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On the Prediction of a Class of Wide-Sense
Stationary Random Processes

Juan Miguel Medina and Bruno Cernuschi-Frías, Senior Member, IEEE

Abstract—We prove that under suitable conditions, a multi-band
wide sense stationary stochastic process can be linearly predicted
at time with arbitrarily small error using past samples taken
at uniform rate. This result generalizes previous similar results
for band-limited signals. Moreover we prove that the prediction
problem from uniform past samples is equivalent to a disjoint
translates condition on the spectrum together with the divergence
of a logarithmic integral. We also show that, for the band-limited
case, under similar conditions, non uniform samples can be taken.

Index Terms—Prediction, stationary random processes, statis-
tical signal processing.

I. INTRODUCTION

W E consider the classical problem of linearly predicting
the current value of a continuous time wide-sense sta-

tionary (w.s.s.) random process , over a probability space
, in terms of its past samples. We study conditions to

predict with arbitrarily small error the current value at an in-
stant , , given past samples taken at uniform rate

.
From the classical Szegö theorem [13], one gets that [11, Ch.

2, p. 80] or [10, Ch. IV]

(1)

where is the Radon–Nykodym derivative respect the
Lebesgue measure of the spectral measure of the process

, is a necessary and sufficient condition for the predic-
tion of a continuous time wide sense stationary process at
an instant [10]. In other words, this condition ensures that
given , (the closed
linear span with respect to the norm). To find
the predictor may become rather involved in the general case.
Some solutions for particular cases are known. In particular,
one may be interested in making the prediction using only
past samples taken at uniform rate, and not using the whole
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past. In Hilbert space language this is equivalent to find con-
ditions for to hold. For
band-limited processes with absolutely continuous spectral
measure i.e., processes with spectral density, Wainstein and
Zubakov [22] proved that if the sampling rate is increased
at least three times above the Nyquist rate. A band-limited
process can be predicted with arbitrarily small error from its
past samples using a “universal” formula for the predictor. A
better result in this direction is [7], where a similar predictor
is constructed when the samples are taken at twice the Nyquist
rate. This sequence of predictors converges with exponential
rate. However, despite it could be more difficult to find explicit
coefficients for the predictor, more general conditions are, for
example, given in [3]. Particular cases of this result are those
of [6] and [17], where it is shown that a sufficient condition is
to take the samples at an arbitrarily rate greater than Nyquist’s
rate. In [15], sufficient conditions for the predictability of a
multi-band process in terms of uniform past samples are given,
as well as a simple expression for the prediction error. The
result of [15] contains some of the previous results as particular
cases. Again, this result assumes the existence of the spectral
density of the process and the proofs are in the same spirit of
the work of Beaty and Dodson [1] which extends the classical
Shannon–Nyquist theorem for deterministic signals to the non
band-limited case.

We present a result that generalizes [15], giving an alterna-
tive proof. In this work we drop the hypothesis of the absolute
continuity of the spectral measure. This is not surprising be-
cause similar conditions were used by Lloyd [14] to extend the
Shannon–Nyquist theorem to a class of non band-limited pro-
cesses. In this case the same condition, i.e., disjointness prop-
erty of the translates of the spectrum, is useful to obtain rather
simple expressions for the error formula. On the other hand, the
general equation (1) suggests that the conditions used in, for ex-
ample, [3], [6], and [17], may be sufficient but not necessary to
have an error free prediction using uniform past samples.

In contrast, we will give necessary and sufficient conditions
to predict a not necessarily band-limited w.s.s. process , for
all , from . These conditions naturally resemble
the results of [14] and [1] where the reconstruction problem is
solved using uniform samples from the past and future. Under
this general conditions the prediction may become arbitrarily
slow, however results such as [6] can be improved. We discuss
this problem in Section II-D, Theorem 2.3. For this purpose, we
recall that if is a mean square continuous, wide sense sta-
tionary process there is a one to one correspondence between

and ,
where is the spectral measure of the process , i.e., ,
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the correlation function of , is the Fourier transform of the
measure (Bochner). This fact will be used extensively. Also
the following Kolmogorov theorem will be useful in our deriva-
tions. It shows that the absolutely continuous part of the measure
is what really matters.

Theorem 1.1 [13, Ch. VII, p. 159]: Let be a finite Borel
measure on [0, 1], then

where is the Radon–Nykodym derivative of the abso-
lutely continuous part of with respect to the Lebesgue mea-
sure and denotes the space of polynomials in of the
form . Note that ,
where . However, we shall treat each

as a function defined over the interval [0, 1), since there is a
one to one correspondence between [0, 1) and .

The following classic result of Szegö [13, Ch. VII, p. 161]
will be essential in our work.

Theorem 1.2: Let , , then

where this infimum is understood to be equal to zero when
.

II. PREDICTION ERROR AND DISJOINTNESS

PROPERTY OF THE SPECTRUM

A. Periodic Functions and Measures

We will see that some properties of uniform sampling can be
derived from the properties of periodic functions and measures.
For this purpose it is useful to consider the quotient space .
We will denote the canonical projection , the
map that assigns to every its equivalence class . In
our derivations, it is useful to make the following convention:
to identify with its unique representative in the interval [0,
1). That is to consider as the following map: ,

, where is the indicator
function of the set .

Let be a Borel measurable set, then, the class of Borel
subsets of will be denoted by . We recall that the induced
measure is the measure defined for every Borel set
by the formula . By , we mean the
usual Lebesgue measure of . We begin with a very intuitive
result:

Proposition 2.1: Let be a Borel measure over and let
denote the measure over [0, 1) induced by the canonical projec-
tion to the quotient . If and denote the singular
and absolutely continuous parts of , respectively, with respect
to the Lebesgue measure, then:

a) for every Borel set in [0, 1):
and ; the measures and
denote the singular and absolutely continuous parts of
respectively, i.e., the singular part of the induced measure
by is the induced measure by through the singular part
of , the same for the absolutely continuous part;

b) if is the Radon–Nykodym (R-N) deriva-
tive of with respect to Lebesgue measure, then

is the R-N derivative of .
Proof: Part a)

We have the following measures defined for every
Borel set in [0, 1): and

.
First, we will see that there exist such that

, , and .
We know that there exist , such that ,

, and . Now, take
and , then

but , then

(2)

On the other hand, let , , then
, hence

Since the Lebesgue measure is invariant under translations, then
, and

so that .
Now, we prove that . Take such

that . Again, by the translation invariant property of
Lebesgue measure: so
for every , since over . Then

(3)

Finally, on the other hand, we have

(4)

The equations given above, together with the uniqueness of the
Lebesgue decomposition of a measure, show that (4) must be
the Lebesgue decomposition of . The result of part a) follows
from this.
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Part b)
We will use periodization. Let . Take

, then, by (3)

B. Prediction Error

Recall that if is the spectral measure of a random process,
then is a finite non negative Borel measure. Let us find an
expression of the estimation error when we make a linear pre-
diction using past samples taken at uniform rate. First, let us
consider some general facts concerning periodic functions. Let

be a non negative Borel measurable 1-periodic function, i.e.,
for every (we will not distinguish

between two functions which are equal for almost every ).
Hence, if we denote the restriction of to the interval [0,
1), i.e., for
every , then,

For a non negative measurable , this integrals are always well
defined and all of them may diverge if one of them do so. This
expression can be extended to arbitrary measurable . By de-
composing in its non negative and negative parts, and
respectively, and provided that the integrals of both functions do
not diverge simultaneously. In particular, this expression holds
if we take , with . For this case:

(5)

To simplify, we will make the following simplification of the
notation for the R-N derivatives of the absolutely continuous
parts of the measures involved, calling:
and , etc.

The prediction error will depend on the following result:
Lemma 2.1: Let be a finite Borel measure and denote

then:
i)

if

if

ii) If , then

if

if

if

iii) if and only if
is complete in is periodic .

The proof is rather straightforward. It will be clear that we
can prove a) and b) simultaneously.

Remark: c) enables us to treat the problem of prediction as
a completeness problem as in [6]. A similar idea is behind the
proof of the sampling theorem of [14] using the one to one cor-
respondence between the subspace generated by the samples

and the subspace is
periodic .

Also note that the condition ,
implies .

Proof: Step 1: Let , and . If
we suppose that , if

in this case we have that . We can apply
Szegö’s theorem, together with Kolmogorov’s Theorem 1.1
[13] to the right-hand side of (5) to get

(6)

Step 2: If , , we prove
that . For this, take

, for all . Recalling Proposition 2.1, we
have that and

, for all . Then since is non neg-
ative:

by monotone convergence

Now, since , and again from the
disjointness condition on , we have
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by the invariance property of the Lebesgue measure. Now, re-
calling that and Proposition 2.1—Part b:

, then

(7)

These last integrals may be divergent, in this case they take the
value, since . If we suppose that

, we have that . We can combine
(6) with (7) to get

(8)

Step 3:
Define and . Then

(9)

Equation (9) follows from Szegö’s theorem and Kolmogorov’s
Theorem 1.1, since

Step 4: On the other hand we have that for
all and . It is also easy to verify that:

, and that
on , since for all . Then we
have that a.e. on . Then by

the monotone convergence theorem:

But , then

(10)

Thus, if , from (7) and (10):

(11)

where the right hand integral can be finite or . Taking
in (9), all these results can be summarized as follows:

if by step 3 and (10)

if by step 4 and (10)

if

and by step 4 and (11)

c) The condition is necessary.

For the sufficiency, note that is always com-
plete in periodic , so the result
follows if we prove that for every

. For this purpose note that

Then

and from this, we get the result inductively.
As a corollary of the previous result we obtain,
Corollary 2.1: Let be a w.s.s. process with spectral mea-

sure . Suppose that such that . Then,
for fixed :

a) if then:

(12)

b) if and ,
, then

(13)
Remark: Note that the condition is

not necessary for a). See Example 4. On the other hand, this
condition is also equivalent to the existence of a measurable
subset such that for all ,
and .
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Proof: Fix . Denote . Then, the
result is immediate from Lemma 2.1, since

Remark: In particular, when ,
we define that (13) equals 0. We recall that a similar disjoint-
ness condition of the spectrum was successfully used in [1] and
[14] to extend the classical Shannon–Nyquist–Kotelnikov sam-
pling theorem to the non band-limited case. On the other hand,
if is an interval, we recover the result of [1] for band-limited
processes. In particular, this also implies the results of [6], [17],
since for a band-limited signal condition a) is equivalent to sam-
pling faster than the Nyquist sampling rate.

C. Necessary and Sufficient Conditions for a Process to Be
Predictable Using Uniform Past Samples

Lemma 2.1 gives an expression for the prediction error. Now,
we will prove that the disjointness property of the spectrum to-
gether with the divergence of a logarithmic integral of the spec-
tral density are necessary and sufficient conditions for a (w.s.s.)
process to be predictable for all using uniform past samples.
For this purpose we recall:

Theorem 2.1 [14]: Let , be a w.s.s. process with
spectral measure , the following are equivalent:

i) , (with respect to the
norm);

ii)
periodic . In particular, this means that
consists of all such that for almost
all , and ;

iii) there exists such that and
, .

Now, we can completely characterize (w.s.s.) processes
which are completely predictable from uniform past samples:

Theorem 2.2: Let , be a w.s.s. process with spectral
measure , the following are equivalent:

i) there exists such that and
, ; and: or

;
ii) for all :

i.e., , (with respect to the
norm).

Remark: Note that condition i) of Theorem 2.2 is slightly
different of (1). In contrast to (1) the integration is made only
over the support of the measure and the weight is
missing. Equation (1) is a weaker condition. It may be possible

that and that simultaneously,
for , .

Proof:
i) ii) Is equivalent to prove that

Under these conditions by Lemma 2.1 (b):

, then, first, by Lemma 2.1 (c) and then by
Theorem 2.1:

.
ii) i) In particular ii) implies

, for . It is equivalent,

(14)

but this also implies . On

the other hand, ii) together with (14) is equivalent to
. Then, by Theorem 2.1,

there exists such that and
, . And by Lemma 2.1

or .
Remark: In particular, Theorem 2.2 implies that if

is band-limited, not only we can predict from the past sam-
ples as claimed in [17] and [6] but also ,
for all .

D. Some Examples and Some Remarks

In this section, we give some simple examples, and we discuss
the problem of the convergence rate.

Example 1. (Spectral Density With Unbounded Support and
Finite Measure): The processes we have considered are not
necessarily finite sums of band-limited processes. For example,
consider the intervals , and
define a measure by:

Then there exists a w.s.s. process, say , with spectral
density defined as above, and verifies that

for every . Then, this
process verifies the conditions of Theorem 2.2 for to be
predictable: i.e., for all : is linearly determined by the
samples .

Example 2. (Sampling at Nyquist Rate): We note that
some band-limited processes can be predicted with sam-
ples taken at exactly the Nyquist rate. For example, we
can build a process with spectral density

. This process conforms to the
conditions of Theorem 2.2, and again, for all , is linearly
determined by the samples .

In the following example, for a fixed , we want to predict
from samples :

Example 3. (Uniform Sampling With a Spectral Density
Which Has Full Measure): Although the formulas of part a)
of Lemma 2.1 are not as simple as those of part b), they give
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the more general condition for a process to be predictable at a
fixed time from samples taken at uniform rate. For example
consider a process with spectral measure defined by

Then, is easy to check that

Example 4. (A Case Where It is Possible to Find Coefficients
Independent of ): As we have seen, in general there is no ex-
plicit formula for the predictor’s coefficients. However we no-
tice that imposing a boundedness condition on the power spec-
trum, in some cases, such as when in
Theorem 2.2 (for band-limited processes this is equivalent to
taking samples at a rate over Nyquist’s rate), it is possible to
find coefficients independent of . From the orthogonality prin-
ciple, with a similar argument to [5] we have that for fixed

we can find (generally non optimal) such that
as . These co-

efficients are determined by the equations:
for . Example 1 is a case of this fact.

This naturally resembles a result from [1]. So despite there is
no explicit formula, under some additional conditions the coef-
ficients are determined implicitly and are independent of .

1) Rate of Convergence: Theorem 2.2 gives necessary and
sufficient conditions for a process to be predictable from its past
samples. Under these general conditions convergence could be-
come arbitrarily slow. However the importance of this result is
that it gives a closed answer to the question of how much re-
sults such as [5] and [7] can be improved. Let us give an ex-
ample. The following result, contains [5] and [7] as particular
cases and shows that we still can have exponential rate of con-
vergence when the process is not band-limited and not sampled
above twice the Nyquist rate as in [7].

Theorem 2.3:
a) Let be non-negative and

be such that: , for all ,
and then, given there exists a
sequence of polynomials in with zero independent
term such that

b) In particular if is a w.s.s. process with an spec-
tral density that verifies the conditions of a), then there
exists a sequence of predictors which converges
to in with exponential rate and a.s.

To prove this we need the following result from the theory of
Harmonic functions:

Theorem 2.4: [12] Let be proper closed subset of [0, 1).
Any continuous function on can be approximated uniformly
by Taylor polynomials .

Important Remark: This result is not the Weierstrass approx-
imation theorem, nor a consequence of the completeness the-
orem of the trigonometric system in either. See for ex-
ample p. 115 of [12].

Proof of Theorem 2.3 (Part a): Given
. Then

for all . Now given ,
taking , by Theorem 2.4 there exists

such that .

But from the previous argument this is equivalent to

(15)

Write , then
. So choosing

by (15) we have

(Part b) The first part is immediate from a) and the a.s. con-
vergence follows from the Borel–Cantelli lemma: pick
then by Tchevicheff’s inequality,

so and then for :
and the assertion follows from

this.
2) Remark: Note that to build the sequence we need

an initial polynomial satisfying (15) and this determines the
coefficients of the whole sequence of predictors. In some cases
this initial polynomial can be found by a direct method as in
[7, Lemma of Sec. II, p. 411], however in a more general set-
ting, noting that satisfies the “Haar condi-
tion” [9], one could use some approximation algorithm in uni-
form norm to find it. Finally, we have not lost generality in this
proof assuming that the spectral measure is absolutely contin-
uous since we could appeal to Theorem 1.1 or to the previous
results to treat such a case.

E. Non Uniform Samples

We will briefly discuss the problem of prediction using non
uniform samples. The problem of prediction using uniform past
samples is equivalent to show that the set is com-
plete in . To obtain an analogous result for non uniform
samples taken at times , one way is to give
sufficient conditions for the completeness of . Dif-
ferent conditions can be used, mainly involving techniques from
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non harmonic Fourier series [16], [21]. Generally these results
depend on the properties of the zeroes of analytic functions and
related results such as Carleman’s theorem [4]. Among the sev-
eral conditions that can be given we state a brief result, which re-
sembles the Müntz–Szász theorem [16], [20]. On the other hand,
this result again relates the prediction problem with the condi-
tion of the divergence of a logarithmic integral of the spectral
density as in the uniform samples case. Let us recall the fol-
lowing result from complex analysis:

Theorem 2.5 [20, Chap. 15]: Let be holomorphic and
bounded over , let be
the set of zeros of , if

then .
With this in mind, we can prove:
Theorem 2.6: Let be a sequence such that

and

then if is a finite Borel measure supported over a measurable
set , such that

(16)

then is complete in .
Proof: It suffices to prove that given , if

, then . Define the
function on the complex variable over the domain

, by

then , . Since the measure is supported
over the interval [0, 1], then by the Cauchy–Schwartz inequality

So, is a bounded function over . Moreover, in a similar
manner is easy to check that is continuous. By Morera’s the-
orem is holomorphic over : take a closed triangle
then

The previous calculations show that we can apply Fubini’s the-
orem to interchange the order of integration. Since the inner in-
tegral is zero by Cauchy’s theorem, then is holomorphic over

. Now let us consider the conformal mapping:

The mapping is a one to one mapping from
to . Now define as , then
has zeros: . This implies

then by Theorem 2.5 , or equivalently , so in
particular , , but under the condition given by
(16) this implies .

From this, one gets immediately:
Corollary 2.2: Let be a w.s.s. process with spectral mea-

sure supported over a measurable set , such that

(17)

Then, given a set of samples , with a
decreasing sequence, such that

(18)

then, for all :

Example: An example of non uniform samples that verify the
condition given by (18), is to take

.

III. CONCLUSION

We gave conditions for the prediction of a w.s.s. random
process at an instant , from past samples .
Also we gave a general expression for the prediction error when
the exact prediction conditions are not satisfied. Moreover, we
gave necessary and sufficient conditions for to be predicted
with arbitrarily small error for all , from past samples

, see Theorem 2.2. This result is equivalent to
first predict , and then interpolate. This is the more
general form in which the problem stated in previous work, such
as [3], [6], and [17], can be formulated. We gave a very general
condition in which error free prediction for not necessarily
band-limited stationary processes is theoretically possible from
uniform past samples. This is characterized by some properties
of the translates of the support of the spectral measure, as in
previous work [1], [2], and [14]. This is useful to limit the
search of other more practical sufficient conditions such as
those of the main theorem in [7]. Moreover since our proofs
rely on periodization techniques, “universal” coefficients can be
found under more general conditions than imposing the process
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to be band-limited, as in the case in which samples are taken at
an appropriate rate as in [7] but where the spectrum verifies a
more general condition such as in i) of our Theorem 2.2 or the
main results of [1] and [14].
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