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Abstract. Assemblies of granular particles mechanically stable under their own weight contain arches.
These are structural units identified as sets of mutually stable grains. It is generally assumed that these
arches shield the weight above them and should bear most of the stress in the system. We test such
hypothesis by studying the stress born by in-arch and out-of-arch grains. We show that, indeed, particles
in arches withstand larger stresses. In particular, the isotropic stress tends to be larger for in-arch grains
whereas the anisotropic component is marginally distinguishable between the two types of particles. The
contact force distributions demonstrate that an exponential tail (compatible with the maximization of
entropy under no extra constraints) is followed only by the out-of-arch contacts. In-arch contacts seem to
be compatible with a Gaussian distribution consistent with a recently introduced approach that takes into
account constraints imposed by the local force balance on grains.

1 Introduction

The study of mechanically stable granular beds has be-
come a major point of interest in granular physics. Stud-
ies range from analysis of force network properties [1–4]
to structural characterization [5–7] to thermodynamic and
statistical descriptions [8–12]. A recurrent question in the
subject is related to the existence or not of a relation be-
tween force chains and arches [13,14].

Arches (or bridges) are multiparticle structures where
all grains are mutually stable [13,15–17], i.e., fixing the
positions of all other particles in the assembly, the removal
of any particle in the arch leads to the destabilization of
the other particles in it. For an arch to be formed, it is nec-
essary (although not sufficient) that two or more falling
particles be in contact at the time they reach mechanical
equilibrium in order to create mutually stabilizing struc-
tures [18]. Like arches in architecture, granular arches are
assumed to sustain the weight of the material above.

Highly stressed grains in static deposits are generally
found to form linear structures: the so-called force chains.
Notice that, the term “arch” is sometimes used [19–21] to
refer to these force chains and not to the mutually stabiliz-
ing structures defined above. Likewise, the term “dynamic
arch” has been used to refer to ephemeral structures that
choke the flow of grains [22]. We have to distinguish be-
tween these usages and the classical meaning we adhere
to in this work: an arch is a mechanically stable structure
of mutually stabilizing bodies.
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Force chains are a clear spatial heterogeneity of the
contact force network. The distribution of contact forces
(both normal and tangential) shows no bimodal character.
However, the spatial distribution of large and small forces
is heterogeneous with large forces developing a somewhat
open stringy network that encloses regions of grains that
sustain little weight [23].

To what extent the bimodal spatial distribution of
forces is related to the mutually stable structures (arches)
has not been assessed so far. A correlation has been
pointed out [13,15,24] between the distribution of horizon-
tal span of arches in a granular pile and the distribution
of normal forces at the grain contacts. Therefore, it is as-
sumed that a strong correlation has to be present between
arches and highly stressed grains in a granular deposit. In
this paper, we assess this general belief in the frame of a
simulation of granular packings prepared by tapping. The
results provide additional information on the validity of
basic assumptions made in the statistical description of
granular packings.

2 Simulation model

To simulate packings of gains we have followed the stan-
dard techniques on discrete element methods (see for ex-
ample refs. [25–27]). We used a velocity Verlet algorithm
to integrate the Newton equations for N monosized disks
(diameter d) in a rectangular box of width L. We stud-
ied two system sizes: i) N = 512 with L = 12.39d and
ii) N = 2048 with L = 24.78d. The non-commensurate
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box is chosen to prevent crystallization to some extent.
The larger system is roughly twice as tall as the smaller
system. However, this depends on the actual packing frac-
tion obtained for a given preparation protocol.

The disk-disk and disk-wall contact interaction com-
prises a linear spring-dashpot in the normal direction,

Fn = knξ − γnvn

i,j , (1)

and a tangential friction force,

Ft = −min (µ|Fn|, |Fs|) · sign(ζ), (2)

that implements the Coulomb criterion to switch between
dynamic and static friction [18,28].

In eqs. (1)-(2), ξ = d − |rij | is the particle-particle
overlap, rij represents the center-to-center vector between
particles i and j, vn

i,j is the relative normal velocity, Fs =

−ksζ−γsv
t

i,j is the static friction force, ζ(t) =
∫ t

t0
vt

i,j(t
′)dt′

is the relative shear displacement, vt

i,j = ṙij ·s+
1

2
d(ωi+ωj)

is the relative tangential velocity, and s is a unit vector
normal to rij . The shear displacement ζ is calculated by
integrating vt

i,j from the beginning of the contact (i.e.,
t = t0). The disk-wall interaction is calculated considering
the wall as an infinite radius, infinite mass disk. Other
than these, the interaction parameters are the same as for
the disk-disk interaction.

In these simulation we used the following set of pa-
rameters: dynamic friction coefficient µ = 0.5, normal
spring stiffness kn = 105(mg/d), normal viscous damping

γn = 300(m
√

g/d), tangential spring stiffness ks = 2

7
kn,

and tangential viscous damping γs = 200(m
√

g/d). The

integration time step is δ = 10−4
√

d/g. Units are reduced
with the diameter of the disks, d, the disk mass, m, and
the acceleration of gravity, g.

In order to investigate reproducible states, we imple-
ment a tapping protocol. The system is initially deposited
from a dilute configuration in which particles have no con-
tacts nor overlaps. After the grains reach mechanical equi-
librium, the system is tapped with a given amplitude and
left to come back to mechanical equilibrium. After many
taps of given amplitude, the system reaches a steady state
where the properties of the static configurations gener-
ated have well-defined mean values and fluctuations. The
steady-state properties are independent of the initial con-
ditions and are reproducible [12,29,30]. We generate a
number of static packings after the steady state is reached
to average quantities. Different steady states are generated
by changing the tap amplitude.

Tapping is simulated by moving the confining box in
the vertical direction following a half sine wave trajec-
tory of frequency ν = π/2(g/d)1/2. The intensity of the
excitation is controlled through the amplitude, A, of the
sinusoidal trajectory; and it is characterized by the param-
eter Γ = A(2πν)2/g. A new tap is applied only after the
system has come to mechanical equilibrium, which is de-
fined via the stability of each particle-particle contact [18].
Averages were taken over 500 taps (configurations) in the
steady-state corresponding to each value of Γ after the
500 initial taps were discarded to avoid any transient.

Fig. 1. (Color online). Sample images of the simulated gran-
ular columns (N = 512) for different Γ : (a) Γ = 2.19,
(b) Γ = 4.93 and (c) Γ = 15.39. The color code indicates
the trace, Tr(σ), of the stress tensor for each particle in units
of mg/d. The joining segments indicate the arches detected in
the system. (d) A close up on a 5-particle arch. See main text
for a description on the supporting contacts of particle 4.

3 Identification of arches

Details on the algorithms used to identify arches can be
found in previous works [15,16,18]. Briefly, we need first
to identify the supporting grains of each particle in the
packing. In 2D, there are two disks that support any given
grain. Two grains in contact with a given particle are able
to provide support if the segment defined by the contact
points lies below the center of mass of the particle. Some
of these supporting contacts may be provided by the walls
of the container. Then, we find all mutually stable parti-
cles. Two grains A and B are mutually stable if A supports
B and B supports A. Arches are defined as sets of parti-
cles connected through these mutually stabilizing contacts
(MSC).

The fact that the supporting particles of each grain
have to be known implies that contacts, and the chrono-
logical order in which they form, have to be clearly de-
fined in the model. Figure 1 shows some examples of the
packings generated where arches are indicated by joining
segments. In fig. 1(d), a close view of an arch detected in
a given packing (formed by particles 1 to 5) is displayed.
Particle 4 is an example of a grain whose pair of stabilizing
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particles is ambiguous from the limited information pro-
vided by the snapshot; discrimination requires chronolog-
ical information. The pairs 3-5, 5-6 and 6-7 comply with
the condition that the center of mass of grain 4 is above
the segment that joins the corresponding contact points.
However, the contacts with grains 3 and 5 where formed
first and for that reason these particles are considered to
be the supporting pair of grain 4. To identify the contacts
that support each particle we use an algorithm that has
been previously designed to work with molecular dynamic
type simulations [18].

4 Single-particle stress tensor

We measure the stress tensor σi for grain i as [5]

σαβ
i =

1

π(d/2)2

Nc
∑

j=1

fα
ijb

β
ij , (3)

where, fij is the force exerted by grain j on grain i and
bij is the branch vector that goes from the center of grain
i to the contact point with grain j. The sum runs over the
Nc particles in contact with particle i.

The pressure (or isotropic stress) is given by the trace,
Tr(σ), of σ, whereas the anisotropic component is charac-
terized by the deviatoric stress s

sαβ
i = σαβ

i −
δαβ

3

∑

γ

σγγ
i (4)

We use Dev(σ) = σzz − σxx to characterize the
anisotropic component. In average, our packings under
gravity present σxx < σzz (i.e., the vertical component
is higher than the horizontal component).

The principal directions of the stress vary form config-
uration to configuration during tapping. However, these
fluctuations are very small since the shear component σxz

is less than 1% of Tr(σ) in all our packings.

5 General properties of the deposits

In fig. 2(a), we report the mean packing fraction, φ, as a
function of the tap intensity, Γ . The packing fraction was
measured in a slab of the bed that covers 50% of the height
of the column and is vertically centered with the center of
mass of the system. The values of φ for the smaller sys-
tem is affected by the presence of the lateral walls, which
tend to reduce the packing fraction. φ presents a minimum
at intermediate Γ as previously observed in various mod-
els [28,31] and experiments [12,30]. This minimum in φ is
related with the existence of a maximum in the number of
grains involved in arches (see fig. 2(b)). A description of
the mechanisms that leads to the existence of a maximum
in the number of grains involved in arches can be found
in ref. [28].

In spite of the system being monodisperse, the pack-
ings obtained present only partial crystallization. This is
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Fig. 2. (a) The mean packing fraction, φ, as a function of
tap intensity Γ . (b) Fraction of in-arch grains as a function of
Γ . (c) The arch size distribution n(s) for Γ = 2.19. Results
obtained for the two system sizes: N = 512 (solid triangles)
and N = 2048 (open circles).

due to the non-commensurate simulation box. Even if very
ordered packings were obtained, the contact forces (the
main focus of this paper) have been found to display simi-
lar statistics to the one shown by disordered packings [32].
We have also assessed the structural anisotropy through
the fabric tensor. We found that all our packings present a
deviatoric fabric of less than 5% of the fabric trace. There-
fore, the structural anisotropy is rather small.

The distribution, n(s), of the sizes of the arches found
in the packings is shown in fig. 2(c). Here, n(s) is the
fraction of arches consisting in s grains, with n(s = 1) the
fraction of grains that do not belong to any arch. As we
can see, n(s) is not affected by the system boundaries and
arches of more than 10 disks have not been detected even
in the 24-disk-wide system (i.e., N = 2048).

Figure 1 shows some examples of the distribution of
pressures and arches inside a granular pile. As it is to
be expected, particles are subjected to higher pressures,
in average, in the lower part of the pile as compared with
the upper layers. The system does not display force chains
that span the system from top to bottom as is commonly
seen in many experiments and simulations. This is due
to the fact that the system is in mechanical equilibrium
under its own weight; no external compression is applied
to the sample in any direction.

In fig. 3, we show the normal component of the contact
forces for three different tap intensities (the lower and the
higher Γ studied, and the value Γmin that leads to the
minimum φ for the given system size). The mean normal
contact force 〈Fn〉 increases rather linearly with the depth
into the packing and is little dependent on the system size
for any given depth (see fig. 3(a)). Only the system with
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Fig. 3. (Color online). (a) Mean normal contact force 〈Fn〉 as a
function of the depth into the granular column. (b) PDF of the
normal contact force. We consider two system sizes: N = 512
(solid symbols) and N = 2048 (open symbols). Results for
three different tap intensities are reported (see legend). The
intermediate value corresponds to the value of Γ that yields
the minimum φ for the given system size (i.e., Γ = 4.93 for
N = 512 and Γ = 6.59 for N = 2048). The inset in part (b) is
a close up for forces below the mean.

2048 grains displays a hint of Janssen saturation in the
deeper layers. Small differences in 〈Fn〉 can be observed
between packings obtained with different Γ . In particular,
for the lowest tap intensity considered, 〈Fn〉 is smaller at
all depths.

Figure 3(b) presents the normal contact force distri-
bution for a depth of 35d (this corresponds to the lower
part of the smaller system and to the middle section of the
larger system). All grain-grain contacts that lay within a
slab 10d wide centered at a depth 35d are considered. Tak-
ing narrower slabs leads to similar results. As we can see,
the PDF of Fn coincides for both system sizes. We have
seen that the tangential contact forces also show consis-
tent results when systems of different sizes are compared
by looking into slabs at the same depth.

There exist a current debate on whether the tail of
these distributions are or not exponentials [10,33]. Expo-
nential tails for forces above the mean contact force have
been reported by a number of authors considering granular
packs subjected to external compression [2,3,34] or stable
under their own weight [19]. As we can see in fig. 3(b),
for low Γ , we observe a clear exponential tail. However,
a faster than exponential decay seems to be followed by
the rest of the packings. Tighe et al. [10] have argued that
some reported exponential tails are perhaps Gaussian. The
behavior for very small forces (see inset to fig. 3(b)) re-
sembles the weak divergence found for packings without
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Fig. 4. (Color online). The mean value of the contact force for
mutually stabilizing contacts (blue) and non-mutually stabiliz-
ing contacts (red). (a) Normal contact forces, and (b) tangen-
tial contact forces. Results obtained for the two system sizes:
N = 512 (solid triangles) and N = 2048 (open circles).

external compression when bulk contacts (as opposed to
contacts made between the grains and the container) are
considered [34].

In order to compare results from different system sizes,
the remaining of the paper, unless otherwise specified, will
refer to measurements made in a slab 10d wide centered
at a depth 35d.

6 Contact forces and arches

It can be observed from fig. 1 that, at any depth into the
pile, grains can present high and low stress irrespective of
whether they belong to an arch or not. Also, force chains
do not coincide with arches although arches form part of
portions of these chains. For a more quantitative analy-
sis we plot in fig. 4 the mean value of the contact forces
(normal and tangential to the contact in a slab at 35d of
depth) as a function of Γ . MSC (mutually stabilizing con-
tacts) and non-MSC have been separated in the analysis.
Although some small differences are observed between the
results for the two system sizes studied, the general trends
are quite similar. It is clear that MSC (i.e., contacts within
arches) have, in average, larger (roughly 50%) normal and
tangential forces. This supports the idea that arches bear
most of the stress in the system and that force chains and
arches must be correlated.

Figure 5(a) shows that the distributions of contact
forces for MSC and non-MSC are clearly distinguishable
for the normal component. Although, we present the dis-
tribution obtained for Γmin, most packings display the
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Fig. 5. (Color online). The PDF of contact forces for MSC
(blue) and non-MSC (red) for Γ = Γmin. (a) Normal contact
forces, and (b) tangential contact forces. Results obtained for
the two system sizes: N = 512 (solid triangles) and N = 2048
(open circles).

same general features (some exceptions regarding pack-
ings prepared at low Γ are discussed below). The mild
divergence for very small forces is still present for both dis-
tributions. Despite the difference, there is not a clear sep-
aration of the two populations of contacts. The bimodal
character observed in the spatial distribution of contacts
seems to be poorly correlated with MSC.

As we can see from fig. 5(a), the PDF for non-MSC
present a clear exponential tail, whereas MSC present a
faster decay. The non-MSC PDF corresponds to an expo-
nential decay even for forces below the mean. The expo-
nential PDF has a well-established statistical explanation.
If the mean force is set and all contact force states are
equally probable, an exponential distribution of contact
forces maximizes the entropy (defined as the logarithm of
the number of contact force states) [35,36].

MSC seem to have a distribution compatible with a
Gaussian tail, or at least a faster than exponential tail.
It seems that the deviation form an exponential in the
full PDFs reported in the literature (and in fig. 3(b))
seems to be due to the presence of MSC (and therefore
the presence of arches). The immediate conclusion is that
the presence of arches prevents us from making some of
the basic assumptions on the contact forces to render a
simplified statistical analysis. In particular, arches intro-
duce force balance constraints that need to be accounted
for. Tighe et al. [10] have shown that force balance con-
straints (the conservation of the total area of the Maxwell
reciprocal tiling) can be introduced in a force ensemble.
These have led to Gaussian contact force distributions.
Notice, however, that this theoretical approach yields the

same Gaussian distribution irrespective of the existence of
arches in the packing.

Figure 5(b) shows that the tangential components of
the contact forces have a much subtle difference between
the distribution for MSC and non-MSC. Again, MSC
present a somewhat faster-than-exponential tail in con-
trast with the non-MSC.

We now focus on the results for the smallest tap inten-
sity reported. As we mentioned, fig. 3(b) shows that for
Γ = 2.19 the PDF for normal contacts presents a clear
exponential tail, in contrast with the packings generated
with stronger taps. Separating MSC and non-MSC in the
analysis leads to two exponential tails (presenting slightly
different slopes). We speculated that there could be fewer
MSC in these packings than in packings obtained with
stronger taps. However, these packings present a similar
number of MSC as compared with packings that show a
faster-than-exponential tail. The main difference we have
been able to find is that these packings have, in compar-
ison, fewer arches composed of three or more grains. It
seems that arches composed of three or more particles
are responsible for introducing strong force balance con-
straints that render the PDF non-exponential. Some re-
ports of pure exponential decays can be found in previous
studies. Blair et al. mentioned that a pure exponential
was found in some cases depending on the history of the
packing [32]. Makse et al. found pure exponentials too
in simulations of isotropically compressed grains, which
may develop structures without arches [37]. We believe
the preparation history of these packings may have led
to a small presence of arches composed of three or more
grains.

We have studied systems (for N = 2048) with differ-
ent friction coefficients (µ = 0.05 and µ = 5.0). In all
cases, the MSC present a decay of the PDF faster than
the non-MSC. Interestingly, low friction systems tend to
display, instead of a plateau, a clear peak in the overall
PDF around the mean contact force. In such cases, the
PDF for non-MSC remains a smooth decreasing function
with only the PDF for MSC displaying the peak.

7 Stress tensor and arches

In fig. 6, we show the results of an analysis similar to that
of the previous section but now the stress tensor on each
particle, as defined in eq. (3), is considered. The stress ten-
sor accounts for both MSC and non-MSC on each grain.
We separate in-arch grains from out-of-arch grains in the
analysis. In-arch grains support, in average, isotropic pres-
sures (see Tr(σ) in fig. 6(a)) about 20% higher than out-of-
arch grains. In contrast, the anisotropic component of the
stress, Dev(σ), seems to be rather similar for both types of
grains. This implies that the actual difference between the
stress tensor of in-arch and out-of-arch grains corresponds
to the addition of a constant to the diagonal components
(in contrast to an increse given by a multiplicative con-
stant). We have seen that the shear stress σxz is the same
for both types of grains.
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Fig. 6. (Color online). Mean stress tensor for in-arch (blue)
and out-of-arch (red) grains. (a) The trace Tr(σ) of the stress,
and (b) the deviator Dev(σ). Results obtained for the two sys-
tem sizes: N = 512 (solid triangles) and N = 2048 (open
circles).

Figure 7(a) shows that the distribution of the isotropic
stress is markedly different for in-arch and out-of-arch
grains. In-arch grains present a clear maximum in the
PDF of Tr(σ) at around the mean. Although there is not
a strong separation, the maximum in the PDFs suggests
that the well-known bimodal character of the force net-
work is driven by the presence of arches to some extent.

The distribution of the stress deviator is presented in
fig. 7(b). As we can see, the PDFs for in-arch and out-of-
arch grains are almost identical. The negative values are
due to the fact that some grains have σxx > σyy. However,
in average σxx < σyy and the mean deviator as defined
above is always positive in our packings.

8 Conclusions

We have shown that MSC, which define arches, present
higher normal and tangential components of the con-
tact forces as compared with non-MSC. Grains belong-
ing to arches are generally subjected to larger isotropic
stresses but similar anisotropic stress. Therefore, particles
in arches are, to some extent, different from particles that
do not form arches when their contact forces are consid-
ered. This is in line with the common assumption that
arches carry most of the weight in a granular deposit.

The PDF of normal contact forces show that non-MSC
follow an exponential decay whereas the MSC present a
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Tr(σ), of the stress tensor, and (b) the deviator Dev(σ). Results
obtained for the two system sizes: N = 512 (solid triangles) and
N = 2048 (open circles).

faster-than-exponential fall. This has strong implications
for the basic statistical models of force distribution. In
particular, it seems that MSC are the main cause for the
constraints in force balance not considered in simplistic
approaches. These constraints lead to the deviation of the
overall-contacts PDF from the expected exponential. In-
deed, packings containing a low number of large arches
(arches of three or more grains) seem to fit better the
exponential law.

The bimodal spatial distribution of stresses seems to
be related to some extent with the presence of arches.
Particles in arches present a clear maximum around the
mean stress in the PDF of isotropic stress.

It is worth mentioning that despite the correlations
found between arches and force chains, there is not a one-
to-one correspondence. Arches that sustain little weight
can always exist in the structure since they are shielded
by other arches above. This leads to the preponderance of
very small forces in the distributions for MSC. Also, force
chains can develop without the need of arches. A deposit
carefully built by sequential deposition of grains contains
no arches in the structure, yet it will present force chains.
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27. J. Schäfer, S. Dippel, D.E. Wolf, J. Phys. I 6, 5 (1996).
28. L.A. Pugnaloni, M. Mizrahi, C.M. Carlevaro, F. Vericat,

Phys. Rev. E 78, 051305 (2008).
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