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Adsorption on single planar walls and filling of slits with identical planar walls
are investigated in the frame of the density functional theory. In this sort of slits
the external potential is symmetric with respect to its central plane. Calculations
were carried out by applying both the canonical and grand canonical ensembles
(CE and GCE, respectively). The behavior is analyzed by varying the strength of
the adsorbate-substrate attraction, the temperature T, and the coverage ��. Results
obtained for physisorption of Xe on alkaline surfaces are reported in the present work.
Prewetting (PW) lines and wetting temperatures, Tw, are determined from the analysis
of adsorption on single walls. The filling of slits is analyzed for temperatures T > Tw.
It is found that whenever for a given Xe-substrate combination the adsorption on a
single wall exhibits a first-order wetting transition then asymmetric profiles that break
the left-right symmetry of the external potential appear in the filling of an equivalent
slit. These spontaneously symmetry breaking (SSB) solutions occur in a restricted
range of �� with a T-dependent width. In the case of closed slits analyzed in the CE
scheme, the obtained asymmetric profiles exhibit lower Helmholtz free energies than
the symmetric species and, therefore, could be stabilized in this geometry. For open
slits, the GCE scheme yields all the symmetric and SSB states in the corresponding
convex regimes of the free energy. It is shown that both the CE and the GCE frames
yield three coexistent states, two symmetric and one asymmetric twofold degenerate.
Both a PW line and the related SSB effect terminate at the same temperature. For
rather strongly attractive surfaces reentrant SSB states are found at a fixed value of
T. Copyright 2011 Author(s). This article is distributed under a Creative Commons
Attribution 3.0 Unported License. [doi:10.1063/1.3664297]

I. INTRODUCTION

The study of the adsorption of fluids on solid walls is of considerable current interest. An entire
volume including reviews and discussions of theoretical and experimental investigations on this
subject was recently published.1 That set of articles indicates that properties of systems involving
fluids at interfaces, like wetting, spreading and filling, are not only interesting from the fundamental
physics point of view, but have also numerous technological applications. Namely, these systems
consist of a liquid phase (l) adsorbed on solid substrates (s) in the presence of a vapor atmosphere
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(v). Its behavior depends on: the strength of the fluid-fluid (f-f) attraction, εff, the well depth of the
substrate-fluid (s-f) interaction, Ws f , the temperature, T, and the chemical potential, μ.

A systematic classification of the adsorption on attractive planar surfaces, which exhibit an
infinite extent in the x and y directions, was performed by Pandit, Schick, and Wortis.2 In practice,
at a fixed T the adsorption properties are mainly determined by the relative strength εr = Ws f /ε f f .
By varying this parameter it is possible to sweep a variety of physical phenomena like drying,
critical wetting, prewetting, wetting, and layer formation. Given a value of εr, the results are usually
summarized as a phase diagram in the (T, μ) plane, typical examples are depicted in Fig. 1 of
Ref. 3. For moderate substrates (i.e., when εr is slightly bigger than one) there is a first-order wetting
transition at the point [Tw, μw = μ0(Tw)] between the triple point temperature, Tt, and the critical one,
Tc. In this case Tw is characterized by the appearance of coexisting thin and very thick adsorbed fluid
films, while for T < Tw the coverage of adsorbed films is finite (incomplete wetting). Under these
conditions for T ≥ Tw there is an associated prewetting (PW) line which extends away from [Tw,
μw] into the region of pressures below the corresponding bulk saturation value P0(T) and terminates
at the critical prewetting (CPW) point [Tcpw, μcpw], see Fig. 1(b) in Ref. 3. It is usually assumed
that in this regime the density profile of the fluid only depends on the coordinate z perpendicular
to the substrate, ρ(r) = ρ(z). A PW transition is marked by a jump in the excess surface density
(coverage), often expressed in nominal layers � as

�� = (1/ρ
2/3
l )

∫ ∞

0
dz[ρ(z) − ρB] , (1)

where ρB is the asymptotic bulk vapor density and ρ l the liquid density at saturation for a given tem-
perature. The discontinuity in �� vanishes at Tcpw, where the coexisting thin and thick films become
identical. For slightly more attractive substrates the phase diagram presents several convergent PW
lines like in Fig. 1(d) of Ref. 3. In the case of strong substrates the coverage increases from zero,
either in monolayer steps or continuously.

If a fluid is adsorbed on a single planar wall the physisorption potential does not exhibit any
symmetry along the z axis perpendicular to the substrate. On the other hand, when the confinement
is produced by a planar slit with identical walls the s-f interaction becomes symmetric with respect
to the plane located at the center of the slit. Under such conditions it is quite reasonable to expect
that ρ(z) would respect the symmetry of the external potential. However, Sikkenk et al.4, 5 have
found by carrying out molecular dynamics calculations that asymmetric density profiles of the fluid
may appear in the process of filling a planar slit built up of moderately attractive identical walls.
This phenomenon is known as spontaneous symmetry breaking (SSB) effect and disappears above a
critical temperature Tsb. The authors of Ref. 4 explained the occurrence of structures with different
symmetries in terms of the balance of substrate-liquid γ sl, substrate-vapor γ sv, and liquid-vapor γ lv

surface tensions. The SSB effect has been analyzed over more than two decades. In most of the
studies, a Canonical Ensemble (CE) statistics was applied to examine filling of closed slits with
classical gases.6–12 Recently, Berim and Ruckenstein13 have also investigated the occurrence of SSB
for quantum 4He confined in planar slits.

Furthermore, this kind of asymmetric solutions were also found by Merkel and Löwen in open
systems.14 By using both computer simulations and density functional (DF) theory in the frame
of the Grand Canonical Ensemble (GCE) these authors demonstrated that under certain conditions
a system confined by a symmetric potential can reach a state where the fluid shows a liquid-like
density on one side and vapor-like density on the other side. Further evidence for symmetry breaking
may be found in the works reported by Rżysko et al.15 who carried out Monte Carlo simulations and
by Edison and Monson who applied a dynamic mean field theory.16

Wetting and filling are intimately related phenomena. In a recent simultaneous study of wetting
and filling we found some evidence for a correspondence between Tcpw of a single PW line obtained
in the case of one wall adsorption and Tsb determined for the disappearance of SSB in slits.10, 12

Moreover, Rżysko et al.15 have also suggested that the SSB is a result of the first-order nature of
the transition. If the transition were of the second order, SSB would not occur. It is the aim of the
present work to report a systematic search for establishing a general relation between PW and SSB.
The behavior as a function of εr and T was examined. It was found that: whenever for a given

Downloaded 15 Nov 2011 to 168.96.67.130. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported license.
See: http://creativecommons.org/licenses/by/3.0/



042146-3 L. Szybisz and S. Sartarelli AIP Advances 1, 042146 (2011)

adsorbate-substrate combination the adsorption on a single planar wall exhibits a first-order wetting
transition then asymmetric profiles appear by filling an equivalent slit, and both these phenomena
PW and SSB terminate at the same temperature.

The theoretical background is outlined in Sec. II. Section III is devoted to present and analyze
the results of our calculations performed in the frames of both the CE and GCE statistics. A summary
of the findings is provided in Sec. IV.

II. THEORETICAL FRAME

To establish a reliable correspondence between wetting and filling both kind of systems are
treated in exactly the same approach. The present calculations have been carried out in the frame of
the DF theory recently applied for studying physical adsorption of Ne and Ar.10–12, 17, 18 This theory
is based on the existence of a grand canonical functional �(T, μ, [ρ(r)]) of the one-particle density
ρ(r) in the (one-component) system, which depends parametrically on the two thermodynamic
variables T and μ19

�(T, μ, [ρ(r)]) = FDF(T, [ρ(r)]) − μ N , (2)

where FDF is the functional for the Helmholtz free energy and N the number of adatoms

N =
∫

ρ(r) dr . (3)

The equilibrium density profile ρe(r) of the adsorbed fluid is obtained by solving the Euler-Lagrange
(E-L) equation derived by minimizing (at fixed T and μ) the grand thermodynamic potential

δ�(T, μ, [ρ])

δρ(r)

∣∣∣∣
ρ=ρe(r)

= 0 . (4)

The value of the functional at equilibrium, �(T, μ, [ρ = ρe]) is the real equilibrium grand canonical
free energy �e.

A. Density functional

In the DF theory there is no recipe for an exact expression of the intrinsic free energy FDF

corresponding to a fluid immersed in an external potential Usf(r).20 We adopted the following form

FDF(T, [ρ(r)]) = νid kB T
∫

dr ρ(r) {ln[
3ρ(r)] − 1}

+
∫

dr ρ(r) � fHS[ρ̄(r); dHS]

+ 1

2

∫ ∫
dr dr′ρ(r) ρ(r′)�attr(| r − r′ |)

+
∫

dr ρ(r) Us f (r) . (5)

The first term is the ideal gas free energy, where kB is the Boltzmann constant and 
 the de
Broglie thermal wavelength. Factor ν id was introduced by Ancilotto and collaborators in Eq. 4 of
Ref. 21 (in a standard theory it is equal to unity). The second term is the repulsive f-f interaction
approximated by a hard-sphere (HS) fundamental measure theory (FMT) functional taken from
Kierlik and Rosinberg22 (KR), which has proven to be very successful even in highly inhomogeneous
situations. Here dHS is the HS diameter. The KR version is completely equivalent to the original
FMT devised by Rosenfeld.23 Notice that in the literature there are more recent versions of the FMT
formulation like, for instance, the White Bear proposal24 where the Mansoori-Carnahan-Starling-
Leland25 bulk equation of state was included. This fact makes the White Bear version more adequate
for studying binary mixtures, but in the case of one-component HS fluid the difference with the
original Rosenfeld functional is negligible as depicted in Fig. 3 of Ref. 24. The third term is the
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attractive f-f interaction treated in a mean-field approximation (MFA), which is written in terms of a
recently proposed version17 of the separation of the spherically symmetric Lennard-Jones (LJ) 12-6
potential originally introduced by Weeks, Chandler, and Andersen26 (WCA)

�WCA
attr (r ) =

⎧⎨
⎩

−ε̃ f f , r ≤ rm

4ε̃ f f

[ (
σ̃ f f

r

)12
−

(
σ̃ f f

r

)6
]

, r > rm ,
(6)

where r = |r − r′| and rm = 21/6σ̃ f f is the position of the LJ minimum. We set dHS = σ̃ f f . The last
contribution to Eq. (5) is due to the adsorbate-substrate interaction.

The well depth ε̃ f f and interaction size σ̃ f f are considered as free parameters because the use
of its standard bare values εXeXe/kB = 221 K and σ XeXe = 4.1 Å (see, e.g., Ref. 27) overestimates
the experimental result Tc = 289.74 K. The three adjustable parameters (namely, νrn, ε̃ f f , and σ̃ f f )
were simultaneously determined by imposing that on the l-v coexistence curve of Xe at a fixed T the
data of ρ l(T), ρv(T), and P0(T) = P(ρ l) = P(ρv) listed in Table XXIII of Ref. 28 be reproduced. In
addition, since two bulk phases can coexist at a given T if and only if their chemical potentials are
equal at P0, i.e.,

μl (T, P0) = μv(T, P0) = μ0(T ) , (7)

therefore, we also imposed this condition. For determining the optimal σ̃ f f all the contributions to
the Helmholtz free energy containing this parameter, i.e., all the corresponding terms in both the
� fHS[ρ̄(r); dHS = σ̃ f f ] and �WCA

attr (r ; ε̃ f f , σ̃ f f ) energies were considered. The obtained parameter
ν id is essentially unity near Tt and decreases to about 0.9 in the regime close to Tc where there is
a well known departure from the ideal gas behavior.29 Since ν id is not strictly unity the Henry’s
law for adsorption at very low densities30 is slightly violated in the present formulation. All in all,
the present DF version should be considered as a relatively easy phenomenological approach with
parameters introduced to account for experimental bulk data.

B. Euler-Lagrange equations

The equilibrium density profile ρ(r) of the fluid is determined from the variational Eq. (4)
written as

δ

δρ(r)

[
FDF[ρ(r′)] − μ

∫
dr′ ρ(r′)

]
= 0 . (8)

This functional minimization leads to

δ[FDF(T, [ρ(r′)])]
δρ(r)

= μ . (9)

This variational condition yields the following E-L equation for a planar geometry

νid kB T ln [
3 ρ(z)] + Q(z) = μ , (10)

with

Q(z) = � fHS[ρ̄(z); dHS]

+
∫ L

0
dz′ ρ(z′)

δ� fHS[ρ̄(z′); dHS]

δρ̄(z′)
δρ̄(z′)
δρ(z)

+
∫ L

0
dz′ ρ(z′) �̄attr(| z − z′ |) + Us f (z) . (11)

Here L is the size of the box adopted for solving the E-L equation. In addition, the number of particles
by wall’s area A becomes

n = N/A =
∫ L

0
ρ(z)dz. (12)
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1. Grand canonical ensemble

In an experimental setup devised to investigate adsorption, the fluid is usually exposed to a
reservoir at fixed Tbath and Pbath (i.e., μbath) allowing an unrestricted particle exchange with the
environment. Under such conditions, the system at thermodynamic equilibrium exhibits fixed V, T
= Tbath, and μ = μbath, hence, the adequate procedure for studying such a phenomenon is to apply
the GCE statistics. In such a scheme the E-L equation should be solved by fixing μ and searching
for the optimal solutions for ρ(z) and n = N/A.

Given a value of the independent variable μ the density profile may be evaluated by inverting
Eq. (10)

ρ(z) = 1


3
exp

(
μ − Q(z)

νid kB T

)
, (13)

and the self-consistent solution is obtained iterating this relation up to convergence. The number of
particles per unit area is calculated with the expression

n = 1


3
exp

(
μ

νid kB T

) ∫ L

0
dz exp

(
− Q(z)

νid kB T

)
. (14)

2. Canonical ensemble

However, in practice, it is usual7, 8, 35 to solve the adsorption problem by fixing n together with
V and T, that is by applying the CE scheme, which is much easier to manage numerically than the
GCE one. Notice that μ and n are conjugate Legendre variables. In the CE statistics (strictly valid
for closed systems) μ is treated as a Lagrange multiplier μce to be determined from the solutions
together with ρ(z). So, in this case one should solve

δ[FDF(T, [ρ(z′)])]
δρ(z)

= μce , (15)

which leads to the E-L equation

νid kB T ln [
3 ρ(z)] + Q(z) = μce . (16)

Then, the density profile ρ(z) can be written as

ρ(z) = ρ0 exp

(
− Q(z)

νid kB T

)
, (17)

with

ρ0 = 1


3
exp

(
μce

νid kB T

)
. (18)

Since in the CE scheme the calculations are performed at a fixed n, whilst μce is an unknown quantity,
then Eq. (18) is used to evaluate μce and ρ0 is obtained from the integrated density profile

n = ρ0

∫ L

0
dz exp

(
− Q(z)

νid kB T

)
, (19)

which leads to

ρ0 = n∫ L
0 dz exp

(
− Q(z)

νid kB T

) . (20)

Equating expressions (17), (18) and (20) one gets

ρ(z) = n∫ L
0 dz exp

(
− Q(z)

νid kB T

) exp

(
− Q(z)

νid kB T

)
(21)
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for the density profile and

μce = −νid kB T ln

[
1

n 
3

∫ L

0
dz exp

(
− Q(z)

νid kB T

)]
(22)

for the chemical potential. In this scheme, ρ(z) is determined by iterating Eq. (21) until the required
convergence is achieved, then μce is calculated with Eq. (22).

III. ANALYSIS OF THE ADSORPTION

Before entering into the analysis of physisorption, we validated the obtained parameters by
evaluating the surface tension of the free liquid-vapor interface, γ lv. For such a purpose we set Usf(z)
= 0 and followed the procedure outlined in previous works. Along the calculations dimensionless
variables z∗ = z/σ̃ f f and L∗ = L/σ̃ f f for distances, n∗ = N σ̃ 2

f f /A for areal density, and ρ∗ = ρ σ̃ 3
f f

for volume density are used.17, 18 Our results for γ lv agree very well (in a similar way as for Ne and
Ar in the latter references) with experimental data31 over the entire temperature range Tt( = 161.3 K)
≤ T ≤ Tc.

For the analysis of physisorption we adopted in all the cases the ab initio potentials of
Chismeshya, Cole, and Zaremba (CCZ), UCCZ(z), given by Eq. (3) in Ref. 32 with the potential
parameters listed in Table 1 therein. We report here results for adsorption of Xe on surfaces of Na,
Li, and Mg. This set of substrates with εr = WsXe/εXeXe = 2.1, 2.8, and 5.5, respectively, displays
different wetting scenarios. Let us mention that Sinanoğlu and Pitzer33 suggested that the strength
of the pair f-f potential is modified by interactions with solid substrates. This effect is discussed in
detail in Ref. 34. In the present paper, we neglect the adsorption-induced interactions and, along
with other earlier authors,13, 21, 35–37 adopt for studying physisorption the pair f-f potential of Eq. (6)
with the empirical parameters ε̃XeXe and σ̃XeXe determined in the previous section.

In a first step we shall study adsorption on a single wall in order to determine PW lines and
Tw temperatures. In so doing methods of analysis will be outlined, which will be also utilized for
examining filling of pore slits.

A. Adsorption on a single wall

In this geometry the E-L equation was solved for Usf(z) = UCCZ(z) in a box of size L* = 40.
Adsorption isotherms at fixed temperatures, i.e., the reduced chemical potential �μ(T) = μ(T) −
μ0(T) and �� were calculated using both the GCE and CE schemes.

Let us outline the treatment of the obtained results by describing the analysis of the adsorption
isotherm for Xe deposited on Na at the highest temperature at which a van der Waals loop is observed.
So, data calculated at T = 245 K are displayed in Fig. 1. The solid lines stand for results obtained
with both the GCE and CE calculations. Between the spinodal points S1 and S2 (characterized by
dμ/dn = 0) there is a region marked by a dashed curve where dμ/dn < 0. In that regime FDF is not
convex and the data were obtained from CE calculations. The GCE scheme only provides solutions
with positive slope dμ/dn guaranteeing convexity of FDF. Notice, that this property is also exhibited
by variational microscopic calculations performed in the framework of the paired-phonon analysis
in conjunction with the hyper-netted chain expansion.38–41

In practice, to get convergence in the CE scheme one needs a smaller number of iterations
than in the GCE case. This feature is due to the fact that at each step of the CE procedure ρ(z)
is normalized to the required number of particles. Therefore, the CE scheme is widely used in the
literature to study adsorption. A theoretical justification for the broad use of CE was provided by
White et al.42 These authors have shown that for stable or metastable solutions the results of the
GCE and CE statistics may differ only if one considers situations of extreme confinement with a
small number of particles.

The CE scheme provides �μ(T) for all values of n. When in this frame the data exhibit van
der Waals loops, the two coexistent stable states located at nmin and nmax (i.e., at ��, min and ��, max,
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FIG. 1. Adsorption isotherm for Xe adsorbed on a single wall of Na at T = 245 K. Solid curves were obtained with both
the GCE and CE schemes, while the dashed line is obtained in the CE scheme only. Labels S1 and S2 show the location of
spinodal points, while C1 and C2 are two generic stable states in the thin and thick film regimes, respectively. M1 and M2

stand for the coexistent thin and thick films determined from Maxwell construction indicated by the dash-dotted line.

respectively) which satisfy

μ(nmin) = μ(nmax ) = μe(�e/A) (23)

are determined by applying the Maxwell’s rule of equal areas as in Refs. 17, 35 and 43

∫ nmax

nmin

[μ(T ) − μ0(T )]dn

= �μpw(T )[nmax − nmin] . (24)

For n ≤ nmin the system grows continuously. In this case, for n ≥ nmax (i.e., for �� ≥ ��, max) the
film’s growth does not present any further jump in coverage, for stronger substrates multiple jumps
may occur (see below results for the Xe/Li system).

In the case of the GCE scheme, it is impossible to apply the equal area Maxwell’s rule given
by Eq. (24) due to the lack of data in the non convex region. Hence, some other method should be
utilized to get the coexistent states. In the following lines we shall outline an adequate procedure.

The thermodynamics of a surface system is specified by the differential form for the free
energy40, 41

d F = d(E − T S) = − S dT + γ d A + μ d N . (25)

Here E is the total internal energy and γ the total surface tension (or surface energy per unit area).
At a fixed T and constant A one gets

μ =
(

∂ F

∂ N

)
T,A

= f + n
∂ f

∂n
, (26)
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FIG. 2. Grand potential per unit area as function of the chemical potential for Xe adsorbed on a single wall of Na at T = 245 K.
Data were obtained in the GCE scheme. The curve containing the C1 and S1 points correspond to thin films, while that with
S2 and C2 points to thick films. The crossing point labeled by Mcross indicate the coexistent thin and thick films.

and at constant N

γ =
(

∂ F

∂ A

)
T,N

= ∂ f

∂n−1
= −n2 ∂ f

∂n
= n ( f − μ)

= F − μN

A
= �

A
= ω . (27)

The equilibrium conditions for a single-component fluid at T are that γ and μ be uniform throughout
the system. Therefore, two phases can coexist at a given T if and only if as required by Eq. (23) for
some μe both phases have the same γ e (in other words equal ωe). From a set (n, μ, fDF) obtained
in the convex regime of FDF, i.e. along the sectors C1-S1 and S2-C2 of the curves traced in Fig. 1,
one can evaluate ω, and in turn these data can be used to perform the “so called” tangent Maxwell
construction.44 In practice, knowing μ and ω as a function of n one can plot ω vs. �μ and determine
μe and ωe at coexistence. See, for instance, the crossing diagram plotted in Fig. 3 of Ref. 40 and the
zigzag constructions displayed in Fig. 5(b) of Ref. 16 and in Fig. 2 of Ref. 43. Our data are plotted
in Fig. 2, where the crossing point labeled by Mcross determines �μpw(T) and ωpw at coexistence.
At this crossing point there is a knee characteristic of a first-order transition. Of coarse, the values
of �μpw(T) obtained in Figs. 1 and 2 coincide. Moreover, the points M1 and M2 merge into Mcross.
The states along the C1-Mcross-C2 line are stable, while that lying in the sectors M1-S1 and S2-M2

are metastable. According to Hansen and McDonald, this kind of metastable states could be reached
experimentally if sufficiently care is taken to prevent formation of the thermodynamically stable
phase (see Chap. 5.6 in Ref. 29).

Figure 3(a) shows adsorption isotherms for Xe/Na evaluated at several temperatures above Tw.
Horizontal lines indicate �μpw(T) determined from Maxwell constructions described above. One
may observe the evolution of the PW phenomenon characterized by the jump in coverage ��� =
��, max − ��, min (or equivalently �n = nmax − nmin) at �μpw(T). The largest jump occurs close to Tw,
it shrinks for increasing T and eventually disappears at Tcpw where the thin and thick films merge.
The temperature dependence of �μpw(T) is shown in Fig. 3(b). This kind of PW line corresponds to
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FIG. 3. (a) Adsorption isotherms for Xe adsorbed on a single wall of Na as a function of coverage �� at temperatures from
242 K (triangle-down) to 246 K (circle) in steps of 1 K. (b) PW line for the Xe/Na system. The solid curve is the tangential
fit. (c) Same as (a) for Xe/Li at T from 199 K (triangle-down) to 209 K (circle). (d) Phase diagram for Xe/Li. (e) Same as (a)
for Xe/Mg at several values of T from Tt to 184 K. (f) Phase diagram for Xe/Mg.

the cases depicted in panel (a) of Fig. 20 in Ref. 2 and in panel (b) of Fig. 1 in Ref. 3 and it has been
measured in several systems.1 This quantity approaches tangentially zero at Tw, thermodynamic
arguments3 leads to the form

�μpw(T ) = μpw(T ) − μ0(T ) = apw (T − Tw)3/2 , (28)

with apw being a model parameter. In practice, this expression is used to fit data of �μpw(T) for
determining Tw. In the case of Xe/Na we obtained Tw = 241.6 K and apw/kB = −0.12 K−1/2. In
addition, Fig. 3(a) fixes an upper limit for the CPW point at Tcpw � 246 K.

Adsorption isotherms for the Xe/Li system are displayed in Fig. 3(c). In this case the equal
area Maxwell constructions yielded multiple jumps in coverage for a fixed T. In turn, this feature
led to a series of merging PW lines. These lines are plotted in Fig. 3(d), the exhibited features are
similar to that shown in panel (c) of Fig. 20 in Ref. 2 and in panel (d) of Fig. 1 in Ref. 3. One
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may observe a series of surface triple points which determine a line of coalescence. The fit of this
line to Eq. (28) yielded Tw = 198.0 K and apw/kB = −0.11 K−1/2. The present Tw is lower than the
value Tw = 225 K quoted in Table I of Ref. 27 obtained from GCMC calculations. In this context, it
becomes important to notice that our calculations17 predict wetting of Rb by Ne in agreement with
the experimental result of Hess, Sabatini, and Chan,45 while the GCMC result reported in Table I of
Ref. 27 suggests drying for Ne/Rb indicating that in such GCMC calculations the wetting properties
are shifted toward higher T.

Adsorption isotherms calculated for Xe/Mg are displayed in Fig. 3(e). Since Maxwell con-
structions cannot be separated on the scale of the drawing they are not shown. These data don’t
exhibit a “standard” PW pattern because Mg is significantly more attractive than the alkali metals. A
layer-by-layer film growth for T ≥ Tt may be observed. The corresponding phase diagram is plotted
in Fig. 3(f) being similar to that depicted in Fig. 16(a) of Ref. 2 for strong substrates.

B. Filling a planar slit pore

In the slit geometry Xe atoms are confined by two identical solid walls separated by a distance L.
Hence, the s-f interaction becomes Usf(z) = UCCZ(z) + UCCZ(L − z) and repulsion at the walls leads
to ρ(z = 0) = ρ(z = L) = 0. The reported solutions of the E-L equations correspond to a slit with L* =
40. This width is wider than L* = 29.1 adopted for the pioneering molecular dynamics calculations4

guaranteeing that the direct pair interaction between two atoms located close to opposite walls be
negligible. First, we shall deal with closed systems and next to discuss the results for open slits.

1. Closed slits - Canonical ensemble

We shall now describe the filling of closed slits, i.e. systems at constant n, performed at fixed T
and V. In this case, the equilibrium states were determined by adopting the CE statistics. Symmetric
and asymmetric solutions were obtained along PW lines found in Sec. III A.

Let us first look at the results for a slit of Na at T = 245 K. The adsorption isotherm is displayed
in Fig. 4. Symmetric solutions indicated by the curve running through the points CS1, SS1, SS2, CS2

exhibit the same pattern like that displayed in Fig. 1 for a single wall adsorption. Moreover, as
expected the same values of the reduced chemical potential �μ are obtained for abscissas ��(slit)
= 2 ��(wall). In addition, there are asymmetric solutions along the curve determined by the points
SS1, SA1, SA2. The difference between the free energies per particle, fDF = FDF/N, of asymmetric and
symmetric solutions obtained at T = 245 K is displayed as a function of �� in Fig. 5. The asymmetric
solutions have lower free energies than the symmetric ones over the entire range SS1-SA2. This feature
is obtained at all temperatures in the range Tw < T < Tsb. All internal states between the spinodal
points SS1 and SS2 with minimum free energy could be stabilized in a closed slit pore.43

In order to facilitate comparisons between results for different absorbers, the main findings are
depicted in a compact manner in Fig. 6. Panels (a)-(e) show that the asymmetric ρ(z) appear after a
thin dense layer was adsorbed on both walls, similarly to the profile plotted in Fig. 3 of Ref. 6.

Figure 6(a) shows the asymmetric filling of a slit of Na at T = 245 K, data for various �� are
displayed. The asymmetry of the density profiles is measured by the quantity

�N (%) = 100

n

∫ L/2

0
dz [ρ(z) − ρ(L − z)] . (29)

In fact, there are two energetically equivalent asymmetric solutions which satisfy ρasym2(z) =ρasym1(L
− z) yielding �N[ρasym2] = −�N[ρasym1]. The obtained values of �N for T ≥ Tw are displayed in
Fig. 6(f). A look at this drawing indicates that, at a fixed T, asymmetric ρ(z) appear between a lower
and an upper coverage limit and this jump diminishes with increasing temperatures. Furthermore,
we can state that the SSB effect extends along the single PW line displayed in Fig. 3(b) terminating
at a critical Tsb, which coincides with Tcpw.

In the case of Xe/Li we show results obtained at T = 205 K. This value of T was selected
because it is the highest temperature exhibiting three first-order transition lines. Panels (b), (c), and
(d) of Fig. 6 show the asymmetric formation of the second, third, and fourth layer. These structures
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FIG. 4. Adsorption isotherm for symmetric and asymmetric solutions plotted as the reduced chemical potential versus
coverage ��. The symmetric solutions go through the set of points (CS1, SS1, SS2, CS2), while the asymmetric ones join the
points (SS1, SA1, SA2, SS2). The horizontal line is the Maxwell construction joining the symmetric stable coexistent states MS1

and MS2, whilst MA stands for the asymmetric stable coexistent state (see text).

can be related, respectively, to the PW lines denoted by Cpw1, Cpw2, and Cpw3 in the (T,�μ) plane
depicted in Fig. 3(d). A comparison of the asymmetry coefficients displayed in Fig. 6(g) and the
first-order transition lines plotted in Fig. 3(d) indicates that the corresponding values of Tsb and Tcpw

coincide. The chemical potential for both kind of solutions is displayed in Fig. 6(h). These van der
Waals loops indicate that asymmetric solutions begin at a relative maximum of μsym and finish at the
next relative minimum. So, asymmetry appears just in the region where the slope of μsym is negative
implying instability of the symmetric solutions, whilst the slope of μasym is positive over a large
portion of that region satisfying the stability condition there. Figure 6(i) shows a comparison of fDF

of symmetric (circles) and asymmetric (triangles) states for n = 0.165 [corresponding to �� = 2.33
where �N reaches its maximum at T = 208 K, see Fig. 6(g)], the data correspond to temperatures
T = 205, 206, 207, and 208 K. To get a comparison on the same scale the data were shifted by a
constant fconst(T) at each temperature, hence, we plotted �fDF = fDF − fconst(T). It is clear that the
�fDF of the asymmetric solutions is lower than that of symmetric one. This behavior is extended to
other values of ��. A crude estimation of an energy barrier between asymmetric to symmetric states
was performed by assuming at fixed T and n the path ρ(z) = (1 − α)ρasym(z) + α ρsym(z) with α

running from 0 to 1. Both the free energy, �fDF, and the asymmetry coefficient, �N, were evaluated
as a function of α. These results are also displayed in Fig. 6(i). The barrier diminishes for increasing
T and disappears at T = 209 K.

For Xe/Mg the asymmetric solutions also occur along the first-order transition lines displayed
in Fig. 3(f). Figure 6(e) shows the asymmetric formation of the second layer in a slit of Mg at Tt.
The asymmetry parameter for Tt, Tnb(normal boiling T)=165.03 K, 171 K, and 176 K is plotted in
Fig. 6(j) as a function of coverage. This picture indicates that, as before, the values of Tsb coincide
with the end temperatures of the corresponding Cwi lines.
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FIG. 5. Difference between free energies per particle of asymmetric and symmetric solutions obtained in the CE frame as a
function of coverage ��. Labels SS1, SA1, SA2 and MA have the same meaning as in Fig. 4. In the regime delimited by SA1 and
SA2 the chemical potential of asymmetric solutions exhibits a positive slope and these results are also obtained in the GCE
scheme.

2. Grand canonical ensemble

Open slits are also in thermodynamic equilibrium with an environment at fixed T, but in this
case the confined system is exposed to an unrestricted fluid exchange with the reservoir at fixed μ.
Under such circumstances, the adsorption occurs at constant V, T, and μ. Therefore, as mentioned
before the adequate procedure for studying this phenomenon is to use GCE.

Let us now comment the results for the same system analyzed in detail in the previous section,
i.e. Xe/Na at T = 245 K. All the states marked with solid lines in Fig. 4 were also obtained from
GCE calculations. Hence, GCE does provide both symmetric as well as asymmetric solutions in the
regimes where the corresponding Helmholtz free energy, FDF, is convex yielding positive dμ/dn. The
lack of data in the non convex region makes it necessary to apply the crossing method for searching
the coexistent states. Figure 7 shows μ as a function of ω for both symmetric and asymmetric
solutions corresponding to data displayed in Fig. 4. The crossing of the lines labeled by CS1-SS1

and SS2-CS2 at Mcross in Fig. 7 determines the coexistent symmetric solutions MS1 and MS2 already
quoted in Fig. 4. Furthermore, the line SA1-SA2 corresponding to asymmetric solutions crosses the
symmetric ones also just at Mcross. So, the state MA included in Fig. 4 has the same ωe like the
coexistent symmetric states MS1 and MS2. This means that Mcross is a triple point determined by the
intersection of three lines, where the three phases in equilibrium satisfy

μS1(T, ωe) = μS2(T, ωe) = μA(T, ωe) = μe(T, ωe) . (30)

The density profile of the state MA is marked with a fat line in Fig. 6(a). In passing, let us mention
that for completeness this state was also included in Fig. 5. The density profiles of the states MS1,
MA, and MS2 are compared in Fig. 8. In the symmetric cases MS1 and MS2 the film formed at each
wall coincides, respectively, with the thin and thick structures got at coexistence for adsorption on
a single wall. On the other hand, for MA one may observe at the right wall the coexistent thick film
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FIG. 6. (a) Asymmetric density profiles of Xe near to walls of a closed slit of Na at T = 245 K for coverages �� = 3.23,
3.79, 4.53 and 5.19. (b) Same as (a) for Xe/Li at T = 205 K for �� = 2.04 and 2.43. (c) Same as (b) for �� = 3.55 and
3.85. (d) Same as (b) for �� = 5.44 and 5.58. (e) Same as (a) for Xe/Mg at T = Tt for �� = 2.24 and 2.42. (f) Asymmetry
parameter for Xe/Na as a function of coverage at temperatures from 242 K (triangle-down) to 245 K (circle) in steps of 1 K.
(g) Same as (f) for Xe/Li at T from 205 K (triangle-down) to 208 K (circle). Data correspond to the asymmetric filling of the
first four layers. (h) Chemical potential for Xe/Li at T = 205 K as a function of coverage. Solid and dashed curves correspond
to symmetric and asymmetric solutions, respectively. (i) Relative free-energy per particle for Xe/Li showing energy barriers
between symmetric (circles) and asymmetric (triangles) states at T = 205, 206, 207, and 208 K labeled by 1, 2, 3, and 4,
respectively. (j) Same as (f) for Xe/Mg at T = Tt (triangle-down), Tnb (circle), 171 K (triangle-up), and 176 K (square).
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FIG. 7. Grand free energy per unit one wall area as a function of the reduced chemical potential for symmetric and asymmetric
solutions. The meaning of points (CS1, SS1, SA1, SA2, SS2, CS2) is the same as in Fig. 4. The symmetric solutions lay on the
curves CS1-SS1 and SS2-CS2, while the asymmetric determine the line SA1- SA2 The point Mcross indicates the location of the
crossing the three lines determining the coexistence of symmetric and asymmetric solutions labeled, respectively, by MS1,
MS2, and MA in Fig. 4.

and at the other wall the coexistent thin film. Notice that the asymmetric solution is twofold, it can
also present a thin film at the right wall and a thick film at the left one.

It is important to notice that data plotted in Fig. 7 indicate that, away from Mcross for each
value of �μ the asymmetric metastable states have always lower grand potential energy, ω, than the
symmetric metastable ones. On the other hand, above Tw for a given μ the states with lowest grand
potential lay on the curves denoted by CS1-Mcross-CS2 and their structures are uniform films along
the (x,y) plane. Therefore, no structure breaking symmetry on the (x,y) plane would have lower ω at
μe than the coexistent symmetric and asymmetric states obtained at Mcross.

At lower values of T the system Xe/Na exhibits similar features to that found at T = 245 K. One
also gets triple points where symmetric and asymmetric states coexist. Figure 9 shows the envelope
of coexistence for temperatures T > Tw. These data were obtained in both the CE and GCE frames.
One may realize that the coverage �� corresponding to the symmetric thick films as well as to the
asymmetric ones goes to infinity when the temperature approaches Tw. On the other hand, both
symmetric and the asymmetric one merge at Tcpw located slightly below T = 246 K. Above this
temperature only one sort of symmetric states are obtained.

The results obtained for the isotherms for Xe/Na analyzed above can be extended to any other
series van der Waals loops found for systems Xe/Li and Xe/Mg examined in Sec. III B 1. Moreover,
all the features remain unchanged when the width of the slit is enlarged. The results for the system
Ar/Li reported in Ref. 12 give support to the latter statement.

IV. SUMMARY

Adsorption of Xe on alkaline planar surfaces was investigated within the frame of a DF theory.
Namely, physisorption on single walls and filling of symmetric slit pores were analyzed. Both the
CE and GCE statistics were applied.
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Calculations for adsorption on a single wall were performed in order to identify first-order phase
transitions and determining PW lines. Equilibrium chemical potential μe at which stable thin and
thick films coexist were evaluated by applying Maxwell constructions (equal area procedure for CE
and crossing technique for GCE). The obtained results at coexistence with CE and GCE are equal.
PW lines were used to determine wetting temperatures Tw.

The filling of closed slits of identical walls was studied at temperatures higher than Tw by
applying the CE scheme. Solutions breaking the left-right symmetry of the adsorption potential
exerted by the slit appear in the range of �� corresponding to �μ of PW lines appear. Between
spinodal points of the symmetric solutions the asymmetric profiles exhibit a lower Helmholtz free
energy than the symmetric ones for the same number of particles. Therefore, these SSB species
could be stabilized in a closed system.

Open slits were studied within the GCE frame. All the symmetric and asymmetric states with
positive dμ/dn provided by the CE scheme were also obtained when applying GCE. The crossing
Maxwell construction yielded three coexistent states with the same ω and μ, i.e, two symmetric and
one asymmetric twofold degenerate. The symmetric solutions exhibit at both walls either the thin
or the thick film obtained at coexistence in the adsorption on a single wall. While the asymmetric
state shows at the left wall the coexistent thick film and at the right wall the corresponding thin one,
or vice versa. These results indicate that given a sort “coexistent film” at one wall it is no matter
whether at the other wall one has the “thin” or the “thick coexistent film”. This finding is a realization
in a realistic system of a behavior qualified as conceivable by Merkel and Löwen in the introduction
of Ref. 14.

On the basis of the present DF calculations we conjecture that for T ≥ Tw there is a one-to-
one correspondence between any first-order phase transition line and the occurrence of asymmetric
filling. In the case of complex phase diagrams like those of Fig. 3(d) and 3(f) corresponding to
layering transitions, a multiple entrance of SSB at a fixed T was found. Moreover, the coincidence of
the CPW points where the PW lines terminate and the critical temperatures Tsb at which asymmetric
solutions disappear is clearly established.

Below Tw one expects that asymmetric profiles with lowest free energy shall also break the
symmetry in the (x,y) plane exhibiting structures like those obtained in Refs. 9 and 16.

To the best of our knowledge these findings supporting a very close relation between wetting and
filling have not been reported before. Moreover, this kind of SSB might appear in other theoretical
frames which look symmetrical. Since the present work deals with realistic systems, the properties
described above are sufficiently relevant to encourage experimental verification. Perhaps, such SSB
profiles could be observable in confined colloidal suspensions.
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