
MINIMAL 3� 3 HERMITIAN MATRICES

ABEL KLOBOUK AND ALEJANDRO VARELA:

Abstract. Given a Hermitian matrix M P M3pCq we describe the real diagonal matrices DM such
that

}M �DM} ¤ }M �D}

for all real diagonal matrices D P M3pCq, where } } denotes the operator norm. Moreover, we
generalize our techniques to some n� n cases.

1. Introduction

Let M3pCq and D3 pRq be, respectively, the algebras of complex and real diagonal 3� 3 matrices.
Given a �xed Hermitian matrix M P M3pCq we study the diagonals DM that realize the quotient
norm

}M �DM} � ||| rM s ||| � min
DPD3pRq

}M �D} � dist pM,D3 pRqq ,
or equivalently

}M �DM} ¤ }M �D}, for all D P D3 pRq
where } } denotes the operator norm.
The matrices M �DM will be called minimal. These matrices appeared in the study of minimal

length curves in the �ag manifold Ppnq � U pMnpCqq {U pDnpCqq, where UpAq denotes the unitary
matrices of the algebra A, when Ppnq is endowed with the quotient Finsler metric of the operator
norm [5]. Minimal length curves δ in Ppnq are given by the left action of U pMnpCqq on Ppnq. Namely

δptq � �eitMU� ,
where M is minimal and rV s denotes the class of V in Ppnq. Moreover, the natural questions and
some particular examples that appear from the geometric description of these objects are related
to problems that appear in other contexts: problems of minimization of operators related with
optimization and control ([6, 8]), matrix analysis ([4, 7]), Leibnitz seminorms ([9, 10]) and unitary
stochastic matrices ([2]).
Previous attempts to describe minimal matrices and their properties were done in [1] and for 3�3

matrices. In that paper, all 3� 3 minimal matrices were parametrized. We stress that there are no
known results showing which is the minimizing diagonal of a given Hermitian matrix M (except on
trivial cases).
Several recent approaches have been made to describe the closest diagonal matrix to a given

Hermitian matrix (see for instance [9], [2] and [1]). These papers give qualitative properties that
describe properties of these matrices and even parametrize all the solutions. Nevertheless the problem
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of �nding the diagonal matrix or matrices closest to a concrete Hermitian matrix remained open even
for the �rst non trivial case: 3� 3.
Our goal in the present paper is to study this problem for 3� 3 minimal matrices and some n� n

cases where the 3� 3 techniques can be extended.

2. Preliminaries and notation

Let MnpCq denote the algebra of square n � n complex matrices, Mh
n pCq the real subspace of

Hermitian complex matrices, and DnpRq the real subalgebra of the diagonal real matrices. The
symbol σpAq denotes here the spectrum of A, that is the (unordered) set of eigenvalues of A. We
denote with }A} the usual operator norm or spectral norm of A PMnpCq and with }C}2 the euclidean
norm for C P Cn.
We denote with teiuni�1 the canonical basis of Cn. Given a matrix A PMnpCq, we denote with Ai,j

the i, j entry of A and we write A � rAi,js for i, j � 1, . . . , n.
For M P MnpCq we denote with MN the usual matrix product, with trpMq the usual (non-

normalized) trace of M and with CipMq the vector given by the ith column of M .
For pa1, a2, . . . , anq P Rn we denote with diagpa1, a2, . . . , anq the diagonal matrix of Mh

n pRq with
pa1, a2, . . . , anq in its diagonal. Nevertheless, if M P MnpCq, then DiagpMq denotes the diagonal
matrix de�ned by the principal diagonal of M .
Observe that if M PMh

n pCq and D P DnpRq then pM �Dq PMh
n pCq. Let us consider the quotient

Mh
n pCq{DnpRq and the quotient norm

||| rM s ||| � min
DPDnpRq

}M �D} � dist pM,DnpRqq

for rM s � tM �D : D P DnpRqu PMh
n pCq{DnpRq. The minimum is clearly attained.

De�nition 1. A matrix M PMh
n pCq is called minimal if

}M} ¤ }M �D} for all D P DnpRq,
or equivalently, if }M} � ||| rM s ||| � min

DPDnpRq
}M �D} � dist pM,DnpRqq.

De�nition 2. Let M P Mh
n pCq and D P DnpRq such that M � D is minimal. Then D is a mini-

mizing diagonal of M .

For a matrix M PMh
3 pCq with at least two non zero o�-diagonal entries this minimizing matrix is

unique (see [1, Theorem 3.15] for a proof):

Proposition 1. If M PMh
3 pCq is a minimal matrix and at least two of M1,2, M1,3 and M2,3 are non

zero then the values of its minimizing diagonal are unique.

Remark 1. Note that if M PMh
n pCq is a minimal matrix then its spectrum is centered in the sense

that }M}, �}M} P σpMq. In general, for a given matrix A P Mh
n pCq, �}A} P σpAq if and only if

}A} � min
λPR

}A� λI} if and only if λminpAq � λmaxpAq � 0. Note that this implies that if M PMh
3 pCq

is a minimal matrix then in particular σpMq � t}M}, µ,�}M}u for |µ| ¤ }M}, µ � trpMq.
Throughout the paper, for a given non-zero minimal matrix M PMh

3 pCq, we denote with σpMq �
tλ, µ,�λu the spectrum of M , for 0   λ � }M}, |µ| ¤ λ and µ � trpMq.
Given v � pv2, v2, v3q P C3, v b v denotes the matrix such that pv b vqi,j � vivj for i, j � 1, 2, 3.
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For M PMh
3 pCq and v P Cn we write M and v to denote the matrix and vector obtained from M

and v by conjugation of its coordinates.
If M,N P Cn�m we denote with M �N the Schur or Hadamard product of these matrices de�ned

by pM � Nqi,j � Mi,jNi,j for 1 ¤ i ¤ n, 1 ¤ j ¤ m. Therefore, if v P C3, with coordinates in the
canonical basis given by v � pv1, v2, v3q,

v � v � p|v1|2, |v2|2, |v3|2q �
3̧

j�1

|vj|2ej P Rn
�.

If A P Cn�m we denote with At P Cm�n its transpose, with ranpAq the range of the linear transfor-
mation A and with kerpAq its kernel.

3. Minimal 3� 3 matrices with zero entries

Proposition 2. If x, y, z P C, c P R, |c| ¤ |x|, b P R, |b| ¤ |y|, a P R, |a| ¤ |z|, then the matrices

Mx �
�
� 0 x 0

x 0 0
0 0 c

�

 My �

�
� 0 0 y

0 b 0
y 0 0

�

 Mz �

�
� a 0 0

0 0 z
0 z 0

�



are minimal. Moreover, these are all the possible diagonals that make them minimal.

Proof. Let v P C3 with }v} � 1. It is easy to prove that }Mxv} ¤ |x| for all c P R such that |c| ¤ |x|.
Since }Mxe2} � |x| then }Mx} � |x|. Moreover, if we consider

M �
�
� α x 0

x β 0
0 0 γ

�



with α � 0, then }Me1} � }pα, x, 0q} ¡ |x|. Therefore, }M} ¡ }Mx}. Something similar happens if
β � 0 checking }Me2}. If |γ| ¡ |x| then }M} ¡ }Mx} and therefore Mx is minimal (with |c| ¤ |x|).
The proof for the matrices My and Mz is similar. �

The following theorem is proved in [1, Theorem 3.8]. We restate it here for the sake of clarity.

Theorem 1. Let Mh
3�3pCq with }M} � λ ¡ 0. Then M is minimal if and only if there exist two

eigenvectors v� corresponding to the eigenvalue λ and v� corresponding to the eigenvalue �λ, such
that their coordinates have the same module. That is, if for every ei then |xv�, eiy| � |xv�, eiy| or
equivalently v� � v� � v� � v�.
Using the above theorem we can prove the following proposition.

Proposition 3. Let x, y, z non-zero complex numbers. Then the matrices

Mxy �
�
� 0 x y

x 0 0
y 0 0

�

 Myz �

�
� 0 0 y

0 0 z
y z 0

�

 Mxz �

�
� 0 x 0

x 0 z
0 z 0

�



are minimal. These are the only Hermitian minimal matrices with four non-zero entries outside the
diagonal.
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Proof. A direct calculation proves that the eigenvalues of Mxy are ta|x|2 � |y|2,�a|x|2 � |y|2, 0u
and their corresponding eigenvectors are

v� �
�

1?
2
,

xa
2p|x|2 � |y|2q ,

ya
2p|x|2 � |y|2q

�
,

v� �
�
� 1?

2
,

xa
2p|x|2 � |y|2q ,

ya
2p|x|2 � |y|2q

�

and

v0 �
�
0,� ya|x|2 � |y|2 ,

xa|x|2 � |y|2

�
.

Then using Theorem 1 Mxy is minimal.
This diagonal is unique (see Proposition 1).
Similar results can be proved for Mxz and Myz. �

4. Minimal 3� 3 matrices with non-zero entries

The following theorem describes minimizing diagonals for matrices M with real nonzero entries.

Theorem 2. Real (symmetric) minimal matrices
Let x, y, z P R, x, y, z � 0.


 Case 1: if

x2y2 ¡ z2px2 � y2q (4.1)

then

M �
�
� 0 x y

x �yz
x

z
y z �xz

y

�

 is minimal.


 Case 2: if x2z2 ¡ y2px2 � z2q then M �
�
� �yz

x
x y

x 0 z
y z �xy

z

�

 is minimal.


 Case 3: if y2z2 ¡ x2py2 � z2q then M �
�
� �xz

y
x y

x �xy
z

z
y z 0

�

 is minimal.


 Case 4: if none of the previous cases hold, that is

�x2z2 � y2px2 � z2q ¥ 0 ^ �x2y2 � z2px2 � y2q ¥ 0 ^ �y2z2 � x2py2 � z2q ¥ 0, (4.2)

then

M �

�
����

1
2

�
�xy

z
� xz

y
� zy

x

	
x y

x 1
2

�
�xy

z
� xz

y
� zy

x

	
z

y z 1
2

�
�xy

z
� xz

y
� zy

x

	
�
���
 is minimal.
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Proof. Let us consider �rst case 1. Note that }C1pMq}22 � x2 � y2 ¡ }CipMq}22 with i � 2, 3:

}C2pMq}22 � x2 � y2z2

x2
� z2 � x2 � y2z2 � x2z2

x2
� x2 � z2px2 � y2q

x2
  x2 � y2 � }C1pMq}22,

}C3pMq}22 � y2 � z2 � x2z2

y2
� y2 � y2z2 � x2z2

y2
� y2 � z2px2 � y2q

y2
  x2 � y2 � }C1pMq}22.

Observe that }M} ¥ }C1pMq}2 �
a
x2 � y2. Moreover, direct calculations show that λ �

a
x2 � y2

is an eigenvalue with corresponding eigenvector v� �
"

1?
2
, x?

2
?

x2�y2
, y?

2
?

x2�y2

*
, and �λ is an

eigenvalue with corresponding eigenvector v� �
"

1?
2
,� x?

2
?

x2�y2
,� y?

2
?

x2�y2

*
.

If we consider vµ �
"
0,� y?

x2�y2
, x?

x2�y2

*
it is apparent that vµ is the corresponding eigenvector

of µ � �px
2�y2qz
xy

. Then, using (4.1)

µ2 � px2 � y2q2 z2
x2y2

  �x2 � y2
� � λ2.

Therefore v� and v� satisfy the condition of Theorem 1 and M is minimal.
Cases 2 and 3 are proved in a similar way.

Let us consider now case 4. Note that in this case it can be computed the spectrum σpMq �!
�x2y2�x2z2�y2z2

2xyz

)
. The eigenvalue x2y2�x2z2�y2z2

2xyz
has multiplicity one and its eigenspace is generated

by v � pxy, xz, yzq. The eigenvector 1
}v}v is triangular in the sense of [1, De�nition 3.2] because it

satis�es inequalities (4.2). That is, the coordinates of v � v can form the sides of a triangle (any
coordinate is bigger than the sum of the two others). Under these hypothesis there is another
triangular vector w orthogonal to v (see [1, Proposition 3.5]). Therefore, w belongs to the dimension

two eigenspace of �x2y2�x2z2�y2z2

2xyz
. Then using Theorem 1 M is minimal.

�

Remark 2. From the proof of the previous theorem follows that in the �rst three cases the norm of
the matrix is the norm of the column that has a zero entry being this the column with greatest norm.
The �rst three cases verify that |µ|   λ and the fourth that |µ| � λ.

Theorem 3. If x, y, z P R, x, y, z � 0, then

M �
�
� 0 x i �y i

�x i 0 z i
y i �z i 0

�



is minimal.

Proof. The eigenvalues of M are: �
a
x2 � y2 � z2 and µ � 0. Then

v� �
�
�� x

a
x2 � y2 � z2 � iyz

?
2
�
z
a
x2 � y2 � z2 � ixy

	 ,� x2 � z2
?
2
�
xy � iz

a
x2 � y2 � z2

	 , 1?
2

�
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is an eigenvector associated to
a
x2 � y2 � z2, and

v� �
�
�� x

a
x2 � y2 � z2 � iyz

?
2
�
z
a
x2 � y2 � z2 � ixy

	 ,� x2 � z2
?
2
�
xy � iz

a
x2 � y2 � z2

	 , 1?
2

�



an eigenvector associated to �
a
x2 � y2 � z2. Clearly v� and v� satisfy Theorem 1 and therefore M

is minimal. �

Remark 3. Let x, y, z P R¥0 and α, β, γ P R. Then if

M �
�
� a x eiα y e�iβ

x e�iα b z eiγ

y eiβ z e�iγ c

�

 (4.3)

is a minimal matrix, its characteristic polynomial is

PM rts � �t3 � t2pa� b� cq � t
��ab� ac� bc� x2 � y2 � z2

��
� abc� az2 � by2 � cx2 � 2xyz cospα� β � γq. (4.4)

Therefore, if cospθq � cospα� β � γq (where we can chose 0 ¤ θ ¤ π) then the following matrix

Mθ �
�
� a x eiθ y

x e�iθ b z
y z c

�

 (4.5)

is also minimal. The reason of this fact is that PM rts � PMθ
rts including how the terms x, y, z, a,

b, c and cospθq � cospα � β � γq appear (this implies that changing a, b, c the norm of Mθ cannot
be made smaller without contradicting that M is minimal). Therefore Mθ is also minimal with the
same minimizing diagonal as M .
This is also obvious if we see that Mθ � UMU� for U the unitary diagonal matrix

U �
�
� eiα 0 0

0 eipα�β�γq 0
0 0 eipα�βq

�

. (4.6)

Proposition 4. Let x, y, z P R¡0 and θ P r0, πs such that Mθ �
�
� a x eiθ y

x e�iθ b z
y z c

�

 is minimal.

Then the following self-adjoint matrices are minimal as well as their transposes (with a, b, c the same

as those of the diagonal of Mθ):

�
� b x eiθ z

x e�iθ a y
z y c

�

,
�
� c z eiθ y

z e�iθ b x
y x a

�

,
�
� b z eiθ x

z e�iθ c y
x y a

�

,

�
� a y eiθ x

y e�iθ c z
x z b

�

,
�
� c y e�iθ z

y eiθ a x
z x b

�

. Moreover, the factor eiθ can be in any of the x, y, z

entries above the diagonal of the previous matrices (completed conjugated below the diagonal) without
changing the minimizing diagonal.
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Proof. The proof follows after similar considerations as the ones done about the characteristic poly-
nomials of the matrices in the previous Remark 3. It can also be proved using conjugation of Mθ by

permutation matrices or permutations of the unitary diagonals

�
� e�iθ 0 0

0 1 0
0 0 1

�

,
�
� 1 0 0

0 e�iθ 0
0 0 1

�

 or

�
� 1 0 0

0 1 0
0 0 e�iθ

�

and using that those conjugations produce matrices whose eigenvectors are permu-

tations of the coordinates of eigenvectors of Mθ or permutations with one coordinate multiplied by
e�iθ. The proof is completed using this property relating the modulus of the coordinates of the eigen-
vectors of minimal matrices (see Theorem 1), the fact that they correspond to the same eigenvalues
of Mθ and the fact that M is minimal if and only if M t is minimal. �
Remark 4. Observe that using the above Remark 3 and the Proposition 4 we can suppose that
M �Mθ as in (4.5), since any other matrix has its minimizing diagonal equal to one of this type or
at least a permutation of its diagonal. Moreover since minimizing diagonals have been described in
the cases an o�-diagonal entry of the matrix is zero (see Propositions 2, 3) and in the real case (see
Theorem 2) we can also suppose that


 0   θ   π (because the cases θ � 0 or θ � π have the same minimizing diagonals that the
real symmetric matrices and for other θ R p0, πq is enough to consider the case of θ1 P p0, πq
such that cospθ1q � cospθq) and that


 x ¥ y ¥ z ¡ 0 (in view of Proposition 4).

Note that the above Proposition 4 and the previous Remark 3 prove that if two matrices have its
o�-diagonal entries with equal module (even if they are permuted in their positions) and if cospθq �
cospα � β � γq (with α, β, γ as in (4.3) and θ as in (4.5)) then its minimizing diagonals coincide
(with the corresponding permutations if necessary).

Remark 5. The unique minimizing diagonals are continuous functions of x, y, z and θ.
If Mθ P Mh

n pCq is a minimal matrix as 4.5 with x, y, z not null and θ P R, then its diagonal is
unique (see Proposition 1). Denote with OpMθq � Mθ � DiagpMθq the matrix with the same o�-
diagonal entries than Mθ and zero diagonal (recall that DiagpMθq is the diagonal matrix with the
same diagonal of Mθ). Suppose that Mm P Mh

n pCq (for m P N), are minimal matrices with non
zero o� diagonal entries and limmÑ8OpMmq � OpMθq. Eventually choosing a subsequence we can
suppose that DiagpMmq converges to a real diagonal D0 (this follows considering that the sequence
DiagpMnq must be bounded and therefore has an accumulation point).
Suppose that D0 � DiagpMθq. Then given ε ¡ 0 and choosing m0 such that }OpMθq�OpMmq}   ε

and }DiagpMmq �D0}   ε for all m ¥ m0. Then

}OpMθq �D0} � }OpMθq �Mm �D0}
� }OpMθq �OpMmq �Mm �D0 � DiagpMmqq}
  ε� }Mm} � ε
¤ 2ε� }OpMmq �D} � 2ε� }OpMmq �OpMθq �D}
  3ε� }OpMθq �D}

for every real diagonal D and ε ¡ 0. This contradicts the uniqueness of the minimal diagonal of
OpMθq. Therefore limmÑ8Diag pMmq � D0 � Diag pMθq. This proves the continuity of the map that
carries x, y, z, θ to the entries of the unique diagonal of the minimal matrix corresponding to OpMθq.
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Corollary 1. Let x P R¡0 and 0   θ   π, then M �
�
� a x eiθ x

x e�iθ b x
x x c

�

 is minimal if and only if

a � b � c � �x cos � θ�π
3

�
.

Proof. The equality a � b � c follows from the previous considerations. If we set a � b � c �
�x cos � θ�π

3

�
the eigenvalues and eigenvectors ofM can be explicitly computed. Then using Theorem

1 it can be proved thatM is a minimal matrix with that choice of a, b and c. This is the only possible
choice because the minimizing diagonal is unique (see Proposition 1). �

Proposition 5. Let M be a matrix as in (4.3) with x, y, z P R¡0, α, β, γ, a, b, c P R. Then the
following statements are equivalent:

(i) α� β � γ � kπ � π
2
with k P Z and a � b � c � 0,

(ii) M is minimal and σpMq � tλ,�λ, 0u, for λ � }M}.
Proof. (i)ñ (ii). If α � β � γ � kπ � π

2
and a � b � c � 0 it can be checked that the eigenvalues of

M are �λ � �
a
x2 � y2 � z2 and 0 and that there are corresponding eigenvectors of �λ that satisfy

Theorem 1. Therefore (ii) holds.
(ii)ñ(i). If M satis�es (ii) then its characteristic polynomial is PM rts � �t3 � t2pa � b � cq �

t p�ab� ac� bc� x2 � y2 � z2q � abc � az2 � by2 � cx2 � 2xyz cospθq where θ � α � β � γ. In this
case since σpMq � tλ,�λ, 0u then PM rts � �t3 � tλ2 (see [1, 3.3] for details). The condition (ii)
implies that trpMq � 0 � a� b� c and that

}M}2 � λ2 � �ab� ac� bc� x2 � y2 � z2. (4.7)

Note that
trpM2q � 2λ2 � pa2 � x2 � y2q � px2 � b2 � z2q � py2 � z2 � c2q

� 2p�ab� ac� bc� x2 � y2 � z2q
and then a2� b2� c2 � 2p�ab�ac� bcq ¥ 0. Therefore using (4.7) if }M} is a minimum for a, b, c,

then a � b � c � 0. Then, the coe�cient of PM given by abc � az2 � by2 � cx2 � 2xyz cospθq �
2xyz cospθq � 0. Therefore cospθq � 0 and α� β � γ � kπ � π

2
with k P Z. �

Corollary 2. Let M be a matrix as in (4.3) with x, y, z P R¡0, α, β, γ, a, b, c P R. If M is minimal
then the following statements are equivalent:

(i) α� β � γ � kπ � π
2
, for k P Z,

(ii) a � b � c � 0,
(iii) σpMq � tλ,�λ, 0u, for λ � }M}.

Proof. The proof is direct using Remark 3, Propositions 1 and 5. �

Proposition 6. If Mθ as in (4.5) is a minimal not null matrix such that σpMq � tλ, µ,�λu with
|µ| � λ, then x, y, z must be nonzero and θ � kπ, with k P Z.

Proof. It is easy to prove in this case that M2
θ � λ2I and then the columns of Mθ are orthogonal

vectors of norm λ. Easy calculations then prove that if one of the o�-diagonal entries of Mθ is zero
then all the others must be zero. Then it must be x � 0, y � 0 and z � 0.
Then it is apparent that axeiθ � bxeiθ � yz � 0 and then ia sinpθqx � ib sinpθqx � 0 and if we

suppose sinpθq � 0 it implies that a � �b.
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In the same way we can prove that aye�iθ�cye�iθ�xz � 0, and then a � �c, and bzeiθ�czeiθ�xy �
0 which proves that b � �c. Therefore a � �b � �p�cq � �a and then a � b � c � 0. Nevertheless
a� b� c � µ � 0, then it must be sinpθq � 0, and then θ � kπ k P Z . �
Theorem 4. If M P Mh

3 pCq is a minimal matrix with nonzero o� diagonal entries and spectrum
tλ, µ,�λu (}M} � λ ¥ |µ|), then there exist corresponding orthogonal eigenvectors vλ, v�λ and vµ
such that

M � λ pvλ b vλq � λ pv�λ b v�λq � µ pvµ b vµq ,
N � λ pvλ b vλq � λ pv�λ b v�λq is minimal and Diagpµ pvµ b vµqq �DiagpMq.
Proof. Let us suppose �rst that |µ|   λ. Then all eigenspaces have dimension one and any choice of
the eigenvectors vλ, v�λ corresponding to λ and �λ verify Theorem 1. Then using the same theorem
N is minimal, and using Proposition 5 then DiagpNq � 0. Therefore Diagpµ pvµ b vµqq �DiagpMq.
If |µ| � λ then one of the eigenspaces corresponding to λ or �λ has dimension two. Since M is

minimal there exist eigenvectors vλ and v�λ corresponding to the eigenvalues λ and �λ such that
vλ �vλ � v�λ �v�λ (Theorem 1). Pick this eigenvectors and any other vµ orthogonal to both of them.
Then it can be proved similarly as above that they satisfy the claims of the theorem. �
Proposition 7. Let M0,M1 P C3�3 be two minimal matrices with the same diagonal and eigenvalues
tλ, µ,�λu, with 0 � |µ| ¤ λ, given by

M0 �
�
� a x0 e

α0i y0 e
�β0i

x0 e
�α0i b z0 e

γ0i

y0 e
β0i z0 e

�γ0i c

�

 and M1 �

�
� a x1 e

α1i y1 e
�β1i

x1 e
�α1i b z1 e

γ1i

y1 e
β1i z1 e

�γ1i c

�

,

with x0, y0, z0, x1, y1, z1, P R¡0.
Then x0 � x1, y0 � y1, z0 � z1 and cospα0 � β0 � γ0q � cospα1 � β1 � γ1q.

Proof. M0 and M1 are matrices of non-extremal type in the sense of de�nition 3.5 of [1]. Note that
µ � a � b � c � 0. Following the same notations of (3.9) and (3.10) of that paper for α, β, γ,
pn12q0, pm12q0 (for M0) and pn12q1, pm12q1 (for M1), then it must be α � a

2pa�b�cq , β � b
2pa�b�cq and

γ � c
2pa�b�cq . Then, considering all the cases, it can be proved that x0 � |x0| � |µ pn12q0�λ pm12q0 | �

|µ pn12q1 � λ pm12q1 | � |x1| � x1. The same reasoning could be done to prove y0 � y1 and z0 � z1.
Finally cospα0 � β0 � γ0q � cospα1 � β1 � γ1q because the coe�cients of the characteristic polyno-

mial of each matrix are determined by tλ, µ,�λu and using (4.4) we obtain that �λµ � abc� az2 �
by2 � cx2 � 2xyz cospα0 � β0 � γ0q � abc� az2 � by2 � cx2 � 2xyz cospα1 � β1 � γ1q. �
We state here the following result that was already mentioned in Remark 4.

Proposition 8. Let M0 and M1 be matrices with the structure of those of Proposition 7. If their
o�-diagonal entries have equal modulus x0 � x1, y0 � y1, z0 � z1, and cospα0 � β0 � γ0q �
cospα1 � β1 � γ1q, then both matrices have the same minimizing diagonal.

Proof. The proof follows reducing each matrix to one like Mθ as in Remark 3 and then applying
Proposition 4. �

Theorem 5. Let x, y, z P R¡0, θ P R and M �
�
� a x eiθ y

x e�iθ b z
y z c

�

 be a minimal matrix.

Then there exist α, β, γ P r0, πs such that:



10 KLOBOUK AND VARELA

(i) cospα� β � γq � cospθq.
(ii) The matrices N , S de�ned by

N �
�
� 0 i x sinα �i y sin β

�i x sinα 0 i z sin γ
i y sin β �i z sin γ 0

�

 and S �

�
� a x cosα y cos β

x cosα b z cos γ
y cos β z cos γ c

�

 (4.8)

satisfy that:
a) DiagpN � Sq � DiagpMq,
b) If v P kerpNq with }v} � 1 ñ S � pa� b� cq pv b vq,
c) M0 � N � S is minimal,
d) M0 is unitarily equivalent to M or to M t by means of unitary diagonals.

Proof. Let us suppose that σpMq � tλ, µ,�λu with |µ| ¤ λ � }M}. Then, using Theorem 4, it can
be proved that there exist vλ, v�λ and vµ orthonormal eigenvectors of λ, �λ and µ respectively, such
that M � N � S, with N � λpvλ b vλq � λpv�λ b v�λq a minimal matrix with DiagpNq � 0 and
S � µpvµ b vµq satis�es DiagpSq � DiagpMq (even in the case |µ| � λ). Let vµ � pr, s, tq, then it is
apparent that a � µ |r|2, b � µ |s|2, c � µ |t|2. Furthermore de�ning ξ � |r|, ψ � |s| and ζ � |t|, the

matrix N1 � λ

�
� 0 i ζ �i ψ

�i ζ 0 i ξ
i ψ �i ξ 0

�

 is a minimal matrix and }N1} � λ. Moreover, v � pξ, ψ, ζq

is an eigenvector corresponding to the eigenvalue 0 of N1.

Let S1 � µpv b vq � µ

�
� ξ2 ξψ ξζ

ψξ ψ2 ψζ
ζξ ζψ ζ2

�

.

By construction N1 is minimal with σpN1q � tλ, 0,�λu and σpS1q � tµ, 0u. Then,

M1 � N1 � S1 �
�
� µξ2 µξψ � i λζ µξ ζ � i λψ

µψξ � i λζ µψ2 µψζ � i λξ
µζξ � i λψ µζψ � i λξ µζ2

�



has the same diagonal than M and σpM1q � σpMq.
If µ � 0 then the diagonal of M must be zero and, using Proposition 5, it must be θ � kπ � π

2
for

k P Z and λ �
a
x2 � y2 � z2. Then, choosing ζ � x{λ, ψ � y{λ, ξ � z{λ, and α � β � γ � π{2 if

θ � p2k � 1qπ � π{2, with k P Z, or α � β � γ � �π{2 if θ � 2kπ � π{2, with k P Z, follows easily
that N1 is unitarily equivalent by means of diagonal matrices to M , and therefore the theorem is
proved in this case.
If µ � 0, using Proposition 7, then it must be x � |µξψ�i λζ|, y � |µξζ�i λψ| and z � |µψζ�i λξ|.

If we consider 0 ¤ argpzq   2π and de�ne

α � argpµξψ � i λζq , β � 2π � argpµξζ � i λψq , γ � argpµψζ � i λξq, (4.9)

and θ1 � α� β � γ, then α, β, γ P r0, πs and from Proposition 7 follows that cospθq � cospθ1q.
Moreover M1 is unitarily equivalent by means of unitary diagonals to Mθ1 (see (4.5) and (4.6)).

Since Mθ1 � Mθ, or Mθ1 � M�θ � pMθqt, then M1 is unitary equivalent (by means of unitary
diagonals) to Mθ or to its transpose. Choosing α, β and γ as have been de�ned before and putting
N � N1 and S � S1 the items (i) and (ii) of the theorem follow. �
Remark 6. With the same notations and hypothesis as those of Theorem 5 and its proof and using
the fact that M0 � N � S is a minimal matrix we can consider di�erent cases
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 Two of the numbers ζ, ξ, ψ cannot be zero simultaneously because otherwise M0 would not be
equivalent to M by means of diagonal unitary matrices with x, y, z P R¡0.


 If only one of ζ, ξ, ψ is zero, M0 is equivalent to a real matrix by means of diagonal unitary
matrices (see (4.9) and Remark 3).


 If ζ, ξ and ψ are all not null and µ � 0 (θ � kπ � π{2, k P Z), since we are supposing λ �
}M} � }M0} follows that ImppM0q1,2q � x sinα � λζ � 0, ImppM0q1,3q � y sin β � λψ � 0
and ImppM0q2,3q � z sin γ � λξ � 0. Therefore, in this case (since x, y, z P R¡0) sinα � 0,
sin β � 0 and sin γ � 0 and also (since µ � 0) cosα � 0, cos β � 0 and cos γ � 0.
Then it can be veri�ed that

vµ � 1apx sinαq2 � py sin βq2 � pz sin γq2 pz sin γ, y sin β, x sinαq (4.10)

is an eigenvevector of M0. Therefore by construction

a � pa� b� cqpz sin γq2
λ2

, b � pa� b� cqpy sin βq2
λ2

, c � pa� b� cqpx sinαq2
λ2

and λ2 � px sinαq2 � py sin βq2 � pz sin γq2.
As we proved before the cases θ � kπ{2 (k P Z) are equivalent to µ � 0 or Mθ being equivalent

to a real matrix by means of diagonal unitary matrices (see Remark 3). Then considering θ � kπ{2
(k P Z) it can also be proved that only the following corresponding disjoint cases can occur:

a) If θ P pπ, 3
2
πq then 0   α   π{2, 0   β   π{2 and 0   γ   π{2,

b) If θ P p3
2
π, 2πq then π{2   α   π, π{2   β   π and π{2   γ   π.

Proposition 9. If θ � kπ{2 with k P Z and with the hypothesis and notations of Theorem 5 and
its proof, then the angles α, β and γ, and the matrices M and M0 � N � S ful�ll the following
conditions:

1) cosα � 0, cos β � 0 and cos γ � 0
2) x2 sinp2αq � y2 sinp2βq � z2 sinp2γq
3) }M}2 � }M0}2 � px sinαq2 � py sin βq2 � pz sin γq2
4) DiagpM0q=DiagpSq=DiagpMq=

�
xy cospαq cospβq

z cospγq , xz cospαq cospγq
y cospβq , yz cospβq cospγq

x cospαq

	
5) px sinαq2 � py sin βq2 � pz sin γq2 ¥

�
xy cospαq cospβq

z cospγq � xz cospαq cospγq
y cospβq � yz cospβq cospγq

x cospαq

	2
Proof. Item 1) has been proved in the preceding Remark 6 in the case µ, ζ, ξ and ψ all not null.
Pick vµ as in (4.10). Then S1,2 � x cosα � ppa� b� cq pvµ b vµqq1,2 � µzy sin γ sinβ

λ2 . Thus µ
λ2 �

x cosα
zy sin γ sinβ

. Similarly, considering S1,3 we obtain
µ
λ2 � y cosβ

zx sin γ sinα
and therefore x cosα

zy sin γ sinβ
� y cosβ

zx sin γ sinα
.

Reordering we obtain

x2 sin 2α � y2 sin 2β.

Using S1,3 we obtain
µ
λ2 � z cos γ

xy sinα sinβ
and reasoning as before we can prove 2).

From (ii) d) of Theorem 5, is apparent that M0 and M have the same norm (that of N) and
diagonal (that of S). The norm of N is

apx sinαq2 � py sin βq2 � pz sin γq2 which proves 3).
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Using again the same vµ as in (4.10) we obtain

S1,1 � µpz sin γq2{λ2

�
�
µp z sin γ

λ
qpy sinβ

λ
q� �µpx sinα

λ
qp z sin γ

λ
q�

pµpx sinα
λ
qpy sinβ

λ
qq � S1,2 S1,3

S2,3

� px cosαqpy cos βq
pz cos γq � xy cosα cos β

z cos γ
.

The formulas for S2,2 and S3,3 are obtained similarly which proves 4).
Items 3) and 4) imply 5) because since M is minimal, then trpMq is an eigenvalue of M and

therefore trpMq2 ¤ }M}2.
�

Proposition 10. If α, β, γ P R, α, β, γ � kπ{2 with k P Z , and x, y, z P R¡0, M0 � N � S, with

N �
�
� 0 i x sinα �i y sin β

�i x sinα 0 i z sin γ
i y sin β �i z sin γ 0

�

 and

S �

�
��

xy cospαq cospβq
z cospγq x cosα y cos β

x cosα xz cospαq cospγq
y cospβq z cos γ

y cos β z cos γ yz cospβq cospγq
x cospαq

�
�


and α, β, γ, x, y, z satisfy:

1) x2 sinp2αq � y2 sinp2βq � z2 sinp2γq
2) px sinαq2 � py sin βq2 � pz sin γq2 ¥

�
xy cospαq cospβq

z cospγq � xz cospαq cospγq
y cospβq � yz cospβq cospγq

x cospαq

	2
then, NS � SN � 0 and M0 � N � S is minimal.

Proof. Using 1) follows that NS � 0. Furthermore S has rank one and N rank two. Then ranpSq �
kerpNq and kerpSq � ranpNq and σpSq � t0, trpSqu. Therefore if we call

λ �
b
x2 sin2pαq � y2 sin2pβq � z2 sin2pγq

follows that σpNq � t0, λ,�λu. Then σpN � Sq � ttrpSq, λ,�λu, and using 2) then M0 � N � S

veri�es }M0} � }N} � λ �
a
x2 sin2pαq � y2 sin2pβq � z2 sin2pγq. Furthermore the eigenvectors of

M0 corresponding to the eigenvalues �λ are the same than that of N (that is a minimal matrix
because of Proposition 5) and therefore they verify the conditions of Theorem 1. Therefore M0 is
minimal. �
Theorem 6. Given a minimal matrix of the form

M �
�
� a x eiθ y

x e�iθ b z
y z c

�

 with x ¥ y ¥ z ¡ 0 and θ P

�
3

2
π, 2π



(4.11)

then there exist unique α P pπ{2, 3
4
πs, β P pπ{2, 3

4
πs, γ P pπ{2, πq which are continuous functions

of θ, x, y, z such that:

(1) α� β � γ � θ
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(2) The matrices N , S de�ned by

N �
�
� 0 i x sinα �i y sin β

�i x sinα 0 i z sin γ
i y sin β �i z sin γ 0

�

 (4.12)

and

S �
�
� a x cosα y cos β

x cosα b z cos γ
y cos β z cos γ c

�

 (4.13)

verify that:
a) DiagpN � Sq � DiagpMq
b) If v P kerpNq with v P R3 and }v} � 1 ñ S � pa� b� cq pv b vq
c) M0 � N � S is minimal.
d) M0 is unitarily equivalent to M or to M t by means of diagonal unitaries.

and

1') x2 sinp2αq � y2 sinp2βq � z2 sinp2γq
2') }M}2 � }M0}2 � px sinαq2 � py sin βq2 � pz sin γq2
3') DiagpM0q � DiagpMq �

�
xy cospαq cospβq

z cospγq , xz cospαq cospγq
y cospβq , yz cospβq cospγq

x cospαq

	
4') px sinαq2 � py sin βq2 � pz sin γq2 ¥

�
xy cospαq cospβq

z cospγq � xz cospαq cospγq
y cospβq � yz cospβq cospγq

x cospαq

	2
Proof. It only remains to prove that for θ, x, y, z �xed the angles α, β and γ that ful�ll the
conditions of the Theorem are unique, that they can be chosen in the speci�ed intervals and that
they are continuous functions of θ.
Analyzing the signs of the real and imaginary parts of the complexes such that their arguments

de�ne the angles α, β and γ that appear in the proof of the Theorem 5 we can conclude that in
this case, (since we can prove that µ ¤ 0 ô θ P r3

2
π, 2πs) we can choose α,β,γ P rπ{2, 2πs. If we

consider µ   0 (µ � 0 corresponds to θ � 3π{2 that as Corollary 2 states it has the same minimizing
diagonals than those considered in Theorem 3), then we can suppose that (for α, β, γ from Theorem
5) xc � x cosα, xs � x sinα, yc � y cos β, ys � y sin β, zc � z cos γ and zs � z sin γ are all non zero
(as it was discussed in Remark 6). Then using the inequality 4') we obtain

z2cy
2
cx

2
c

�
x2s � y2s � z2s

� ¥ �x2cy2c � x2cz
2
c � y2cz

2
c

�2
and with 1'), if we denote with k � xcxs � ycys � zczs we can prove that

k2 ¥ �x2cy2c � x2cz
2
c � y2cz

2
c

�
(4.14)

We will prove �rst that α R p3
4
π, πq. Suppose that α P p3

4
π, πq and consider two cases:

a) β P pα, πq: in this case since xcxs � ycys ^ y ¤ x then sinpβq   sinpαq, ys   xs then
xs ¤ |xc|   |yc| and then

k2 � x2sx
2
c   y2cx

2
c  

�
x2cy

2
c � x2cz

2
c � y2cz

2
c

�
,

which contradicts (4.14).
b) β P pπ{2, αs:

(i) if β P r3{4π, αs then |ys| ¤ |yc| ¤ |xc| and then

k2 � y2sy
2
c ¤ x2cy

2
c  

�
x2cy

2
c � x2cz

2
c � y2cz

2
c

�
,
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Figure 1. The corresponding α, β and γ for θ � 6., x � 3.5, y � 2.3 and z � 1.6.

which contradicts (4.14).
(ii) if β P pπ{2, 3{4πq we will compare |xc| with ys
(ii1) If |xc| ¥ ys then

k2 � y2sy
2
c ¤ x2cy

2
c  

�
x2cy

2
c � x2cz

2
c � y2cz

2
c

�
,

which contradicts (4.14).
(ii2) If |xc|   ys then (recall that xc, yc   0) ys � xc ¡ 0. Moreover x2s � x2c � x2 ¥

y2 � y2s � y2c , then pxs � xcq2 � x2s � 2xsxc � x2c ¥ y2s � 2ysyc � y2c � pys � ycq2, and then
|xs�xc| ¥ |ys�yc|, but 0   xs   |xc| and 0   |yc|   ys, which proves that �xs�xc ¥ ys�yc.
Then �xs � yc ¥ ys � xc ¡ 0 and hence �yc ¡ xs holds and

k2 � x2sx
2
c   y2cx

2
c  

�
x2cy

2
c � x2cz

2
c � y2cz

2
c

�
,

which contradicts (4.14).

Then α R p3
4
π, πq holds and if θ P p3

2
π, 2πq then α P pπ{2, 3

4
πs.

Similarly, comparing |yc| with |zc| it can be proved that β R p3
4
π, πq and therefore β P pπ{2, 3

4
πs,

and that γ P rβ, 3
2
π � βs � rπ{2, πs (see Figure 1).

Uniqueness:

The angles α and β are unique in this intervals because they must ful�ll the conditions xcxs �
ycys � k, π{2 ¤ α ¤ 3

4
π and π{2 ¤ β ¤ 3

4
π. If there are two di�erent angles γ and γ1 in pπ{2, πq that

ful�ll the conditions of Theorem 5 and Proposition 9, then the only posible case is that one belongs
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to pβ, 3
4
πq and the other one to p3

4
π, 3

2
π � βq. Suppose that β   γ ¤ 3

4
π and 3

4
π   γ1 ¤ 3

2
π � β.

then only γ1 satis�es the conditions of Proposition 9. This is because, if both satisfy the minimality
conditions of that proposition, then λ2 � }M} � px sinαq2 � py sin βq2 � pz sin γq2 � px sinαq2 �
py sin βq2 � pz sin γ1q2, a contradiction because sin γ1   sin γ.
If x, y, z are �xed, we denote with α � αpθq, β � βpθq and γ � γpθq the angles that are uniquely

determined by θ in the corresponding intervals. If we trace the de�nition of these angles given in
4.9 of Theorem 5, it can be seen that it is a continuous application with respect to θ (and also with
respect to x,y,z).
The sum of α, β, and γ gives θ:
Considering that θ P p3

2
π, 2πq, αpθq, βpθq P pπ{2, 3

4
πq, and γpθq P �βpθq, 3

2
π � βpθq� then 3{2 π ¤

αpθq � βpθq � γpθq ¤ 9{4 π. Therefore, since cos pαpθq � βpθq � γpθqq � cospθq, then by continuity
and uniqueness arguments αpθq � βpθq � γpθq � θ holds for every θ P p3

2
π, 2πq.

�

Remark 7. Given a minimal matrix Mθ as in 4.11 with θ � 3
2
π, x ¥ y ¥ z ¡ 0 then σpM3π{2q �

tλ, 0, λu (see Corollary 2). Mθ has the same minimizing diagonals than those matrices considered in
Theorem 3. Then we can de�ne αpπ{2q � βpπ{2q � γpπ{2q � π{2 and they satisfy 1), 2) and 1')
through 4') of Theorem 6. As we will see this de�nition makes α, β and γ continuous in terms of
θ P pπ, 2πq.
In the case θ P pπ, 3

2
πq let us consider θ1 � 3π � θ. Then θ1 P p3

2
π, 2πq and if we denote with α1, β1

and γ1 the solutions which existence was proved in Theorem 6, then it is enough to take α � π � α1,
β � π � β1 and γ � π � γ1 and verify that these angles α, β and γ P p0, π{2q satisfy all the required
conditions 1), 2) and 1') through 4') of Theorem 6.

If θ P p3
2
π, 2πq it is apparent that if θ is close to 3

2
π then αpθq, βpθq and γpθq from the previous

Theorem must be close to π{2. Then α, β and γ are right continuous in θ � 3
2
π, i.e. limθÑ3π{2� αpθq �

limθÑ3π{2� βpθq � limθÑ3π{2� γpθq � π{2. Similarly it can be proved that α, β and γ are left continuous
in θ � 3

2
π.

If θ P pπ, 3
2
πq then similar considerations as the ones made before (using the proven uniqueness,

continuity and sum of α, β, γ of the previous case) prove that also in this case α� β � γ � θ.
If θ � 3

2
π choosing α � β � γ � π{2, then obviously α � β � γ � θ, and because of the previous

considerations α, β and γ are continuous functions of θ in the whole interval pπ, 2πq.
Remark 8. Algorithm. Given a generic Hermitian matrix it can be conjugated with diagonal
unitary matrices (see remark 4 and Proposition 4) to obtain a matrix with the structure Mθ ��
� a x eiθ y

x e�iθ b z
y z c

�

with x ¥ y ¥ z ¡ 0 and θ P r0, 2πq.

We discuss next how to �nd the diagonal matrices that added to Mθ give a minimal matrix.
Case θ � 0 or θ � π:
In this case the minimizing diagonal coincides with that of the real case (see Proposition 6) and

therefore it was computed exactly in Theorem 2.
Case 0   θ   π:
This case corresponds to the transpose of a matrix from the case where 0 ¤ θ   2π that has the

same minimizing diagonal. That is, if θ0 P r0, πq, then �θ0 P p�π, 0s and the minimizing diagonal
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corresponding to θ0 is the same that the one corresponding to �θ0 that is described in the following
case.
Case π   θ   2π:
Using the results and notations of the previous theorem for a minimal matrix M with the structure

of (4.11) and considering the cases µ P p�λ, 0q (that is equivalent to θ P p3
2
π, 2πq), or µ P p0, λq (that

is equivalent to θ P pπ, 3
2
πq), or µ � 0 (that is equivalent to θ � 3

2
π), then it can be proved that the

unique angles α P pπ{2, 3
4
πq, β P pπ{2, 3

4
πq, γ P pβ, 3

2
π � βq from Theorem 6 must satisfy

α� β � γ � θ , α � 1

2

�
π � arcsin

�
z2 sinp2γq

x2




, β � 1

2

�
π � arcsin

�
z2 sinp2γq

y2




Observe that the uniqueness of these angles in the speci�ed intervals for each θ and under the condi-
tions

α� β � γ � θ

x2 sinp2αq � y2 sinp2βq � z2 sinp2γq

px sinαq2 � py sin βq2 � pz sin γq2 ¥
�
xy cospαq cospβq

z cospγq � xz cospαq cospγq
y cospβq � yz cospβq cospγq

x cospαq

2

imply that the root of

1

2

�
2π � arcsin

�
z2 sinp2γq

x2



� arcsin

�
z2 sinp2γq

y2




� γ � θ � 0

closer to γ � 3
4
π is the wanted solution and is easily approximated by a standard numerical method.

After obtaining γ with the desired precision α, β and the wanted minimizing diagonal

Diag

�
xy cospαq cospβq

z cospγq ,
xz cospαq cospγq

y cospβq ,
yz cospβq cospγq

x cospαq


.

can also be approximated as much as needed.

To obtain the minimal matrix corresponding to the original matrix M , then the inverse conjugation
with diagonal unitary matrices used to obtain Mθ may be required. This inverse conjugation applied
to the minimizing diagonal of Mθ gives the minimizing diagonal of M . Note that this operation can
only change the order of the diagonal entries.

5. Some n� n cases

In this section we describe the minimizing diagonals for some particular n�n Hermitian matrices.

Theorem 7. If M P Cn�n is a Hermitian matrix such that diagpMq � 0 and RepMi,jq � 0 for all
i, j, then M is minimal.

Proof. Let us suppose that vλ is an eigenvector of λ � }M}. Then, it is apparent that �λ P σpMq
and that the vector vλ is an eigenvector of �λ. Since |pvλqi| � |pvλqi| for every i, a generalization of
Theorem 1 (see [2, Corollary 3]) proves that M is minimal. �
In the next theorem forM P Cn�n we denote with CjpMq the jth column ofM , withM

qk the matrix

in Cpn�1q�pn�1q resulting after taking o� the kth column and row of M and with v
qk the element of

Cn�1 obtained after taking o� the kth entry of v P Cn.

Theorem 8. Let N P Rn�n be a symmetric matrix such that
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 its kth column CkpNq satis�es that CkpNqi � Ni,k � 0, @i � k,


 Ni,i �
#

0 if j � k

�CjpNq�CkpNq
Nj,k

if j � k.


 }N
qj} ¤ }CkpNq}2.

Then N is a minimal matrix with }N} � }CkpNq}2. Moreover, this is the only possible diagonal that
makes N a minimal matrix.

Proof. Note that CjpNq K CkpNq for all j � k. Let us denote with ck � }CkpNq}2.
Let teiui�1,...,n be the canonical basis of Cn and de�ne

v� � 1?
2 ck

pCkpNq � ck ekq and v� � 1?
2 ck

p�CkpNq � ck ekq .

Direct calculations show that }v�}2 � }v�}2 � 1, Nv� � ck v�, Nv� � �ck v� and v� � v� � 0.
Let v be an eigenvector of N , with }v}2 � 1 and eigenvalue σ � ck. Then it is apparent that

v is orthogonal to v�, v�, ek � 1?
2
pv� � v�q and CkpNq � ck

?
2 v� � ck ek. Let v

qk P Cn�1 be

the vector v without its kth coordinate. Then |σ| � }Nv}2 � }N
qk vqk}2 ¤ }N

qk} ¤ ck. Therefore
}N} � ck � }CkpNq}2 and since |v� � ei| � |v� � ei| for all i � 1, . . . , n, then N is a minimal matrix
(by [2, Corollary 3]). Moreover, a direct computation proves that if we choose a diagonal ith entry
di�erent from Ni,i and call with N 1 this new matrix, then }N 1CkpNq}2 ¡ }CkpNq}2, which proves
that the diagonal of N is the only possible diagonal that makes it minimal. �

Note that the column CkpNq � CkpNq of the previous theorem must verify }CkpNq} ¥ }CjpNq}
for all j.
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