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. Introduction

A  common way for the evaluation of the solvent activity (a1)
nd the mean ionic coefficient (�±k) of the electrolyte (k) in a
ulticomponent electrolytic solution is based in the experimen-

al determination of the osmotic coefficient (�) as a function
f the solution molality (m)  and the internal molal fraction (y)
hrough the isopiestic method. Then, the solvent activity is eval-
ated starting from its relationship with the osmotic coefficient
a1 = exp(−�˙mi/n0

1), being i the ionic species). Moreover, the
ean ionic coefficients of the electrolytes are calculated through

he Pitzer equation [1] or by the use of the Mc  Kay-Perrin expres-
ion [2] or variants of it [3–5]. In the last case, the integration of
oth, �(m,y) and its derivative ∂�/∂y,  from m = 0 to m = m must
e carried out. It is also required that the analytical expression
sed for the description of �(m,y) must be compatible with the

imiting behaviour determined by the thermodynamics of solu-
ions, in order to obtain accurate values of ln �±k.

On the other hand, taking into account that the solvent activ-
ty can be evaluated directly from experimental determinations
f the vapour pressure of a nonvolatile electrolyte solution, it is
ot necessary to use the osmotic coefficient for the evaluation of
he activity coefficients of the electrolytes. This evaluation can be

ade more accurately, avoiding the error propagation resulting

rom the calculation of the osmotic coefficient, by the determina-
ion of the solvent activity. However, an accurate description of
he dependence a1(m,y) is required for the later evaluation of the

∗ Corresponding author. Tel.: +54 342 457 1164 2519.
E-mail address: achialvo@fiq.unl.edu.ar (A.C. Chialvo).

378-3812/$ – see front matter ©  2013 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.fluid.2013.02.009
activity coefficients. The simpler way  to describe the monotonically
decreasing function a1(m,y) is the use of polynomial expansions,
which were already employed [6–8] but without any analysis of
their thermodynamic consistency.

In this context, the aim of the present work is to develop
a thermodynamically self-consistent expression that accurately
describes the experimental dependence a1(m,y) for ternary elec-
trolytic solutions, in order to have an analytical equation suitable
for the application of the Mc  Kay-Perrin method or for any other
requirement of thermodynamic calculations.

2. Theoretical considerations

It is considered a ternary solution constituted by a solvent
(1) and two electrolytes (2,3), characterized by the formula unit
AvAk

CvCk
,

AvAk
CvCk

→ vAk
AzAk + vCk

CzCk , k : 2, 3 (1)

being vAk
(vCk

) the stoichiometric coefficient of the anion (cation)
corresponding to the dissociation of the electrolyte k (k: 2,3), which
concentration (mk) is given by,

m2 = ym (2)
m3 = (1 − y)m (3)

where y the internal molal fraction and m = m1 + m2 the total molal-
ity of the electrolyte solution.

dx.doi.org/10.1016/j.fluid.2013.02.009
http://www.sciencedirect.com/science/journal/03783812
http://www.elsevier.com/locate/fluid
mailto:achialvo@fiq.unl.edu.ar
dx.doi.org/10.1016/j.fluid.2013.02.009
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.1. Equation proposal

In order to develop the multiparametric equation of the sol-
ent activity a1(m,y), the independent variables y and z = m0.5 are
dopted. The first one is chosen in order to describe easily the binary
ystems (y = 0 or 1). Moreover, the definition of z is originated in
rder to make compatible the behaviour of the solution at infinite
ilution (m→0, y→0) with the way in which the correlation equa-
ion is set. In this context, the dependence a1(z,y) can be described
y a Mclaurin series expansion as follows,

a1(z, y) = 1+

+A1z + A2y+

+B1z2 + B2zy + B3y2+

+C1z3 + C2z2y + C3zy2 + C4y3+

+D1z4 + D2z3y + D3z2y2 + D4zy3 + D5y4+
+E1z5 + E2z4y + E3z3y2 + E4z2y3 + E5zy4 + E6y5+

+F1z6 + F2z5y + F3z4y2 + F4z3y3 + F5z2y4 + F6zy5 + F7y6+

+G1z7 + G2z6y + G3z5y2 + G4z4y3 + G5z3y4 + G6z2y5 + G7zy6 + G8y7

(4)

This initial expression contains 35 coefficients, which should be
nalysed in the context of the well known limiting behaviour of the
lectrolyte solutions.

.2. Limiting behaviour of a1(z,y)

The electrolyte solution must satisfy the limiting behaviour
m→0 and y→0) established by the Debye-Hückel theory, which
xes the value of many of the coefficients of Eq. (4).  For mul-
icomponent systems, the limiting behaviour of the solvent is
overned by the following expression, which established the
ependence of the osmotic coefficient with the ionic strength [1],

 = − n0
1∑
mi

ln a1 = 1 − 2A�I3/2∑
mi

(5)

here A� is the osmotic coefficient Debye-Hückel constant, which
s a function of temperature [1] and I is the ionic strength defined
s,

= 1
2

∑
miz

2
i = 1

2

[
y
(

�A2 zA2
2 + �C2 zC2

2
)

+ (1 − y)
(

�A3 zA3
2 + �C3 zC3

2
)]

m (6)

nd besides,

mi =
[
y
(

�A2 + �C2

)
+ (1 − y)

(
�A3 + �C3

)]
m (7)

here �Ak
+ �Ck

= �k, k: 2,3. Thus, Eq. (5) can be written as,

 = 1 − A�

√
2

g(y)
f (y)

√
m (8)

Being the functions f(y) and g(y) defined as,

 (y) = [v2y + v3(1 − y)] (9)

(y) =
[
y
(

�A2 zA2
2 + �C2 zC2

2
)

+ (1 − y)
(

�A3 zA3
2 + �C3 zC3

2
)]3/2

(10)

The corresponding expression for a1 is,

1
[

A�
]

n a1 = −
n0

1

f (y)z2 − √
2

g(y)z3 (11)

It can be appreciated that the effect of the type of electrolyte on
he solvent activity is given through the stoichiometric coefficients
uilibria 345 (2013) 23– 27

(�Ak
, �Ck

) and the ionic charges (zAk
, zCk

). Moreover, the limiting
behaviour that must satisfy the function a1(z,y) proposed for a
ternary electrolyte solution can be established from Eq. (11). Such
limiting behaviour is determined by the values of the derivatives
with respect to z and to y at the origin.

The derivative with respect to z at constant y is,

∂a1

∂z

)
y

= − a1

n0
1

{
2f (y)z − 3A�

√
2

g(y)z2

}
(12)

Deriving Eq. (4) and applying the condition z = 0, it is verified for
a given value of y that,

∂a1

∂z

)
z=0

= 0 = A1 (13)

Moreover, the derivative of a1 with respect to y at constant z is,

∂a1

∂y

)
z

= − a1

n0
1

{(
∂f (y)

∂y

)
z2 − A�

√
2

(
∂g(y)

∂y

)
z3

}
(14)

Comparing with the corresponding derivative of Eq. (4) and
applying the condition y = 0, it is verified for a given value of z that,

∂a1

∂y

)
y=0

= 0 = A2 (15)

The second order derivative of Eq. (12) with respect to z is,

∂2a1

∂z2

)
y

= − 1

n0
1

{
∂a1

∂z

(
2f (y)z − 3A�

√
2

g(y)z2

)

+a1

(
2f (y) − 6A�

√
2

g(y)z

)}
(16)

and thus, applying the condition z = y = 0 it is obtained,

∂2a1

∂z2

)
z = 0

y = 0

= −2�3

n0
1

= 2B1 (17)

Following the same procedure, it can be demonstrated the iden-
tities,

∂2a1

∂z∂y

)
z = 0

y = 0

= 0 = B2 (18)

∂2a1

∂y2

)
z = 0

y = 0

= 0 = 2B3 (19)

∂3a1

∂z3

)
z = 0

y = 0

= 6A�

√
2n0

1

(
�A3 z2

A3
+ �C3 z2

C3

)3/2 = 6C1 (20)

∂3a1

∂z2∂y

)
z = 0

y = 0

=  − 2

n0
1

(�2 − �3) = 2C2 (21)

∂3a1

)
= 0 = 6C (22)
Eqs. (20) and (21) show that the type of electrolyte influences
even the third order derivatives. It can be also appreciated that
the derivatives involved in Eqs. (13), (15) and (17–22) correspond
to the first 8 coefficients of Eq. (4).
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dependencies a1(m,y) for different systems, involving unsymmetri-
cal electrolytes, through which the capability of Eq. (27) to describe
the effect of the variation of the ionic charges is verified. It can be
quickly concluded that if v2 = v3 the second and third coefficient do
A. Ricardini et al. / Fluid Ph

.3. Analysis of the coefficients of the order n > 3

The application of the conditions of self-consistency corre-
ponding to the limiting behaviour of the electrolyte solutions to
q. (4) allowed to established the values of the coefficients up to
rder n = 3. Thus, it can be concluded that coefficients A1, A2, B3 and
3 are equal to 0. In this sense, there are other conditions that must
e accomplished by Eq. (4) in order to be thermodynamically con-
istent, which will be analysed here. First, as the permutation of
he electrolytes 2 and 3 should not introduce any change, the third
rder derivative must satisfy the following condition,

∂3a1

∂z3

)
z = 0

y = 1

= 6A�

√
2n0

1

(
�A2 z2

A2
+ �C2 z2

C2

)3/2 = 6D2 (23)

Deriving the third order derivative of Eq. (4) and evaluating it at
 = 0 and y = 1, the following relationship is obtained,

∂3a1

∂z3

)
z = 0

y = 1

= ∂3a1

∂z3

)
z = 0

y = 0

+ 6D2 (24)

Thus, the following expression for coefficient D2 is obtained
rom Eq. (24),

2 = A�

√
2n0

1

[(
�A2 z2

A2
+ �C2 z2

C2

)3/2 −
(

�A3 z2
A3

+ �C3 z2
C3

)3/2
]

(25)

Another aspect is related to the coefficients involved in the terms
hat contain yn, which must be zero in order to accomplish the
ondition that the solvent activity must be equal to 1 when m→0
or any y value. Consequently, the coefficients C4, D5, E6, F7 and G8

ust be null.
The coefficients corresponding to the terms that contain zyn−1

ith n > 3 must also be null, as it was demonstrated through Eq. (13)
hat the first derivative with respect to z applied to z = 0 must be
qual to 0 for any value of y. Consequently, the coefficients D4, E5,
6 and G7 must be null. Moreover, the coefficients corresponding
o the terms that contain z2yn−2 with n > 3 must also be null, as
he second order derivative with respect to z leads to yn−2, which
enerates a dependence of y different to that required by Eq. (17).
herefore, the coefficients D3, E4, F5 and G6 must be null. Finally and
or the same reasons the coefficients corresponding to the terms
hat contain z3yn−2 with n > 4 must also be null and therefore E3, F4
nd G5 are zero.

Substituting the expressions found for B1 (Eq. (17)), C1 (Eq. (20)),
2 (Eq. (21)) and D2 (Eq. (25)), the expression for function a1(z,y) is
btained,

a1(z, y) = 1 − [y�2 + (1 − y)�3]
n0

1

z2

+ A�

√
2n0

1

[
y
(

�A2 z2
A2

+ �C2 z2
C2

)3/2
+ (1 − y)

(
�A3 z2

A3
+ �C3 z2

C3

)3/2
]

z3

+D1z4 + E1z5 + E2z4y + F1z6 + F2z5y + F3z4y2

+G1z7 + G2z6y + G3z5y2 + G4z4y3

(26)

From the comparison of Eqs. (26) and (4),  it can be observed that
he number of coefficients is reduced from 35 to 10. Renaming the
oefficients and expressing Eq. (26) on terms of total molality m,
he final equation is,

a1(m, y) = 1 − [y�2 + (1 − y)�3]
n0

1

m

+ A�

√
2no

1

[
y
(

�A2 z2
A2

+ �C2 z2
C2

)3/2 + (1 − y)
(

�A3 z2
A3

+ �C3 z2
C3

)3/2
]

m3/2

+am2 + bm5/2 + cm2y + dm3 + em5/2y + fm2y2 + gm7/2 + hm3y + im5/2
Fig. 1. Dependence of solvent activity (a1) on total molality (m)  and NaCl internal
molal fraction (y) for the system NaCl–LiCl–H2O at 298.15 K. Dots: experimental
data [9,10];  surface: correlation with Eq. (27).

Eq. (27) is a thermodynamically consistent expression that
can accurately correlate the experimental dependence a1(m,y) for
ternary electrolyte solutions. Moreover, using y = 0 or y = 1 and
reordering, a correlation equation for the binary system is obtained,
which is also thermodynamically self-consistent.

The proposed equation will be verified through its application
to several systems, which will be described in the next section.

3. Evaluation of the proposed equation

The proposed equation ensures that the description of the
dependence a1(z,y) has at the origin a third order contact with
the limiting behaviour established for electrolyte solutions. Thus,
the effect of the type of electrolyte is taking into account and it is
possible to describe the transition between two different types of
electrolytes (v2 /= v3) at constant m through the variation of y. This
effect is contained in second and third terms of Eq. (27), with non
adjustable coefficients that involve the stoichiometric coefficients
(�Ak

, �Ck
) and the ionic charges (zAk

, zCk
), characteristic of a given

electrolyte, and the constant A� . Meanwhile, the remaining terms
describe the deviation to such behaviour.

In order to verify the applicability of Eqs. (27) and (23) aque-
ous ternary systems were evaluated, constituted by electrolytes
of the type 1:1, 1:2, 2:2 and a combination of them [9–29]. Six
adjustable parameters were used, as it was realized that they were
enough for the appropriate correlation of the experimental depend-
ence a1(m,y). All the systems were evaluated at 298.15 K, thus
A� = 0.39765 [1],  being the solvent molality n0

1 = 55.5084.
The results obtained are summarized in Table 1, where it is

reported for each system the values of the six coefficients of Eq.
(27), the number of experimental data (N) involved in the correla-
tion, the maximum concentration (mmax), the standard deviation

S =
(∑

(acorr
1 − aexp

1 )
2
/N

)1/2
and the references from where the

experimental data were obtained. The correlation capability of the
proposed equation is illustrated for four cases that can be consid-
ered representative of all the systems analysed. Figs. 1–4 show the
y2 + jm2y3

(27)
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Table 1
Values of the parameters (a–f) of equation (27) evaluated from the correlation of N experimental points of ternary electrolyte solutions (salt 2-salt 3-water) of maximum
total  molality (mmax), standard deviation (S).

System (2–3–1) 102a 103b 103c 103d 103e 103f N mmax S Ref.

NaCl–LiCl–H2O −1.785 5.281 3.292 −0.6395 −0.3419 −0.2044 73 6 0.00140 [9,10]
NaCl–KCl–H2O −1.421 5.379 −0.9646 −0.7257 −0.01000 −0.09999 72 6 0.00102 [9,29]
LiCl–KCl–H2O −1.506 6.358 −2.783 −0.9818 0.4346 −1.702 70 6 0.00209 [9,12]
NaCl–CsCl–H2O −1.267 4.479 −2.512 −0.5515 0.3624 0.2244 82 8 0.00227 [9,13]
LiCl–CsCl–H2O −1.089 2.975 −5.656 −0.2392 0.8005 0.01150 85 9 0.00283 [9,13]
NH4Cl–CsCl–H2O −1.210 3.972 −0.07438 −0.4407 −0.0466 0.166 116 12.5 0.00221 [9,14]
NH4Cl–NH4NO3–H2O −1.018 3.826 −2.812 −0.4499 0.3694 0.408 74 9 0.00174 [9,16]
NH4NO3–NaNO3–H2O −0.9358 2.950 0.9182 −0.291 −0.3193 −0.1168 66 17.5 0.00485 [15]
NaCl–MgCl2–H2O −9.763 25.96 86.05 −1.032 −19.18 −5.332 58 6 0.00306 [9,17]
LiCl–MgCl2–H2O −9.276 21.76 78.36 −0.1485 −18.02 −2.412 60 10 0.00336 [9,18]
NH4Cl–MgCl2–H2O −10.05 30.48 83.58 −2.514 −17.89 −3.957 65 6 0.00384 [9,19]
LiCl–CaCl2–H2O −8.275 19.87 61.01 −0.7754 −12.29 −0.4044 71 12.5 0.00799 [9,18]
NH4Cl–CaCl2–H2O −9.642 29.68 79.01 −2.479 −17.80 −2.016 119 6 0.00759 [9,20,21]
NaCl–BaCl2–H2O −9.315 28.64 75.95 −0.7797 −23.20 2.038 56 6 0.00209 [9,22]
LiCl–BaCl2–H2O −9.094 26.45 63.04 −0.3177 −22.65 11.68 45 6 0.00249 [9,18]
NH4Cl–BaCl2–H2O −9.372 29.47 79.01 −0.9722 −23.12 −0.03504 65 6 0.00251 [9,20]
Na2SO4–(NH4)2SO4–H2O −9.488 50.41 2.482 −9.437 −1.589 −0.1110 91 5 0.00160 [23,24,26]
Li2SO4–(NH4)2SO4–H2O −9.559 51.13 −6.166 −9.626 0.2815 0.2928 58 4.75 0.00180 [23,24]
K2SO4–(NH4)2SO4–H2O −9.065 45.83 −7.865 −8.226 5.655 −1.782 54 5 0.00106 [11,23]
MgCl2–CaCl2–H2O −10.81 39.20 −2.301 −4.380 0.09665 −0.3573 58 6 0.00380 [9,17]
NaCl–Na2SO4–H2O −7.922 27.73 61.16 −1.487 −19.16 −0.5342 74 6 0.00177 [9,23,25,26]
Na2SO4–MgSO4–H2O −17.51 100.0 56.62 −20.89 −16.15 −0.2569 85 3.5 0.00127 [23,25,27]
MgSO4–MnSO4–H2O −18.07 108.8 0.03097 −23.54 −1.128 0.2174 65 4 0.00201 [23,28]

F
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ig. 2. Dependence of solvent activity (a1) on total molality (m) and NH4Cl internal
olal fraction (y) for the system NH4Cl–BaCl2–H2O at 298.15 K. Dots: experimental

ata [9,20];  surface: correlation with Eq. (27).

ot depend on the internal molal fraction y. These behaviours can
e clearly appreciated in Figs. 1–4.  Fig. 1 corresponds to a mixture

f electrolytes 1:1 where v2 =v3 = 2, while Figs. 2–4 correspond to
ystems involving asymmetric electrolytes, where the stoichiomet-
ic coefficients are v2 /= v3. Figs. 2 and 4 correspond to a mixture
f an electrolyte of the type 1:1 with a 2:1, while the behaviour

ig. 3. Dependence of solvent activity (a1) on total molality (m) and Na2SO4 internal
olal fraction (y) for the system Na2SO4–MgSO4–H2O at 298.15 K. Dots: experimen-

al  data [23,25,27]; surface: correlation with Eq. (27).
Fig. 4. Dependence of solvent activity (a1) on total molality (m)  and Na2SO4 internal
molal fraction (y) for the system NH4Cl–MgCl2–H2O at 298.15 K. Dots: experimental
data [9,19];  surface: correlation with Eq. (27).

of a mixture of an electrolyte of the type 1:2 and the other 2:2 is
illustrated in Fig. 3. It can be observed in all cases that the experi-
mental dependences of a1(m,y) are accurately fitted. Furthermore,
from the analysis of the standard deviation of all the systems stud-
ied (Table 1), it can be concluded that the goodness of fit of the
proposed equation is high, being the mean value of the standard
deviations equal to 0.00281. The maximum standard deviation is
0.00799 and corresponds to the system LiCl–CaCl2–H2O, which
mmax is 12.5 molal. It should be taken into account that the calcu-
lated values of the standard deviation include the errors that could
have occurred in the experimental measurements. Thus, from the
results obtained it can be concluded that the proposed equation,
which is consistent with the limiting behaviours demanded by the
thermodynamics of solutions, is an accurate tool for the description
of the dependence of the solvent activity on composition of ternary
electrolyte solutions.

4. Conclusion
Starting from a Mclaurin series expansion of the solvent activity
in ternary electrolyte solutions on the variables z and y and taking
into account the limiting behaviour that must be accomplished, an
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nalytical equation was derived that allows the correlation of the
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as applied to 23 ternary systems and the results obtained demon-

trate an excellent fitting capability of the experimental data.
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