potential.
Indeed, formula (16) is a consequence of the identity

(17) 〈(GF )nek, ek〉 =
m∑

i2,..., in=1
i1=k

n∏
j=1

〈φij , φij+1〉 ≥ 0

In this case, using equation (16), equation (14) becomes

(18) 1 ≥
∑m
i1,..., in=1

∏n
j=1〈φij , φij+1〉

(
∑m
i=1 ‖φi‖2)n

≥ 1
dn−1

while equation (17) implies

(19) max
1≤k≤m

m∑
i2,..., in=1
i1=k

n∏
j=1

〈φij , φij+1〉 ≥
(
∑m
i=1 ‖φi‖2)n

m · d

As before, the lower bound in formula (18) is attained if and only if F is a tight
frame with frame bound c

d . Analogously, the bound in equation (19) is attained if
and only if F is a tight frame.

Example 4.11 (von Neumann Entropy). If we consider the concave function
f(x) = −x ln(x), then Pf restricted to density matrices is the well known von
Neumann entropy in quantum information theory. Roughly speaking, it measures
the lack of information about the state of a system. Theorems 4.6 and 4.7 show, as
a particular case, the structure of maximizers of the entropy without restrictions in
the first case and with the restriction: {S a density matrix with (λ(S), 0m−d) � a}
for a fixed positive sequence a with

∑m
i=1 ai = 1.

4.2. Convex functions over CGU frames. In this section we use the previ-
ous techniques to characterize the global minimizers of Pf when restricted to the
compound geometrically uniform frames, with a prescribed list of norms.

Definition 4.12. Let G be a finite abelian group of unitaries in Md(C), and ϕ ∈
Cd. If the set G · ϕ = {Uϕ : U ∈ G} is a frame the we say that G · ϕ is a
geometrically uniform frame (GU). When G acts on a larger set of functions,
Φ = {ϕi ∈ Cd : 1 ≤ i ≤ m} and G · Φ is a frame, we say that it is a compound
geometrically uniform frame (CGU).

From now on, in order to simplify the computations, we assume also that G is
cyclic. Let suppose then that we have G = {U i : 0 ≤ i ≤ n − 1}, where U is a
unitary such that Un = I. Thus, we shall consider frame sequences of the form
F = G · Φ = {U iϕj : 0 ≤ i ≤ n− 1 , 1 ≤ j ≤ m}.
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We are interested in minimizing Pf when we restrict Pf to the set of frame
operators of CGU frames:

G · B(a) = {G · F : F ∈ B(a)},
where G is a fixed cyclic group of unitaries, a is fixed. Clearly G · B(a) ⊂ B(b),
where b = {bi}nmi=1 is the sequence a repeated n times. Then, by Corollary 4.8, if
F ∈ G · B(a),

(20) Pf (SF ) ≥
r∑
i=1

f(bi) + (d− r) · f(h),

where h = (d − r)−1
∑nm
i=r+1 bi and r is the d-irregularity of b. The previous

inequality can be stated in terms of a if we characterize the d-irregularity of b.

Proposition 4.13. Let a = (ai)mi=1 be a non increasing sequence of positive num-
bers and let b = (bi)nmi=1 be a sequence given by:

bj = ai for j = (i− 1)n+ s, 1 ≤ s ≤ n, 1 ≤ i ≤ m.
Then, if r0 is the d-irregularity of b, r0 = nr, where

r = max{j : (
d

n
− j) aj >

m∑
k=j+1

ak}.

Proof. The result is clear if r0 = 0. If r0 6= 0, then it holds that n divides r0. Indeed,
by definition of r0, br0 6= br0+1 which can only occur if r0 = nr, r ∈ {1, . . .m}.
Finally,

r0 = max{nj : (d− nj) bnj >
nm∑

k=nj+1

bk} = n max{j : (
d

n
− j) aj >

m∑
k=j+1

ak}.

�

Theorem 4.14. Let G, a and B(a) as before. Suppose that n|d and that there
exists an orthonormal family {ei}Ni=1, with N = d

n such that the set {Ukej 1 ≤ k ≤
n, 1 ≤ j ≤ N} is an orthonormal basis of Cd. Let F in B(a) be of the form

(21) F ′ = {
√
ai bi}ri=1 ∪ D

where E = {bi}ri=1 is an orthonormal set such that G · E is orthonormal, r is the
N -irregularity of a and G · D is a tight frame for span (G · E)⊥ with frame constant
h = (N − r)−1

∑m
k=r+1 ak. Denote F = G · F ′ ∈ G · B(a).

Then SF is a global minimum for Pf in the set of frame operators of G · B(a).
Conversely, if in addition f is strictly convex, and SF is a global minimum for Pf ,
then F is of the form G · V, with V as in (21).

Proof. By Thm. 4.7 and Prop. 4.13 it is clear that if such sequence exists, then
SF is a global minimum in R(b) (using the previous notation), so it is a global
minimum when we restrict Pf to the frame operators of G · B(a). Moreover, if f is
strictly convex, every global minimum must be of this form, by Thm. 4.7.

Then, in order to prove the statement we need to show that such sequence exists.
Indeed let F ′ be the sequence given by

{
√
ai ei}ri=1 ∪ {φi}mi=r+1
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where {ei}Ni=1 is the orthonormal set existing by the hypotheses, r is the N -
irregularity of a and {φi}mi=r+1 is a tight frame for span{ek}Nk=r+1, with frame
constant h = (N − r)−1

∑m
k=r+1 ak. Such frame exists by Theorem 4.7.

Clearly, for every 1 ≤ k ≤ n, the set {Ukφi}mi=r+1 is a tight frame (with
the same constant h = (N − r)−1

∑m
k=r+1 ak) for span{Ukei}Ni=r+1, therefore,

D = G · {φ}mi=r+1 is a tight frame of span (G · E)⊥ with frame constant c =
(N − r)−1

∑m
k=r+1 ak, where E = {ei}ri=1.

�

Remark 4.15. If in addition we assume that the initial vectors F lie on the d
n -

dimensional subspace K generated by {ei}Ni=1 ( dn = N) of Cd we can conclude that
the global minimizers are of the form given in (21), where r is the d

n -irregularity
of a and D forms a tight frame on K ∩ (span{bi}ri=1)⊥. Indeed, in this case the
Grammian matrix of G · F is block-diagonal.

A special case of this situation is given on convolutional frames studied in [9].
In particular, previous Theorem can be seen as a partial generalization to [9, Thm.
6].

Corollary 4.16. Under the hypotheses of Theorem 4.14, for F ∈ B(a) we have

(22) (d− 1) · f(0) + f(n ·
m∑
i=1

ai) ≥ Pf (SG·F ) ≥ n

{
r∑
i=1

f(ai) + (d− r) · f(h)

}
with h = (d− r)−1

∑
i≥r+1 ai. Moreover, if in addition f is strictly convex and the

lower bound is attained in (22) then F is as in (21).

5. From frame operators to frames.

In the previous section we have considered the function Pf associated to a convex
function f as a function of the frame operators; we have described the structure of
local minimizers of Pf when restricted to the sets T (c) and R(a) with respect to
the norm topology.

We are now interested in considering Pf defined on frames

Pf (F) := Pf (SF ) = tr(f(SF ))

for F = {φi}mi=1 ⊂ Cd, and studying the structure of global and local minimizers
of these functions when restricted to the sets A(c) and B(a), with respect to the
vector-vector distance

(23) d(F ,G) = max
1≤i≤m

‖φi − ψi‖

for sequences F = {φi}mi=1, G = {ψi}mi=1. It is worth noting that the norm distance
between frame operators can not bound the vector-vector distance; indeed if σ is
a permutation of order m and G = {fσ(i)}mi=1 then SF = SG while d(F ,G) 6= 0
possibly. This implies that the results in the previous section can not be used to
obtain a complete characterization of the local minimizers in this new setting.

Our approach to this new point of view involves the study of the existence local
cross sections of the map F 7→ SF when it is restricted toA(c) and B(a) respectively
(note that the restriction on the norms which defines B(a) is a condition on the
main diagonal of GF ).
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To begin with, Theorem 4.6 implies that if a sequence F = {φi}mi=1 ∈ A(c)
does not have the structure of a local (global) minimizer of Pf on T (c), for a
strictly convex function f , then for every ε > 0 there exists a S ∈ T (c) such that
‖S − SF‖ ≤ ε and Pf (S) < Pf (SF ). In order to show that F is not a local
minimum of Pf on A(c) with respect to the vector-vector distance the following
problem arises: given such S, is there any sequence G = {ψi}mi=1 ∈ A(c) such that
SG = S and d(F ,G) ≤ δ(ε), with limε→0 δ(ε) = 0? A positive answer to this
question is given in the following

Proposition 5.1. Let F = {φi}mi=1 ∈ A(c) and let S ∈ T (c) be such that ‖S −
SF‖ < ε. Then there exist G = {ψi}mi=1 ∈ A(c) such that d(F ,G) < ε1/2 and
SG = S.

Proof. Consider TF = (SF )1/2W the polar decomposition of TF . Then, since
‖S − SF‖ < ε , ‖S1/2 − (SF )1/2‖ < ε1/2 by [5, Thm. X.1.1]).

Now let G = {ψi}mi=1, where ψi = S1/2Wei for 1 ≤ i ≤ m. Then TG = S1/2W ,
SG = TG(TG)∗ = S and for 1 ≤ i ≤ m

‖ψi − φi‖ ≤ ‖TG − TF‖ ≤ ‖S1/2 − (SF )1/2‖ < ε1/2.

�

The previous result combined with Theorem 4.6 provide a complete characteriza-
tion of the local (global) minimizers of Pf on A(c) with respect to the vector-vector
distance, for a strictly convex f .

Theorem 5.2. Let f : R>0 → R>0 be a non decreasing convex function. If F ∈
A(c) is a tight frame then it is a global minimizer of Pf on A(c). Moreover, if f is
a strictly convex function then every local minimum of Pf on A(c) with respect to
the vector-vector distance is a tight frame.

Proof. The first part of the statement follows from Theorem 4.6 and (10). By the
proof of 4.6, if F ∈ A(c) is not tight, then for every ε > 0, there exists Sε ∈ T (c)
such that ‖SF −Sε‖ < ε2 and Pf (Sε) < Pf (SF ). Finally, by Proposition 5.1, there
exist G = {ψi}mi=1 ∈ A(c) such that SG = Sε and ‖φi − ψi‖ < ε. �

As before, in order to obtain a characterization of local minimizers of Pf on B(a)
with respect to the vector-vector distance using Theorem 4.7 we are led to consider
the following perturbation problem: given a sequence F = {φi}mi=1 ∈ B(a) and
S ∈ R(a) with ‖SF −S‖ ≤ ε, is there a sequence G = {ψi}mi=1 ∈ B(a) with SG = S
and d(F ,G) ≤ δ(ε) with limε→0 δ(ε) = 0. The constrain G ∈ B(a) seems to be
hard to deal with. For example, notice that we have no control on the norms of the
vectors in G constructed in Proposition 5.1. On the other hand, it is convenient to
work with the Grammian since the restriction G ∈ B(a) is equivalent to d(GG) = a,
where d(X) ∈ Cm denotes the main diagonal of the m×m complex matrix X.

We have only obtained partial results which are presented in the following Propo-
sition. The proof depends strongly on geometrical aspects and it is developed in
the appendix.

Proposition 5.3. Let F = {φj}mj=1 ⊆ Cd be a frame, let S = SF be its frame
operator and assume that F can not be partitioned in two sets of mutually orthogonal
vectors. Let {Si}i ⊆Md(C)+ be a sequence converging to S. Then, for every η > 0
there exists i1 ∈ N such that for each i ≥ i1 there exists a frame G(i) = G = {ψj}mj=1

such that:
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(1) ‖ψj‖ = ‖φj‖ for 1 ≤ j ≤ m.
(2) ‖ψj − φj‖ ≤ η for 1 ≤ j ≤ m.
(3) SG = Si.

Theorem 5.4. Let f : R>0 → R>0 be a non decreasing convex function. If F ∈
B(a) has the structure as in (12) then it is a global minimizer of Pf on B(a).

If in addition f is a strictly convex function, then every global minimum of Pf
on B(a) is as in (12). Moreover, for such f then every F = {φi}mi=1 ∈ B(a) such
that it can not be partitioned in two mutually orthogonal sets of vectors is a local
minimum if and only if is a global minimum.

Proof. The first part of the statement follows from Theorem 4.7 and (11).
Assume now that F is not a global minimum; by the proof of Thm. 4.7, there is

a sequence of operators {Sn} such that Sn converges to SF and such that Pf (Sn) <
Pf (SF ),∀n.

Let ε > 0, then, by Thm. 6.4, for a sufficient large n0 ∈ N, there exist a
frame G = {ψi}mi=1 ∈ B(a) such that ‖φi − ψi‖ < ε and SG = Sn. In particular,
Pf (G) < Pf (F). �

Theorem (B) in the Introduction follows immediately from Theorems 5.2 and
5.4.

It is clear that Pf (F) = Pf (F1) + Pf (F2) if F = F1 ∪ F2 with the vectors in
F2 being orthogonal to those in F1 (we shall denote this by F1 ⊥ F2). This simple
observation and the previous result, allows a reduction of the set of possible local
minimizers for Pf :

Corollary 5.5. Let F ∈ B(a) such that F = F1 ∪ F2 with F1 = {φi}M1
i=1 ⊥ F2 =

{φ′i}
M2
i=1, and suppose that F1 can not be partitioned into two mutually orthogonal

sequences and it is not a global minimizer for Pf restricted to the set

B(a1) = {{ψj}M1
j=1 : ψj ∈ spanF1, ‖ψj‖ = ‖φj‖ 1 ≤ j ≤M1}.

Then, F is not a local minimizer for Pf .

Note that the general structure of local minimums of arbitrary function Pf can
not be inferred from Theorem 5.4 and Corollary 5.5. Still, these results allow to a
reduction of the general situation to a particular case (see Problem (?) below). In
order to exemplify the ideas involved, we recover [6, Theorem 10] about the struc-
ture of general minimizers in the particular caso of the Benedetto-Fickus potential.

Theorem 5.6. Any local minimizer F = {φi}mi=1 of the Benedetto-Fickus potential
in B(a) with respect to the distance d(·, ·) is a global minimizer of this potential and
hence has the structure given in (12)

Proof. Suppose that we have a frame F ∈ B(a) which is not a global minimum
for the Benedetto - Fickus potential FP. We must show that then it is not a local
minimum.

Let F = F1 ∪ . . .∪Fk its minimal decomposition in pairwise orthogonal subsets
(minimal in the sense that no Fj can be partitioned in two mutually orthogonal
subsets). By Corollary 5.5, if there exist 1 ≤ i ≤ k such that Fi is not a global
minimum for FP (restricted to B(ai)), then F is not a local minimizer.

So we can suppose that every Fi is a global minimum on B(ai). Then by Theorem
4.7, Fi is tight on its span (possibly with a single vector), with frame constant ci,
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for 1 ≤ i ≤ k. We claim that in this case, there is a pair i, j such that the frame
Fi ∪Fj is not a global minimum for FP on span F1 ∪F2 with the restriction given
by the vector norms in Fi, i = 1, 2.

Indeed, if there exists a pair Fi and Fj , each with two or more vectors, and with
constants ci 6= cj , then Fi ∪ Fj is not a global minimum for FP (in the adequate
restriction), since by the structure given in Thm. 4.7, if a global minimum is a
union of two mutually orthogonal tight subframes (on their spans), then one of
them must be a single vector. On the other side, if every Fi, consisting of more
than one vector has the same frame constant c, then there must be a j such that Fj
has only a single vector, with cj 6= c (since F can not be a tight frame). Moreover,
by Remark 2.4 and Thm. 4.7, cj < c which implies that Fj ∪ Fi is not a global
minimum, again by Thm. 4.7.

So, let Fi, Fj be such pair of subsets. Notice that if ci > cj , then the vectors
in Fj must be linear dependent, since it always have more than one vector (recall
that the partition on orthogonal subsets of F is minimal). Then, from the proof
of Claim 3 in the proof of [6, Thm. 10] we deduce that given ε > 0 there exist a
set F(ε) such that d(Fi ∪Fj ,F(ε)) ≤ ε and FP(F(ε)) <FP(F). Hence, F is not a
local minimizer of FP on B(a). �

By inspection of the previous proof, we see that the complete characterization
of local minimum for every Pf on B(a) depends on the following problem:

Problem(?): let F = F1∪F2 ∈ B(a) such that F1 ⊥ F2 and Fi is a tight frame
on its span. Suppose that F is not a global minimum for Pf . Given ε > 0. Is there
a frame G ∈ B(a) such that ‖ψi − φi‖ < ε,∀i and Pf (G) < Pf (F)?

6. APPENDIX: A Geometrical approach to the frame perturbation
problem

We now consider some well known facts from differential geometry that we shall
need in the sequel. In what follows we consider the unitary group U(m) together
with its natural differential geometric (Lie) structure. Given U ∈ U(m) we shall
identify its tangent space

TU U(m) = {X ∈Mm(C) : U∗X ∈ i · Mm(C)sa}

with the fixed space TI U(m) = i · Mm(C)sa of m × m anti-hermitian matrices,
via the isometric isomorphism X 7→ U∗X. Given G ∈ Mm(C)+ we consider
the smooth map ΨG : U(m) → Um(G) given by ΨG(U) = U∗GU . Under the
previous identification of the tangent spaces of U(m), the differential of ΨG at a
point U ∈ U(m) in the direction given by X ∈ i · Mm(C)sa is given by

(24) (DΨG)U (X) = [X,U∗GU ].

As it is well known, the differential (DΨG)U is an epimorphism at every U ∈ U(m)
and hence (24) gives us a description of the tangent space of the manifold Um(G)
at a point U∗GU .

Let ∆(G) = {x ∈ Rm :
∑m
i=1 xi = tr(G)} and consider ΦG : U(m) → ∆(G)

given by ΦG(U) = d(U∗GU), where d(A) ∈ Rm is the main diagonal of the matrix
A ∈ Mm(C). Notice that ∆(G) is a sub-manifold of Rm with tangent space at
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x ∈ ∆(G)

Tx∆(G) = {y ∈ Rm :
m∑
i=1

yi = 0}.

Using (24), we get (identifying again the tangent spaces of U(m) as before) that
the differential of ΦG at a point U ∈ U(m) in the direction of X ∈ i · Mm(C)sa is

(25) (DΦG)U (X) = d([X,U∗GU ]).

We shall be concerned with the existence of local cross sections of the map ΦG
around the identity I ∈ U(m). Since the map ΦG is smooth, the existence of
local cross sections of ΦG is equivalent to the surjectivity of its differential (DΦG)I
around the identity.

Let us fix some notation first: we shall denote by Im the (ordered) set (1, 2, . . . ,m).
Let {ei}i∈Im be the canonical orthonormal basis in Cm, for I ⊆ Im we let PI denote
the (diagonal) projection onto the span{ei : i ∈ I}. Finally, by Bδ(x) we mean a
ball centered on x with radius δ, in the metric given by the context.

The following result is part of Step 1 in [11].

Lemma 6.1. Let G ∈ Mm(C)+ with d(G) = a and consider ΦG as before. Then,
the differential (DΦG)I : i · Mm(C)sa → Ta∆(G) is surjective, and hence ΦG is
open in ∆(G), if for I ⊆ Im such that PIG = GPI then I = Im or I = ∅.

Proof. Assume that (DΦG)I is not surjective. Then, there exists 0 6= x ∈ Ta∆(G)
which is orthogonal to the image of (DΦG)I . Let D be the diagonal matrix with
main diagonal x ∈ Rm. Using (25) we get

(26) 0 = 〈d([X,G]), x〉 = tr([X,G]D) = tr(X[G,D]), ∀X ∈ i · Mm(C)sa.

Since [G,D] is also anti-hermitian we get that [G,D] = 0 and hence G and D
commute. If we let I = {i : xi > 0} we see, since PI is a polynomial in D, that
[G,PI ] = 0. Notice that I 6= ∅ and I 6= Im since

∑m
i=1 xi = 0. �

Lemma 6.2. Let us assume that the map Φ := ΦG, defined as before for G ∈
Mm(C)+, has a local cross section around the identity. Let {Gi}i ⊆ Mm(C)+ be
a sequence converging to G and for i ∈ N let Φi := ΦGi be defined as before. Then
there exist δ > 0 and i0 ∈ N such that for i ≥ i0 then

Bδ(I) ∩ U(m) = S +Ki
where S and Ki are submanifolds with I = (IS , IKi

) and

Φi|S : S → Φi(S) , Φ|S : S → Φ(S)

are diffeomorphisms.

Proof. First note that without loss of generality we can assume, as we shall, that
tr(Gi) = tr(G) for i ∈ N. Also note that the maps Φi converges uniformly to Φ
since

(27) Φi(U)− Φ(U) = d(U∗(Gi −G)U).

On the other hand, there is uniform convergence at the level of the differentials
of these transformations. Indeed, under the previous identification of the tangent
spaces of U(m) we can apply (25) and get

(28) ‖(DΦ)U (X)− (DΦi)U (X)‖ = ‖d([X,U∗(G−Gi)U ])‖ ≤ 2
√
m ‖X‖ ‖G−Gi‖.
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where X ∈ i · Mm(C)sa is arbitrary.
We now consider Γ : W → Bδ1(I) ∩ U(m) a diffeomorphic local chart, where

W ⊆ Rp is an open set with Γ(0) = I. Let Φ ◦ Γ : W → ∆(G) and notice
that (D(Φ ◦ Γ))0 : Rp → Ta∆(G) is surjective. By continuity, we can assume
that (D(Φ ◦ Γ))x is surjective for all x ∈ W . Hence, the orthogonal projection
Qx to (ker(D(Φ ◦ Γ))x)⊥ is continuous on W . Indeed in this case we have that
Qx = D∗x(DxD

∗
x)−1Dx since Dx := (D(Φ◦Γ))x is surjective on W . By continuity of

the projectionsQx we can assume without loss of generality that ‖Q0(1−Qx)‖ ≤ 1/4
for all x ∈W .

By taking 0 < δ ≤ δ1 and using the uniform convergence of the differentials
(28), we can assure that there exists a i1 ∈ N such that for all i ≥ i1 then (D(Φi ◦
Γ))x is surjective for all x ∈ W . If Qx, i denotes the orthogonal projection onto
(ker(D(Φi ◦ Γ))x)⊥ then, using the previous description of Qx, i we see that for
every ε > 0 there exists i(ε) such that ‖Qx, i − Qx‖ ≤ ε for i ≥ i(ε) and for every
x ∈ W . Let i2 = i(1/4) ∈ N, then if i0 = max{i1, 12}, for every x ∈ W and every
i ≥ i0 we have

‖Q0(1−Qx, i)‖ ≤ ‖Q0(Qx −Qx, i)‖+ ‖Q0(1−Qx)‖ ≤ 1/2

and hence

(29) (ker(D(Φ ◦ Γ))0)⊥ ∩ ker(D(Φi ◦ Γ))x = {0}.
We now define S := Γ(ker(D(Φ◦Γ))0)⊥∩W ) and K := Γ(ker(D(Φ◦Γ))0∩W ). An
straightforward argument using (29) now shows that (DΦ|S)x is injective and using
a dimension argument we conclude that (DΦ|S)x is also surjective for all x ∈ S;
similarly with Φi for i ≥ i0. The lemma follows from these last facts.

�

Lemma 6.3. Using the notations and assumptions of the previous lemma, let Ψ :
A (= A0 ⊆ Rt)→ S be a local chart of S with Ψ(0) = IS and let V (r) := Ψ(Br(0)) ⊆
S, where Br(0) ⊆ A. Then, for any such r > 0 there exists ε > 0 such that for
i ≥ i0 then

(30) Bε(d(Gi)) ⊆ Φi(V (r)).

Proof. Fix r as above and let V = V (r). Note that for i ≥ i0 then Φi(IS) = d(Gi)
is an interior point of Φi(V ) and similarly Φ(IS) = d(G) is an interior point of
Φ(V ). We show that there exists ε > 0 such that for all i ≥ i0 then

(31) inf
x∈∂Φi(V )

‖d(Gi)− x‖ = min
x∈∂Φi(V )

‖d(Gi)− x‖ ≥ ε

where ∂Φi(V ) stands for boundary of the image Φi(V ) in ∆(G). Observe that the
lemma is a consequence of the condition given in (31).

Indeed, assume that (31) is not true. Then, there exists a (sub)-sequence (Φik)
such that

(32) inf
x∈∂Φik

(V )
‖d(Gik)− x‖ = ‖ d(Gik)− xk‖ ≤

1
k

for some xk = Φik(Uk) with Uk ∈ ∂V ⊆ S since Φik(∂V ) = ∂Φik(V ) ⊆ ∆. But
then for every k ∈ N and Uk ∈ ∂V then

‖d(G)− Φ(Uk)‖ ≤ ‖d(G)− d(Gik)‖+ ‖d(Gik)− Φik(Uk)‖+ ‖Φik(Uk)− Φ(Uk)‖
= ‖d(G)− d(Gik)‖+ ‖d(Gik)− xk‖+ ‖Φik(Uk)− Φ(Uk)‖ −→

k
0
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by (32) and the convergences d(Gik) → d(G) and Φik(Uk) → Φ(Uk). But this
implies that d(G) is not an interior point of Φ(V ) since in this case

inf
x∈∂Φ(V )

‖d(G)− x‖ = inf
z∈∂V

‖d(G)− Φ(z)‖ = 0

which contradicts the claims at the beginning of this proof. �

Theorem 6.4. Let F = {φj}mj=1 ⊆ Cd be a list of vectors, let G = GF be its
Grammian operator and assume that Φ := ΦG has a local cross section around the
identity.

Let {Si}i ∈Md(C)+ be a sequence converging to S = SF . Then, for every η > 0
there exists i1 ∈ N such that for each i ≥ i1 there exists a frame G(i) = G = {ψj}mj=1

such that:
(1) ‖ψj‖ = ‖φj‖ for 1 ≤ j ≤ m.
(2) ‖ψj − φj‖ ≤ η for 1 ≤ j ≤ m.
(3) SG = Si.

Proof. Let T = TF : Cm → Cd be the frame operator of the list F with polar
decomposition T = |T ∗|W = S1/2W for a co-isometry W : Cm → Cd. Define
Gi = W ∗SiW and notice that, by our hypothesis, ‖Gi −G‖

i−→ 0.
Using the notation introduced in the previous lemmas, let Ψ : A (= A0 ⊆ Rt)→

S be a local chart and r > 0 be small enough so that Br(0) ⊆ A and for U ∈
V (r) = Ψ(Br(0)) then

(33) ‖U − I‖ ≤ η

2(‖S1/2‖+ η/2)
.

For this choice of r > 0 let ε > 0 be as in (30) for i ≥ i0 ∈ N. Let i2 ∈ N be such
that, for i ≥ i2 then ‖S1/2 − S1/2

i ‖ ≤ η/2 and ‖Gi −G‖ ≤ ε√
m

.
If we now define i1 = max(i0, i2) then for i ≥ i1 we further have

(34) ‖Φ(I)− Φi(I)‖ = ‖d(G−Gi)‖ ≤
√
m ‖G−Gi‖ < ε ⇒ d(G) ∈ Φi(V (r)).

We fix i ≥ i1 and construct G = G(i) with the desired properties. By Lemma
6.2 and (34) there exists U ∈ V (r) ⊆ S such that Φi(U) = d(G).

Define T̃ := S
1/2
i WU , and G = {ψj}mj=1 = {T̃ (ej)}mj=1 where {ej}mj=1 denotes

the canonical basis of Cm. Since by construction GG = U∗GiU and SG = Si, then
items (1) and (3) hold true. Item (2) follows from the inequality

‖T − T̃‖ = ‖S1/2W − S1/2
i WU‖ ≤ ‖S1/2 − S1/2

i ‖+ ‖S1/2
i ‖ ‖I − U‖ ≤ η.

�

Proof of Proposition 5.3. This is an immediate consequence of Lemma 6.1 and
Theorem 6.4. �
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