MINIMAL 3 x 3 HERMITIAN MATRICES
ABEL KLOBOUK AND ALEJANDRO VARELAT

ABSTRACT. Given a Hermitian matrix M € M3(C) we describe the real diagonal matrices Djs such
that
|M + Dy < [M+ D]

for all real diagonal matrices D € M3(C), where | | denotes the operator norm. Moreover, we
generalize our techniques to some n x n cases.

1. INTRODUCTION

Let M3(C) and D; (R) be, respectively, the algebras of complex and real diagonal 3 x 3 matrices.
Given a fixed Hermitian matrix M € M;5(C) we study the diagonals D), that realize the quotient
norm

M + Dy = ||| [M]]]| = min M + D| = dist (M, D3 (R
1M+ Du| = [[[IM][[l = jmin M + D] = dist (M, Dy (R)).

or equivalently
|M + Dy|| < |M + D, for all D e D; (R)

where | || denotes the operator norm.

The matrices M + D), will be called minimal. These matrices appeared in the study of minimal
length curves in the flag manifold P(n) = U (M,(C)) /U (D,(C)), where U(A) denotes the unitary
matrices of the algebra A, when P(n) is endowed with the quotient Finsler metric of the operator
norm [5]. Minimal length curves ¢ in P(n) are given by the left action of U (M,,(C)) on P(n). Namely

5(t) = [¢™MU]

where M is minimal and [V] denotes the class of V in P(n). Moreover, the natural questions and
some particular examples that appear from the geometric description of these objects are related
to problems that appear in other contexts: problems of minimization of operators related with
optimization and control (|6, 8]), matrix analysis (|4, 7]), Leibnitz seminorms (|9, 10]) and unitary
stochastic matrices ([2]).

Previous attempts to describe minimal matrices and their properties were done in [1| and for 3 x 3
matrices. In that paper, all 3 x 3 minimal matrices were parametrized. We stress that there are no
known results showing which is the minimizing diagonal of a given Hermitian matrix M (except on
trivial cases).

Several recent approaches have been made to describe the closest diagonal matrix to a given
Hermitian matrix (see for instance |9, 2| and [1]). These papers give qualitative properties that
describe properties of these matrices and even parametrize all the solutions. Nevertheless the problem
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of finding the diagonal matrix or matrices closest to a concrete Hermitian matrix remained open even
for the first non trivial case: 3 x 3.

Our goal in the present paper is to study this problem for 3 x 3 minimal matrices and some n x n
cases where the 3 x 3 techniques can be extended.

2. PRELIMINARIES AND NOTATION

Let M,(C) denote the algebra of square n x n complex matrices, M(C) the real subspace of
Hermitian complex matrices, and D, (R) the real subalgebra of the diagonal real matrices. The
symbol o(A) denotes here the spectrum of A, that is the (unordered) set of eigenvalues of A. We
denote with | A| the usual operator norm or spectral norm of A € M,,(C) and with |C|, the euclidean
norm for C'e C".

We denote with {e;}7; the canonical basis of C". Given a matrix A € M,,(C), we denote with A, ;
the ¢, j entry of A and we write A = [A4; ;]| fori,j =1,...,n.

For M € M,(C) we denote with MN the usual matrix product, with tr(M) the usual (non-
normalized) trace of M and with C;(M) the vector given by the i column of M.

For (a1, as,...,a,) € R™ we denote with diag(ay,as,...,a,) the diagonal matrix of M/(R) with
(ay,as,...,a,) in its diagonal. Nevertheless, if M € M,(C), then Diag(M) denotes the diagonal
matrix defined by the principal diagonal of M.

Observe that if M € M"(C) and D € D,(R) then (M + D) € M"(C). Let us consider the quotient
M"(C)/D,(R) and the quotient norm

M) ||| = min |M + D| = dist (M, D, (R
MM} = min_ |M + D = dist (M, Dn(R))

for [M] ={M + D : D e D,(R)} € M"(C)/D,(R). The minimum is clearly attained.
Definition 1. A matriz M € M"(C) is called minimal if
|M|| < |M + D|| for all D e D,(R),

or equivalently, if | M| = ||| [M] ||| = D(gl)il(lR)”M + D| = dist (M, D,(R)).

Definition 2. Let M € M"(C) and D € D, (R) such that M + D is minimal. Then D is a mini-
mizing diagonal of M.

For a matrix M € M?(C) with at least two non zero off-diagonal entries this minimizing matrix is
unique (see [1, Theorem 3.15] for a proof):

Proposition 1. If M € M}(C) is a minimal matriz and at least two of M o, My 3 and My 3 are non
zero then the values of its minimizing diagonal are unique.

Remark 1. Note that if M € M"(C) is a minimal matriz then its spectrum is centered in the sense

that |M|, —|M| € o(M). In general, for a given matriz A € M"(C), £|A| € o(A) if and only if

|A| = r/l\liﬂngA + M| if and only if Mpin(A) + Mnaz(A) = 0. Note that this implies that if M € M} (C)
€

is a minimal matriz then in particular o(M) = {||M||, p, — | M|} for |u| < |M||, p = tr(M).

Throughout the paper, for a given non-zero minimal matrix M € M?(C), we denote with o(M) =
{\, 1, =A} the spectrum of M, for 0 < X\ = |M||, |¢| < A and p = tr(M).
Given v = (v2,v2,v3) € C3, v @ v denotes the matrix such that (v ®v);; = v;v; for 4,5 = 1,2, 3.
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For M € M!(C) and v e C" we write M and © to denote the matrix and vector obtained from M
and v by conjugation of its coordinates.

If M, N € C"™™ we denote with M o N the Schur or Hadamard product of these matrices defined
by (M o N);; = M; jN;; for 1 <i <mn,1<j<m. Therefore, if v € C? with coordinates in the
canonical basis given by v = (v, v9, v3),

3
vow = (juil’, Joal, loal?) = ) [vjle; € RY.
j=1

If Ae C™™ we denote with A* € C™*" its transpose, with ran(A) the range of the linear transfor-
mation A and with ker(A) its kernel.

3. MINIMAL 3 x 3 MATRICES WITH ZERO ENTRIES

Proposition 2. Ifz,y,2€ C, ce R, |c| < |z|, be R, |b| < |y|, a € R, |a|] < |z|, then the matrices

0z 0 007y a 00
M=z 00 |M=(00bo0|M=[00:
00 c y 00 0z 0

are minimal. Moreover, these are all the possible diagonals that make them minimal.

Proof. Let v e C? with |v| = 1. Tt is easy to prove that |M,v| < |z| for all ¢ € R such that || < |x|.

Since |Mez| = |z| then |M,| = |z|. Moreover, if we consider
a v 0
M=z 8 0
0 0 ~v

with « # 0, then |Me,| = |(«,Z,0)|| > |z|. Therefore, |M| > |M,|. Something similar happens if
B # 0 checking |Mes|. If |y| > |z| then |M| > ||M,| and therefore M, is minimal (with |c| < |z]).
The proof for the matrices M, and M, is similar.

The following theorem is proved in [1, Theorem 3.8]. We restate it here for the sake of clarity.

Theorem 1. Let M} ,(C) with [M] = X\ > 0. Then M is minimal if and only if there exist two
etgenvectors vy corresponding to the eigenvalue N\ and v_ corresponding to the eigenvalue —X\, such
that their coordinates have the same module. That is, if for every e; then |(vy,e| = [(v_,e)| or
equivalently v, ocvy =v_ov_.

Using the above theorem we can prove the following proposition.

Proposition 3. Let z,y, 2z non-zero complex numbers. Then the matrices

0 =z vy 0 0wy 0 = O
Myy=17 00 | My,=|00 2 | M.=|7 0 2
y 0 0 y z 0 0 z 0

are minimal. These are the only Hermitian minimal matrices with four non-zero entries outside the
diagonal.
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Proof. A direct calculation proves that the eigenvalues of M,, are {+/|z[> + [y[2, —/|z|*> + |y[?, 0}
and their corresponding eigenvectors are

(L T y
T <x/§ V202 + ) /2(]2] + |y|2)> ’

(s :
o ( V2T 2(12P + y?) " /2(J2 + W))

and

Y z
Vg = 0,— s .
( VIR + [y /]2 + |y|2>

Then using Theorem 1 M, is minimal.
This diagonal is unique (see Proposition 1).
Similar results can be proved for M,, and M,.. O

4. MINIMAL 3 x 3 MATRICES WITH NON-ZERO ENTRIES
The following theorem describes minimizing diagonals for matrices M with real nonzero entries.

Theorem 2. Real (symmetric) minimal matrices
Let x,y,ze R, x,y,z # 0.

o Case 1: if
2*y? > 22 (2% + y7) (4.1)
then
0 = Y
M=|r» -2 =z s minimal.
y z =
Ty
o Case 2: if 2%2* > y*(2* + 2%) then M = r 0 =z is minimal.
y =z =%
. y - - .
o Case 3: if y?2* > 2*(y* + 2*) then M = r = oz is minimal.
Y z 0
e Case 4: if none of the previous cases hold, that is
—? 2+ PP+ 22) =20 A 2P+ 2@+ =0 A P+ 2 (YR + 2%) =0, (4.2)
then
1 z Tz z
2 <+7y - ?y) x y
M = T 3 (—% + 2 - %) 2 is minimal.
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Proof. Let us consider first case 1. Note that |C}(M)|3 = 22 + y* > |C;(M)|3 with i = 2,3:

222 222_’_1.222 22 x?_’_ 2
oo = a2+ Lot RS 2 TV 22 o
$222 ) y222_+ I2Z2 ) 22(I2'+'y2)

IC5(M)|5 =v* +2° + 7 =Y +T=y +—2<$2+92:||01(M)H§-

Y
Observe that |[M| = |C1(M)||2 = 4/2? + y2. Moreover, direct calculations show that A\ = /22 + y?

. . . . . 1 xT Yy .
is an eigenvalue with corresponding eigenvector v, = {_f and —\ is an
2 \/5\/$2+y2 ) \/5\/12+y2 ’

. . . . 1 T Yy
eigenvalue with corresponding eigenvector v_ = {T — — .
2 \/5\/362+y2 ’ ﬁ\/x2+y2

If we consider v, = {O, Y, g+ b §+ 2} it is apparent that v, is the corresponding eigenvector
oY ey

(x2+y2)z
Ty ’

of p=— Then, using (4.1)

2 2\2 2
2 (2° +9y°) 2 2 2y 12
no= ————TEEZF?———— < (17 +vy ) =\
Therefore v, and v_ satisfy the condition of Theorem 1 and M is minimal.
Cases 2 and 3 are proved in a similar way.
Let us consider now case 4. Note that in this case it can be computed the spectrum o(M) =

12y2+$222+y22

2,2 2,2 2,2 2 . P . . .
i has multiplicity one and its eigenspace is generated
2xyz

{ T } . The eigenvalue

by v = (zy,xz,yz). The eigenvector mv is triangular in the sense of [1, Definition 3.2| because it

satisfies inequalities (4.2). That is, the coordinates of v o T can form the sides of a triangle (any
coordinate is bigger than the sum of the two others). Under these hypothesis there is another
triangular vector w orthogonal to v (see |1, Proposition 3.5]). Therefore, w belongs to the dimension

. 2,2, .2.2,,2.2
two eigenspace of — &Y T E T E

577 . Then using Theorem 1 M is minimal.

O

Remark 2. From the proof of the previous theorem follows that in the first three cases the norm of
the matrix is the norm of the column that has a zero entry being this the column with greatest norm.
The first three cases verify that |u| < A and the fourth that |u| = A.

Theorem 3. If x,y,2z € R, x,y,z # 0, then
0 T =Y
M = —x1 0 Z 1
yi —z1t¢ O
s minimal.

Proof. The eigenvalues of M are: +4/22 + 3% + 22 and p = 0. Then

TA/2? + Y% + 2% + iyz %+ 22 1

\/i(z«/x2+y2+22—ixy>, \/§<xy+iz«/x2+y2+z2)’\/§

vy =
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is an eigenvector associated to /x2? + y? + 22, and
A/ 2% + y? + 2?2 —iyz 2?2 4 22 1
ﬁ(z«/a:2+y2+z2+ixy) ﬁ(azy—z’z«/:ﬂ—i—yﬂ—i—z?) V2

an eigenvector associated to —4/x2 + y? + z2. Clearly v, and v_ satisfy Theorem 1 and therefore M
is minimal. [

Remark 3. Let z,y,2 € Ryy and o, 3,y € R. Then if

a z e ye W
M=| ze b z e (4.3)
yel ze ™ ¢

15 a minimal matriz, its characteristic polynomial is
Pylt] = = +*(a+b+c) +t(—ab—ac—bc+2* +y* + 2%) + (04)
+ abc — az® — by* — ca® + 2xyz cos(a + B + 7). '

Therefore, if cos(f) = cos(a + B + v) (where we can chose 0 < 6 < ) then the following matriz

a xze? oy
My=| xe ™ b 2 (4.5)
Y z c

is also minimal. The reason of this fact is that Py[t] = Pu,[t] including how the terms x, y, z, a,
b, ¢ and cos(0) = cos(a + B + ) appear (this implies that changing a, b, ¢ the norm of My cannot
be made smaller without contradicting that M is minimal). Therefore My is also minimal with the
same minimizing diagonal as M.

This is also obvious if we see that My = UMU* for U the unitary diagonal matrizx

el 0 0
U=| 0 el ¢ : (4.6)
0 0 eila=p)
a xe? y
Proposition 4. Let x, y, z€ Rog and 0 € [0, 7] such that My = | e b 2 | is minimal
Yy z ¢
Then the following self-adjoint matrices are minimal as well as their transposes (with a, b, ¢ the same
b xze? 2 c zel y b ze? x
as those of the diagonal of My): | xe ™ a y |, | ze® b x|, | 2ze? ¢ vy |,
z y c y T a x y a
a wyel zx c ye 2
ye @ ¢ 2z |, | ye? a x |. Moreover, the factor € can be in any of the z, vy, =
x z b z x b

entries above the diagonal of the previous matrices (completed conjugated below the diagonal) without
changing the minimizing diagonal.
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Proof. The proof follows after similar considerations as the ones done about the characteristic poly-
nomials of the matrices in the previous Remark 3. It can also be proved using conjugation of My by

e 0 0 1 0 0
permutation matrices or permutations of the unitary diagonals 0 10,10 et 0 |or
0 01 0 0 1

0
0 and using that those conjugations produce matrices whose eigenvectors are permu-
00 eiz‘a

tations of the coordinates of eigenvectors of My or permutations with one coordinate multiplied by
e*_ The proof is completed using this property relating the modulus of the coordinates of the eigen-
vectors of minimal matrices (see Theorem 1), the fact that they correspond to the same eigenvalues
of My and the fact that M is minimal if and only if M* is minimal. O

Remark 4. Observe that using the above Remark 3 and the Proposition 4 we can suppose that
M = My as in (4.5), since any other matriz has its minimizing diagonal equal to one of this type or
at least a permutation of its diagonal. Moreover since minimizing diagonals have been described in
the cases an off-diagonal entry of the matriz is zero (see Propositions 2, 3) and in the real case (see
Theorem 2) we can also suppose that

e 0 <0 < 7 (because the cases = 0 or § = 7 have the same minimizing diagonals that the
real symmetric matrices and for other 0 ¢ (0,7) is enough to consider the case of 61 € (0,7)
such that cos(6y) = cos(#)) and that
e x>y =z>0 (in view of Proposition 4).
Note that the above Proposition 4 and the previous Remark 3 prove that if two matrices have its
off-diagonal entries with equal module (even if they are permuted in their positions) and if cos(0) =
cos(a + S+ ) (with o, 5,7 as in (4.3) and 6 as in (4.5)) then its minimizing diagonals coincide
(with the corresponding permutations if necessary).

Remark 5. The unique minimizing diagonals are continuous functions of z,y, z and 6.

If My € M"(C) is a minimal matriz as 4.5 with x,y, z not null and 6 € R, then its diagonal is
unique (see Proposition 1). Denote with O(My) = My — Diag(My) the matriz with the same off-
diagonal entries than My and zero diagonal (recall that Diag(My) is the diagonal matriz with the
same diagonal of My). Suppose that M,, € M"(C) (for m € N), are minimal matrices with non
zero off diagonal entries and liny, ., O(M,,) = O(Mjy). FEventually choosing a subsequence we can
suppose that Diag(M,,) converges to a real diagonal Dy (this follows considering that the sequence
Diag(M,,) must be bounded and therefore has an accumulation point).

Suppose that Dy # Diag(My). Then given € > 0 and choosing mg such that |O(My) —O(M,,)| < e
and || Diag(M,,) — Dy|| < € for all m = my. Then

IO(Mo) + Do| = [O(Mp) = M, + Do

|O(My) — O(M,,) + M,, + Dy — Diag(M,,))|

< e+ |Myl+e

< 2+ ||O(M,,) + D| =2 + |O(M,,) £ O(My) + D|
< 3e+ |O(My) + D)|

for every real diagonal D and € > 0. This contradicts the uniqueness of the minimal diagonal of
O(My). Therefore limy, o Diag (M,,) = Dy = Diag(My). This proves the continuity of the map that
carries x,y, z,0 to the entries of the unique diagonal of the minimal matriz corresponding to O(My).



8 KLOBOUK AND VARELA

a eV x
Corollary 1. Let v e Rog and 0 <@ <m, then M = | ze® bz |is minimal if and only if
x x  c

azbzcz—a:cos(e%7r .

Proof. The equality a = b = ¢ follows from the previous considerations. If we set a = b = ¢ =
—T COS (G’LT”) the eigenvalues and eigenvectors of M can be explicitly computed. Then using Theorem
1 it can be proved that M is a minimal matrix with that choice of a, b and c. This is the only possible

choice because the minimizing diagonal is unique (see Proposition 1). O

Proposition 5. Let M be a matriz as in (4.3) with x,y,z € Ry, a,f,7,a,b,c € R. Then the
following statements are equivalent:

i) a+B+y=kr+J withkeZ anda=0b=c=0,

(il) M is minimal and o(M) = {\, =\, 0}, for A = | M|.

Proof. ()= (ii). fa+ 8+~ =kr+ § and a = b = ¢ = 0 it can be checked that the eigenvalues of

M are £\ = +4/2? + y2 + 22 and 0 and that there are corresponding eigenvectors of +\ that satisfy
Theorem 1. Therefore (ii) holds.

(ii)=(i). If M satisfies (ii) then its characteristic polynomial is Py/[t] = —t> + t*(a + b + ¢) +
t(—ab — ac — be + 22 + y* + 2%) + abc — az® — by? — ca® + 2zyz cos(f) where § = a + $ + 7. In this
case since o(M) = {\, =\, 0} then Py[t] = —t3 + t\? (see |1, 3.3] for details). The condition (ii)
implies that tr(M) = 0 = a + b + c and that

IM|? = A\ = —ab—ac — be + 2% + y* + 2°. (4.7)
Note that
tr(M?) = 2X =(a®+2°+3°) + (2 + 0 + 2*) + (y* + 2° + &)
= 2(—ab—ac—bc+ 2* +y* + 2?)

and then a® + b* + ¢ = 2(—ab—ac —bc) = 0. Therefore using (4.7) if | M| is a minimum for a, b, c,
then @ = b = ¢ = 0. Then, the coefficient of Py given by abc — az? — by* — ca® + 2xyz cos(d) =
2zyz cos(f) = 0. Therefore cos(f) = 0 and a + 8 + v = k7 + § with k € Z.

O

Corollary 2. Let M be a matriz as in (4.3) with x,y,z € Rog, o, ,7,a,b,c € R. If M is minimal
then the following statements are equivalent:
i) a+p+y=kr+3, forkel,
(ii) a=b=c=0,
(iii) (M) = {\, =X,0}, for X = |[M].

Proof. The proof is direct using Remark 3, Propositions 1 and 5. 0

Proposition 6. If My as in (4.5) is a minimal not null matriz such that (M) = {\, u, —A} with
|| = A, then x,y, z must be nonzero and 6 = km, with k € 7.

Proof. Tt is easy to prove in this case that M7 = A?I and then the columns of M, are orthogonal
vectors of norm A. Easy calculations then prove that if one of the off-diagonal entries of Mjy is zero
then all the others must be zero. Then it must be x # 0, y # 0 and z # 0.

Then it is apparent that aze? + bze? + yz = 0 and then iasin(f)z + ibsin(f)z = 0 and if we
suppose sin(f) # 0 it implies that a = —b.
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In the same way we can prove that aye " +cye ™ +x2 = 0, and then a = —c, and bze? +cze? + 2y =
0 which proves that b = —c. Therefore a = —b = —(—¢) = —a and then a = b = ¢ = 0. Nevertheless
a+b+c=pu#0, then it must be sin(f) = 0, and then § =k ke Z . O

Theorem 4. If M € M} (C) is a minimal matriz with nonzero off diagonal entries and spectrum
{A =AY (|M] = X = |u|), then there exist corresponding orthogonal eigenvectors vy, v_y and v,
such that

M=\ (0Quy) — A (V_A®v_y)+u (v,Qu,),
N =X (u®uvy) — A (v_x®v_y) is minimal and Diag(p (v, ®v,)) =Diag(M).

Proof. Let us suppose first that |¢| < A. Then all eigenspaces have dimension one and any choice of
the eigenvectors vy, v_y corresponding to A and —A\ verify Theorem 1. Then using the same theorem
N is minimal, and using Proposition 5 then Diag(/N) = 0. Therefore Diag(y (v, ® v,)) =Diag(M).
If || = A then one of the eigenspaces corresponding to A or —\ has dimension two. Since M is
minimal there exist eigenvectors vy and v_) corresponding to the eigenvalues A and —A such that
vy0oTy = v_)o0_ (Theorem 1). Pick this eigenvectors and any other v,, orthogonal to both of them.
Then it can be proved similarly as above that they satisfy the claims of the theorem. U

Proposition 7. Let My, M, € C**3 be two minimal matrices with the same diagonal and eigenvalues
{\, p, =}, with 0 # |p| < A, given by

a xo ey e P a x ey e P
My =1 xzge b zo €70 and M; = | x4 e b zp et |,
Yo ePoi 5y e 0 c mn ePri 5 e c

with xo, Yo, 20, T1, Y1, 21, € Roo.
Then xo = x1, Yo = Y1, 20 = 21 and cos(ag + Bo + 7o) = cos(ay + B1 + 7).

Proof. My and M, are matrices of non-extremal type in the sense of definition 3.5 of [1]. Note that
i =a+0b+c # 0. Following the same notations of (3.9) and (3.10) of that paper for «, 3, v,
(n12)0, (m12)0 (fOI' Mo) and (nlg)l, (mlg)l (fOI' Ml), then it must be o = m, B = m and
7 = 5157 Lhen, considering all the cases, it can be proved that zo = |zo| = i (n12)g+ A (Ma2), | =
|1t (n12); + A (maz2), | = |z1] = z1. The same reasoning could be done to prove yo = y; and zy = 2.
Finally cos(ag + By + 70) = cos(a1 + 51 + 71) because the coefficients of the characteristic polyno-
mial of each matrix are determined by {\, i, —A} and using (4.4) we obtain that —A\p = abc — az? —

by? — cx? + 2zyz cos(ag + P + 7o) = abe — az? — by? — cx?® + 2xyz cos(ay + B1 + 11)- O
We state here the following result that was already mentioned in Remark 4.

Proposition 8. Let My and My be matrices with the structure of those of Proposition 7. If thewr
off-diagonal entries have equal modulus o = x1, Yo = Y1, 20 = 21, and cos(ag + Bo +70) =
cos(ay + B1 + M), then both matrices have the same minimizing diagonal.

Proof. The proof follows reducing each matrix to one like My as in Remark 3 and then applying

Proposition 4. 0
a z ey

Theorem 5. Let ,y,z€ Rog, 0 e R and M = | xe® b 2z | be a minimal matri.
Y z  c

Then there exist o, 3, v € [0, 7] such that:
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(i) cos(a+ B+ ) = cos(0).
(ii) The matrices N, S defined by

0 tx sinae —iy sinf a x cosa y cosf
N=| —iz sina 0 iz sin7y and S =| x cosa b 2 CcosY (4.8)
ty sinff  —i z sinvy 0 y cosfB z cosy c

satisfy that:

a) Diag(N + S) = Diag(M),

b) Ifveker(N) with [v)]=1 = S=(a+b+c)(v®u),

c) My=N+S is minimal,

d) My is unitarily equivalent to M or to M* by means of unitary diagonals.

Proof. Let us suppose that o(M) = {\, u, —A} with |u| < A = |M]. Then, using Theorem 4, it can
be proved that there exist vy, v_y and v, orthonormal eigenvectors of A\, —A and p respectively, such
that M = N + 5, with N = Avy ® v)) — A(v_) ® v_,) a minimal matrix with Diag(N) = 0 and
S = p(v, ®v,) satisfies Diag(S) = Diag(M) (even in the case |p| = ). Let v, = (r,s,t), then it is
apparent that a = p |r|?, b= p |s|?, ¢ = u [t|*. Furthermore defining £ = |r|, ¥ = |s| and ¢ = [/, the

0 1 ¢ —i
matrix Ny =A| —i( 0 i€ is a minimal matrix and | N;| = A. Moreover, v = (&, 1, ()
vy —1 &0
is an eigenvector corresponding to the eigenvalue 0 of V.
& & &«
Let Si = p(v@uv)=p | & ¥* ¢
¢ @ ¢

By construction N; is minimal with o(Ny) = {),0, —=A} and o(S1) = {u, 0}. Then,

pg? P& + 1 A p€ ¢ — i AY
My =N+ 51 =| mp§— i AC pp? ppG + 1 AL
HCE+i A QY — i A e
has the same diagonal than M and o(M;) = o(M).

If 11 = 0 then the diagonal of M must be zero and, using Proposition 5, it must be 6 = k7 + 7 for
k€ Z and A = 4/2% + y? + 22. Then, choosing ¢ = z/\, ¥ = y/\, £ = z/\, and a = f =y = 7/2 if
0=02k+D)r+mn/2, withkeZ,ora=p0=~v=—7m/2if 0 =2kn + /2, with k € Z, follows easily
that V; is unitarily equivalent by means of diagonal matrices to M, and therefore the theorem is
proved in this case.

If i # 0, using Proposition 7, then it must be z = |ué+i A|, y = |p€¢—i M| and z = |pup(+i AE|.
If we consider 0 < arg(z) < 27 and define

o =arg(psy +1i X¢) , B =21 —arg(ué¢ —i M) , v = arg(uy¢ + 1 AS), (4.9)

and 01 = a + 4 7, then «, 3,7 € [0, 7] and from Proposition 7 follows that cos(#) = cos(f;).
Moreover M, is unitarily equivalent by means of unitary diagonals to My, (see (4.5) and (4.6)).
Since My, = My, or My, = M_4 = (Mg)t, then M is unitary equivalent (by means of unitary
diagonals) to My or to its transpose. Choosing «, 8 and « as have been defined before and putting
N = N; and S = S the items (i) and (ii) of the theorem follow. O

Remark 6. With the same notations and hypothesis as those of Theorem 5 and its proof and using
the fact that My = N + S is a minimal matriz we can consider different cases
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e Two of the numbers , &, 1 cannot be zero simultaneously because otherwise My would not be
equivalent to M by means of diagonal unitary matrices with x,y,z € Reg.

e If only one of C, &, ¥ is zero, My is equivalent to a real matriz by means of diagonal unitary
matrices (see (4.9) and Remark 3).

e If ¢, &€ and ¢ are all not null and p #0 (0 # kr + /2, k € Z), since we are supposing \ =
|M|| = | Mol follows that Im((Mp)12) = xsina = A # 0, Im((Mp)13) = ysinff = X # 0
and Im((Mo)23) = zsiny = X, # 0. Therefore, in this case (since x,y,z € Rog) sina # 0,
sin f # 0 and sinvy # 0 and also (since p # 0) cosa # 0, cos 5 # 0 and cosy # 0.

Then it can be verified that

1
v/ (zsina)? + (ysin 8)2 + (zsinv)?

s an eigenvevector of My. Therefore by construction

vy, = (zsin+y, ysin 5, x sin «) (4.10)

(a+b+c)(zsiny)? (a+ b+ c)(ysin B)? (a+b+c)(zsina)?
“ N b= ¥ 0T ¥

and \? = (zsina)? + (ysin §)? + (zsin~)?.

As we proved before the cases 0 = krw/2 (k € Z) are equivalent to pn = 0 or My being equivalent
to a real matriz by means of diagonal unitary matrices (see Remark 3). Then considering 0 # km/2
(k € Z) it can also be proved that only the following corresponding disjoint cases can occur:

a) Iffe(m3r)then0<a<m/2,0<B<7/2and 0 <~y <m/2,
b) If0e (3m2m) thenm/2 <o <m, m/2<f<mand w/2 <~y <.

Proposition 9. If 0 # kxn/2 with k € Z and with the hypothesis and notations of Theorem 5 and
its proof, then the angles o, B and 7, and the matrices M and My = N + S fulfill the following
conditions:

1) cosa #0, cos B # 0 and cosy # 0

2) z%sin(2a) = y?sin(28) = 2%sin(2y)

3) |M|? = ||Mo|? = (zsina)? + (ysin 8)* + (zsiny)?

) DZG,Q(M()) :DZGQ(S) :DZCl,g(M) :(zy cos(a) cos(3) 7 xz cos(a) cos(y) 7 yz cos(f3) cos('y))
)

=~

zcos(y) ycos(B) x cos(a)
(zsina)? + (ysin §)? + (zsiny)? > (zyc‘”(“) cos(B) | zzcos(@)cos(y) 4 yzcos(f) C"Sm)2

5

zcos(7y) ycos(B) x cos(a)

Proof. Ttem 1) has been proved in the preceding Remark 6 in the case p, ¢, & and ¢ all not null.
Pick v, as in (4.10). Then Si» = zcosa = ((a+b+c¢) (v, Quy)),, = peysinysinB - Thus 4 =

X COS &
zysinysin -
Reordering we obtain

Similarly, considering S; 5 we obtain 4 = —28__ and therefore —2se  — _ycosf
’ ) A zx siny sin « zysinysin 8 zx sinysin

22 sin 2a = y*sin 2.
Using S13 we obtain {3 = ——>1— and reasoning as before we can prove 2).
) zysinasin 8

From (ii) d) of Theorem 5, is apparent that M, and M have the same norm (that of N) and
diagonal (that of S). The norm of N is 4/(zsina)? + (ysin 8)2 + (z siny)? which proves 3).
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Using again the same v, as in (4.10) we obtain
Siq = p(z sin'y)2/)\2
_ (pCEHERD) (=R (357) _ Sip Sis

: (u(=52) (=52)) Sas
_ (zcosa)(ycosB)  xycosacosf3

(zcos) ~ zcosy

The formulas for Sy and S35 are obtained similarly which proves 4).
Items 3) and 4) imply 5) because since M is minimal, then tr()) is an eigenvalue of M and
therefore tr(M)? < | M|

]
Proposition 10. If o, 5, YR, o, 5,7 # kr/2 with k€ Z , and z,y,z € Ry, My = N + S, with
0 tx sina —iy sinf
N=| —tx sina 0 1z siny and
1y sinff  —i z sinvy 0
%&2‘;5(5) T cosa y cos 3
. xz cos(a) cos(7)
S = T cosa W Z cos7y
y cosf3 Z Cos7y —y“;s(fi )(35(7)

and o, B, v, x,y, 2 satisfy:
1) 2?sin(2a) = y?sin(26) = 2?sin(27)

2
2) (osina)? + (ysin )7 + (ssinn)? > (L) 4 emlolnt) y peonlihente)

then, NS = SN =0 and My = N + S is minimal.

Proof. Using 1) follows that NS = 0. Furthermore S has rank one and N rank two. Then ran(S) =
ker(N) and ker(S) = ran(N) and o(S) = {0, tr(S)}. Therefore if we call

A = q/22sin’(a) + y? sin?(B) + 22 sin?(y)

follows that o(N) = {0, A\, —=A}. Then o(N + S) = {tr(5), A, —A}, and using 2) then My = N + S
verifies | M| = |N| = A = 4/22sin’(a) + y2sin?(B) + 22sin’(y). Furthermore the eigenvectors of
My corresponding to the eigenvalues £\ are the same than that of N (that is a minimal matrix
because of Proposition 5) and therefore they verify the conditions of Theorem 1. Therefore M is
minimal. 0]

Theorem 6. Given a minimal matrix of the form

a xe?f y 3
M= ze™ b 2z |withez>y=>2>0andfe <§7r, 27r) (4.11)
Yy z  c

then there erist unique a € (7/2,3x), B € (7/2,37], v € (7/2,7) which are continuous functions
of 0, x, y, z such that:

(1) a+B+vy=10
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(2) The matrices N, S defined by

0 tx sinae —1y sinf
N=| —iz sina 0 1z siny (4.12)
1y sinf8  —i z sinvy 0
and
a x cosa y cosf
S=| 7 cosa b Z Ccos7y (4.13)
y cosfB z cosvy c

verify that:

a) Diag(N + S) = Diag(M)

b) Ifveker(N) withveR3 and |v|=1 = S=(a+b+c)(v@v)

¢) My= N+ S is minimal.

d) My is unitarily equivalent to M or to M* by means of diagonal unitaries.
and

)

1) z?sin(2a) = y*sin(26) = 22 sin(27)
2) M = [Mo]? = (zsina)? + (ysin §)? + (=5in)?
3 ) DZCLg(Mo) _ Dmg(M) _ (:vy cos() cos(B) 7 xz cos(a) cos(7) : yz cos(f) Cos('y))

)

z cos(7y) ycos(f) x cos(a) )
©) (osina)? + (ysin B + (zsinn)? > (LRGSR 1 meies)

Proof. 1t only remains to prove that for 6, z, y, z fixed the angles «, 5 and v that fulfill the
conditions of the Theorem are unique, that they can be chosen in the specified intervals and that
they are continuous functions of 6.

Analyzing the signs of the real and imaginary parts of the complexes such that their arguments
define the angles o, § and ~ that appear in the proof of the Theorem 5 we can conclude that in
this case, (since we can prove that u < 0 < 6 € [37,2n]) we can choose .3,y € [r/2,27]. If we
consider < 0 (p = 0 corresponds to 6§ = 37/2 that as Corollary 2 states it has the same minimizing
diagonals than those considered in Theorem 3), then we can suppose that (for a, 5, v from Theorem
5) . = xcosq, Ts = xsina, Y. = ycos 5, ys = ysin B, z. = zcosy and z; = zsin~y are all non zero
(as it was discussed in Remark 6). Then using the inequality 4’) we obtain

2.2 2( 2 2 2 2 2 2.2 2_2\2
ZelYe X ('rs + Ys + Zs) = (xcyc + TeZe + yczc)

and with 17), if we denote with k = x.xs = y.ys = z.2s we can prove that
K = (a2y2 + 2222 + y2z?) (4.14)
We will prove first that o« ¢ (%W, 7). Suppose that « € (%71’, 7) and consider two cases:

a) B € (o, m): in this case since z.xs = ycys A y < x then sin(f) < sin(w), ys < x5 then
zs < |xc| < |y.| and then

K = wiwd < yiwg < (woy; + wiz +yez)
which contradicts (4.14).
b) Be (7/2al:

(i) if 5 € [3/4m, ] then |ys| < |y.| < |z.| and then
B =gy < wlye < (weye + w0z + vzl
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4.5-

T

XY = 2oty =lyays =720 ~ —1.21

Y
45 -4 -{.5 3 -2.5\ 2 &1.520 1 -0.5%

FIGURE 1. The corresponding o, 8 and v for 6 = 6., v = 3.5, y = 2.3 and z = 1.6.

which contradicts (4.14).
(i) if g € (7/2,3/4m) we will compare |z.| with y,
(iiy) If |z.| = ys then
kK = ylye < atyp < (alye + a2zl +yizl),

which contradicts (4.14).

(iip) If |z.| < ys then (recall that z.,y. < 0) ys + . > 0. Moreover 22 + 2? = 2% >
v = y? + 92, then (v, + x.)? = 22 + 2z.2. + 2 > v + 2ysye + Y2 = (ys + y.)?, and then
|zs +xe| = |ys + yel|, but 0 < x4 < |z.| and 0 < |y.| < ys, which proves that —z; — 2. = ys + ye.
Then —xs — y. = ys + x. > 0 and hence —y. > x, holds and

k= alag < yowgp < (woyp + 22z +y27)
which contradicts (4.14).
Then a ¢ (27, 7) holds and if § € (37, 2n) then o € (7/2, 37].
Similarly, comparing |y.| with |z.| it can be proved that § ¢ (%71’,71’) and therefore 5 € (7/2, %7‘(],
and that vy € [B, 37 — 8] < [7/2, 7] (see Figure 1).

Uniqueness:
The angles o and [ are unique in this intervals because they must fulfill the conditions z.zs =

Yeys = k, m/2 < o < 37 and m/2 < B < 37. If there are two different angles v and 7' in (7/2, 7) that
fulfill the conditions of Theorem 5 and Proposition 9, then the only posible case is that one belongs
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to (B, %7?) and the other one to (37r, 377 — f). Suppose that § < v < 7r and —7r <+ 37r — B.
then only 7/ satisfies the conditions of Proposition 9. This is because, if both sat1sfy the mlnlmahty
conditions of that proposition, then A\ = |M| = (zsina)? + (y sinﬁ)2 + (zsiny)? = (zsina)? +
(ysin 8)% + (2sinv’)?, a contradiction because sinv’ < sin~.

If x,y, z are fixed, we denote with o = «(0), 8 = () and v = () the angles that are uniquely
determined by 6 in the corresponding intervals. If we trace the definition of these angles given in
4.9 of Theorem 5, it can be seen that it is a continuous application with respect to 6 (and also with
respect to x,y,z).

The sum of a, £, and v gives 6:

Considering that 0 € (37,2m), (), 5(0) € (7/2,2 ), and v(0) € (B(0), 2 — 3(F)) then 3/2 7 <

a(f) + B(8) +~(0) < 9/4 7. Therefore, since cos (a() + 5(6) + v(6)) = cos(f), then by continuity
and uniqueness arguments o(f) + 5(6) + v(€) = 6 holds for every 6 € (%W, 27).

O

Remark 7. Given a minimal matriz My as in 4.11 with 6 = %TF, v 2>y >=2z>0 then 0(Msgp) =
{\,0,A} (see Corollary 2). My has the same minimizing diagonals than those matrices considered in
Theorem 3. Then we can define a(m/2) = B(7w/2) = ~v(7/2) = /2 and they satisfy 1), 2) and 1°)
through 4°) of Theorem 6. As we will see this definition makes «, B and v continuous in terms of
0 € (m,2m).

In the case 0 € (m, 3m) let us consider §' = 3w — 0. Then 0' € (37,27) and if we denote with o, '
and 7' the solutions which existence was proved in Theorem 6, then it is enough to take a = 7 — o/,
B =m—p" andy =7 —~" and verify that these angles o, 5 and ~y € (0,7/2) satisfy all the required
conditions 1), 2) and 1°) through 4’) of Theorem 6.

If 0 € (3m,2m) it is apparent that if 6 is close to 3w then a(6), 3(0) and v(6) from the previous
Theorem must be close to /2. Then o, 5 and~y are right continuous in 6 = %7‘(‘, i.e. limg_,3 0+ () =
limg_,37/0+ B(0) = limg_,3,/0+ Y(0) = 7/2. Similarly it can be proved that o, 3 and ~y are left continuous
in 6 = §7r

If 0 € (m, 7T) then similar considerations as the ones made before (using the proven uniqueness,
continuity cmd sum of a, B, v of the previous case) prove that also in this case a + [+ = 6.

If 6 = %71’ choosing o = B = v = w/2, then obviously o + 5+ v = 0, and because of the previous
considerations o, B and v are continuous functions of 6 in the whole interval (7, 2m).

Remark 8. Algorithm. Given a generic Hermitian matriz it can be conjugated with diagonal
unitary matrices (see remark 4 and Proposition /) to obtain a matriz with the structure My =
a xe? y
ze® b oz |withe>=y=z>0andfel02n).
Y z  c
We discuss next how to find the diagonal matrices that added to My give a minimal matrix.
Case # =0 or 0 =m:
In this case the minimizing diagonal coincides with that of the real case (see Proposition 6) and
therefore it was computed exactly in Theorem 2.
Case 0 < 0 <
This case corresponds to the transpose of a matriz from the case where 0 < 6 < 27 that has the

same minimizing diagonal. That is, if 0y € [0,7), then —0y € (—m,0] and the minimizing diagonal
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corresponding to 0y is the same that the one corresponding to —0y that is described in the following
case.

Case ™ < 6 < 2m:

Using the results and notations of the previous theorem for a minimal matriz M with the structure
of (4.11) and considering the cases 1 € (—\,0) (that is equivalent to 6 € (3m,2m)), or p € (0, ) (that
is equivalent to 0 € (m, %W)), or it =0 (that is equivalent to 6 = %71’), then it can be proved that the
unique angles o€ (/2,3m), B e (7/2,37), v € (B, 37 — B) from Theorem 6 must satisfy

1 2 sin(2 1 2 sin(2
a+pf+~vy=60 , «a=—|nm—arcsin M , [ ==|m— arcsin M

2 x? 2 y?
Observe that the uniqueness of these angles in the specified intervals for each 6 and under the condi-
tions

a+pf+y=10
2% sin(2a) = y*sin(28) = 2% sin(27y)
xy cos(ar) cos(f) L T cos(a) cos(7y) LY cos(8) cos(7)\
z cos(y) y cos(f) x cos(a)

(zsina)? + (ysin B)? + (zsiny)? = (

imply that the root of

1 2sin(2 25in(2
—<27r—arcsin (M)—arcsin (&;7))>+7—6=0
Y

2 T

closer to v = %7‘( 18 the wanted solution and is easily approrimated by a standard numerical method.
After obtaining v with the desired precision «, 5 and the wanted minimizing diagonal
Diag (xy cos(a) cos(B) xzcos(a)cos(y) yzcos(f) cos(v)) .
zcos(y) 7 yeos(B) 7 wcos(a)
can also be approximated as much as needed.

To obtain the minimal matriz corresponding to the original matriz M, then the inverse conjugation
with diagonal unitary matrices used to obtain My may be required. This inverse conjugation applied
to the minimizing diagonal of My gives the minimizing diagonal of M. Note that this operation can
only change the order of the diagonal entries.

5. SOME n X n CASES

In this section we describe the minimizing diagonals for some particular n x n Hermitian matrices.

Theorem 7. If M € C"*" is a Hermitian matriz such that diag(M) = 0 and Re(M, ;) = 0 for all
1,7, then M is minimal.

Proof. Let us suppose that v, is an eigenvector of A = |[M|. Then, it is apparent that —\ € (M)
and that the vector vy is an eigenvector of —A\. Since |(vy):| = |(Uy):] for every i, a generalization of
Theorem 1 (see |2, Corollary 3|) proves that M is minimal. O

In the next theorem for M € C™*" we denote with C;(M) the j™ column of M, with M; the matrix
in C("=1>*(=1 resulting after taking off the k" column and row of M and with v; the element of
C"! obtained after taking off the k"™ entry of v e C™.

Theorem 8. Let N € R™*" be a symmetric matrix such that
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o its k'™ column Ci(N) satisfies that C,(N); = N;p #0, Vi #k,
0 ifi=k
Ny = (V)G )
® , _c (N]\)fjik(N) if j # k.

o [Nl < ICe(N)2.

Then N is a minimal matriz with |N| = |Cx(N)||2. Moreover, this is the only possible diagonal that
makes N a minimal matriz.

Proof. Note that C;(N) L Cy(N) for all j # k. Let us denote with ¢ = ||Cy(V)]2-
Let {e;}i=1,..n be the canonical basis of C" and define

1 1
\/5 o ( k( ) Cr. Gk) an (% \/5 o

Direct calculations show that |vy|s = |v_|2 =1, Nvy = ¢ vy, Nv_ = —c, v_ and vy -v_ = 0.

Let v be an eigenvector of N, with |v|; = 1 and eigenvalue o # c;. Then it is apparent that
v is orthogonal to vy, v_, e, = \%(m +wv_) and Cx(N) = cvV/2 vy — ¢ ex. Let vy € C"! be
the vector v without its ™ coordinate. Then |o| = [Nuv|s = | N; vz]2 < |[Ng| < ¢ Therefore
IN| = cx = |Cr(N)|2 and since |v; - e;] = [v_ - ¢;| for all i = 1,...,n, then N is a minimal matrix
(by |2, Corollary 3|). Moreover, a direct computation proves that if we choose a diagonal i*" entry
different from N;; and call with N’ this new matrix, then |N'Cy(N)|2 > |Ck(N)|2, which proves
that the diagonal of N is the only possible diagonal that makes it minimal. U

(—Ck(N) + Ck ek) .

U+:

Note that the column Cy(N) = Cy(N) of the previous theorem must verify |Cy(N)| = |C;(N)]
for all 7.
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