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1. Introduction

In spite of many substantial advances in recent years, the study of some problems in the physics of
strongly correlated electrons continues to provide stimulating challenges. Among the several reasons
for this, we could mention the still incomplete understanding of all of the properties of strongly cor-
related electron systems and the lack of many reliable techniques to study them. One of these para-
digmatic problems is the Mott transition, loosely defined as a metal–insulator transition driven by
correlations. As early as in 1939, Mott argued that if the electronic density in metallic systems was
lowered enough, the Coulomb repulsion would dominate over the kinetic energy and the system could
undergo a transition to an insulating state [1].

On the one hand, many widely employed theoretical descriptions of the Mott transition are based
on the study of the microscopic dynamics of the electronic system: one starts by writing down a mod-
el Hamiltonian for the electrons, sometimes coupled to external fields o to some other degrees of free-
dom, and then tries to solve it within some approximation or through the use of numerical methods.
However, numerical methods like exact diagonalization are restricted to small clusters, and if the
interaction among electrons is strong enough, the typical approximation schemes based on the resum-
mation of some class of Feynman diagrams are not completely reliable. For these reasons, it is a dif-
ficult task to find solutions displaying the Mott transition, even in the simplest models, like the
Hubbard one. As of today, there exist two successful approaches for study this transition based on
microscopic dynamics: one is the dynamical mean field theory (DMFT) method [2], valid in the limit
of infinite spatial dimensions, which neglects the spatial correlations; the second approach consists in
finding analytic expressions for physical observables in integrable models (mainly in one-dimensional
systems) by means of the Bethe Ansatz or bosonization methods.

On the other hand, systems like conventional superconductors or quantum Hall systems have univer-
sal properties that are well described by field theories which do not deal with the microscopic degrees of
freedom, but rather with fields representing effective degrees of freedom. These two cases are classic
examples of the more general framework of the effective field theories (EFT) approach, which has its
roots in Landau’s ideas for condensed matter systems and which is widely and successfully used in high
energy physics. This approach can be considered as ’way of thinking’ which emphasizes the symmetries
of the systems and that naturally incorporates Wilson’s renormalization group ideas. In this approach,
the study of a system starts by wisely choosing the effective degree of freedom, which are the relevant ones
at a given energy scale, and then one proceeds to write down the most general second quantized action
compatible with the characteristic symmetries of these degrees of freedom, retaining only the marginal
and relevant terms, i.e., terms that are non-decreasing in the low energy (long-distance) limit [3]. During
the last years, several exotic states that contain droplets of approximately constant density have been
found experimentally in electronic systems considered to be close to the Mott transition. These states
that may seem to be surprising and difficult to explain from the point of view of the free electrons, are
good candidates to be understood following the EFT approach. For example, the appearance of effective
gauge forces arising from the dynamics, and which have not been included in the microscopic electron
Hamiltonian can be properly taken into account within the EFT framework [4].

The goal of this article is to construct and consider an EFT for a two-dimensional square lattice sys-
tem which displays the Mott transition, which implies that we shall focus our attention on the sym-
metry aspects of this transition. Specifically, we will consider a simple model of electrons with nearest
neighbors density–density interaction which has also been previously studied, with the goal of iden-
tifying its effective degrees of freedom and their characteristic symmetries. Since the scope of this arti-
cle is to make it readable to both condensed matter and field theory physicists, we shall also review
(without pretending to be exhaustive) some basic aspects of bosonization, conformal field theory, and
integrable models.

The paper is organized as follows: in Section 2, we present the model of strongly coupled fermions on
a (two-dimensional) square lattice that we shall consider in the paper. We review some known proper-
ties of the corresponding one-dimensional version of this model and we also discuss the relationship
among different approaches for treating the one-dimensional Mott transition. We also apply a two-
dimensional bosonization prescription as considered in [5] for the two-dimensional fermion model.
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After reviewing some basic properties of integrability in statistical mechanics models, we discuss in the
Section 3 the integrability of the specific two-dimensional fermion model considered in this paper. We
show that in the strong coupling regime, the system defined by the ground and low-lying states of the
model satisfies the Zamolodchikov tetrahedron equation, and is characterized by a novel family of solu-
tion to the tetrahedron equation recently found by Bazhanov et al. [6,7]. We review these solutions for
the sake of completeness and discuss the three-dimensional structure of an underlying quantum group
algebraic structure. This analysis allows us to identify the symmetry of the model at the Mott transition
point as given by the quantum group dUqðslð2ÞÞ � dUqðslð2ÞÞ. The identification of the symmetry and the
corresponding effective degrees of freedom allows us to write down the EFT for the model, which is done
in Section 4. With the EFT at hand, we then analyze the order parameter and the universality class of the
transition. We find that it is given by a Kosterlitz–Thouless type transition, with vortices in an anti-fer-
romagnetic array. We also discuss how this order is modified by doping, and that this procedure induces
an Ising-like phase transition. Finally, we present our conclusions.

2. The two-dimensional fermion lattice model

In this section we introduce the model that we shall be considering throughout the paper. Let us
consider a spinless fermions system with nearest neighbors interaction on a square lattice, with
Hamiltonian
H2d ¼ �
t
2

X
x;l
½wyðxþ aelÞeiAlwðxÞ þ h:c:� þ U

X
x;l

qðxÞqðxþ aelÞ; ð2:1Þ
where w(x) is the fermionic field, x labels the lattice sites and el are the unit lattice vectors pointing to
the nearest neighbors of a given site, a is the lattice spacing, t is the hopping parameter, U is the (con-
stant) Coulomb potential, q(x) is the charge density (normal-ordered with respect to the half-filling
ground state), q(x) = [:w�(x)w(x): �1/2] and Al is an Abelian statistical gauge field defined on the links
of the lattice.

2.1. Review of the one-dimensional model

In order to proceed in our study of this model, we first would like to review the physics of the one-
dimensional model analog of (2.1), given by the Hamiltonian
H1d ¼ �
t
2

X
x

½wyðxþ aÞwðxÞ þ h:c:� þ U
X

x

qðxÞqðxþ aÞ; ð2:2Þ
where the sums are taken over the lattice sites. Note that the gauge field is unimportant in this case, as
it should, given that there are no statistical Gauge fields in one spatial dimension (see, e.g., [8]). This
model has an interesting history that begins with the work of Luther and Peschel [9] and which has
later on been studied in detail by several authors, including Shankar [10]. The Mott transition in
one-dimensional systems has been discussed not only in the context of Hamiltonian models like
(2.2), but also within the scope of Luttinger liquids. In the following, we review and relate both of
these approaches with the scope of setting up a framework suitable for further generalizations and
for finding the effective degrees of freedom for the simplest one-dimensional case.

As it is well-known, the model (2.2) can be mapped onto the (one-dimensional) XXZ model through
the Jordan–Wigner transformation:
SþðiÞ ¼ wyi exp ip
X
i<j

wyj wj

 !
; ð2:3Þ

S�ðiÞ ¼ exp �ip
X
i<j

wyj wj

 !
wi; ð2:4Þ

SzðiÞ ¼ wyðiÞwðiÞ � 1=2; ð2:5Þ
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where i labels the lattice sites. The Hamiltonian goes onto
H1d
xxz ¼

X
i

� Sx
i Sx

iþ1 þ Sy
i Siþ1

� �
þ DSzðiÞSzðiþ 1Þ

� �
: ð2:6Þ
In the thermodynamical limit, when the total number of sites is even, this Hamiltonian corresponds to
a the system at half-filling, which has the property:
HxxzðDÞ ¼ �Hxxzð�DÞ: ð2:7Þ
Moreover, the XXZ model is integrable and its spectrum and other analytic properties have been found
in [11] using the Bethe Ansatz. Its ground state energy is:
E0 ¼

1
4 cosh k� 1

4 sinh k kþ 2k
P

n
ð1þ e2nkÞ�1

� �
if D ¼ cosh k > 1;

1=4� ln 2 if D ¼ 1;
1
4 cosl� sin2 l

R1
�1 dx=½2 coshpxðcosh 2lx� coslÞ� if D ¼ cos l < 1:

8>>><>>>: ð2:8Þ
Note that E0 is an analytic function of D in the range 1 < D <1, so that the singularity at D = 1 signals a
phase transition. This fact has been used in [10] to show that the transition at D = 1 is identified as a
Mott one. The argument relies on the duality between two opposite regimes for the system, ranging
from the insulator behavior for D ?1 to the metallic one for D = 0. Moreover, it is known that for
D = 1 + � the spins are in a Neel state, and therefore the system must be in a charge density wave
(CDW) state.

An alternative description of the system (2.2) is given by bosonization of its fermionic degrees of
freedom. For D < 1, the action of the system is given by
S ¼ g
4p

Z
dzd�z @z/ðzÞ @�z

�/ð�zÞ; ð2:9Þ
where g is a self-coupling parameter and we have defined complex space–time coordinates z = x + it
and �z ¼ x� it, and the normal ordered charge density is given by q(z) = i@z/(z). The model has effective
degrees of freedom which are bosonic fields representing charge density waves. Eq. (2.9) defines a
conformal field theory (CFT) whose energy–momentum tensor has holomorphic and anti-holomor-
phic components given by:
TðzÞ ¼ �g@z/ðzÞ; ð2:10Þ
Tð�zÞ ¼ �g@�z

�/ð�zÞ: ð2:11Þ
Moreover, the Fourier modes of the fields, defined by
TðzÞ ¼
X

n

Lnz�n�2; ð2:12Þ

qðzÞ ¼
X

n

qnz�n�1; ð2:13Þ
satisfy the following chiral algebra:
½Ln; Lm� ¼ ðn�mÞLnþm þ
c

12
dnþm;0ðn3 � nÞ; ð2:14Þ

½qn;qm� ¼ ndnþm;o; ð2:15Þ
½Lm;qn� ¼ �mqnþm: ð2:16Þ
These three lines define a current algebra: the first line is the Virasoro algebra for the generators Ln

with central charge c = 1. The second one is the duð1Þ current (or Kac-Moody) algebra for the charge
modes. The third is required for consistency among the other two. The duð1Þ current algebra is used
to define the Luttinger model, which in Hamiltonian form is usually written as:
H ¼ 1
2p

Z
dx uKðpPðxÞÞ2 þ u

K
ð@x/Þ2

h i
; ð2:17Þ
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where u, K are called the Luttinger parameters. It is straightforward to regain the action (2.9) with cou-
pling constant g = K starting from the Hamiltonian (2.17), by transforming the arguments of the fields
into imaginary time. The parameters of the model in the different representations are related by (for a
detailed discussion see [12]):
K ¼ p
2½p� arccosðDÞ� : ð2:18Þ
Hence, the Mott transition in the one-dimensional lattice fermion system (2.2) is characterized by
D = 1 or K = g = 1/2. The Luther–Emery transformation [13] allows us to rewrite the Hamiltonian
(2.17) as H = H0 + H1, where:
H0 ¼ v
Z

p wyþðpÞwþðpÞ � wy�ðpÞw�ðpÞ
� �

dp; ð2:19Þ

H1 ¼
pu
L

sinhð2hÞ
Z

2qþq� þ f1

X
a¼�

: qaðpÞqað�pÞ :

 !
dp

" #
; ð2:20Þ
where v = u(cosh2h + f1sinh2h), exp(2h) = 1/(2K) and f1 is an arbitrary constant. Note that for the
Luther–Emery line, which coincides with Mott transition, i.e., K = 1/2, one has that H1 vanishes so that
the theory consists of two free decoupled chiral fermions. Therefore, we identify the effective degrees
of freedom of the theory at the Mott transition as two free fermionic currents of opposite chirality.

Next we would like to discuss the characteristic symmetry of the degrees of freedom and, therefore,
of the system at Mott transition point. In order to do this, it would be more convenient to switch to the
spin representation (i.e., the XXZ model). Note that the relation (2.7) allows us to write
H1d
xxz ¼

X
i

Sx
i Sx

iþ1 þ Sy
i Siþ1

� �
� ðqþ q�1Þ

2
Sz

i Sz
iþ1

� �
; ð2:21Þ
where q = expic, c = cosD i.e., D = �(q + q�1)/2. For q = �1, we have the isotropic anti-ferromagnetic
spin chain, which is a critical system with an explicit SU(2) symmetry.

It is well-known that the corresponding low energy effective field theory is the Wess–Zumino–Wit-
ten (WZW) model with coupling constant k = 1 [14] and action:
SWZW ¼
k

4p

Z
d2xTr½@lg@lg�1� þ k

12p

Z
BðDÞ

d3xTr½�lmkg�1@lgg�1@mgg�1@kg�; ð2:22Þ
where g(z) is a field in the group manifold of SU(2) (i.e., g is a SU(2)-valued matrix). The first integral in
(2.22) is defined over a compactified two-dimensional domain D and the second is done over a three-
dimensional ball with boundary D. For the sake of completeness, we will sketch here the procedure
leading to this EFT. Following [14], one makes a transformation from the spin variables Si to a fermi-
onic system wa

i that preserves the SU(2) symmetry defined by Si ¼ 1=2
P

a;bw
a
i rwb

i , where r = (rx, ry,
rz) and ri are the Pauli matrices. The standard commutation relations reproduce the correct spin com-
mutators, however the Hilbert space of the fermion system is too large and one must restrict it by pro-
jecting out the states with one particle by site
wyn
� �aðwnÞa ¼ 1: ð2:23Þ
In the low energy regime, the only excitations that should be taken into account are localized around
the two Fermi points of the one-dimensional Fermi surface. One transforms to a set of new fermionic
degrees of freedom (we will label the lattice sites by the integer n to avoid confusion):
waðnÞ ¼
ffiffiffi
a
p
½inwaLðn� 1=2Þ þ ð�iÞnwaRðn� 1=2Þ�: ð2:24Þ
A final redefinition of variables takes us to current operators:
J ¼ i : wyL
� �aðwLÞa : Ji ¼ i : wyL

� �a
riðwLÞa : ð2:25Þ

G ¼ wyLwR þ wyRwL Gi ¼ i : wyLr
iwR : þ : wyRr

iwL :; ð2:26Þ



F.L. Bottesi, G.R. Zemba / Annals of Physics 326 (2011) 1916–1940 1921
where R and L denote the left and right chiral components. The spin operators and the constraint
(2.23) become:
J þ J ¼ G ¼ 0; ð2:27Þ
Si=a ¼ Ji þ Ji þ ð�1ÞnGi: ð2:28Þ
In the continuum limit, the Hamiltonian (2.21) of the spin chain becomes:
H ¼ a
2

Z
d2x½JiðxÞJiðxÞ þ JiðxÞJiðxÞ þ 2JiJiðxÞ�; ð2:29Þ
where the x variable is the continuum limit of the lattice position. The last term in (2.29) is irrelevant
in the renormalization group sense and the effective Hamiltonian becomes the Hamiltonian of the
WZW model.

2.2. Bosonization of the two-dimensional fermion model

We now turn our attention back to the two-dimensional fermionic model on the square lattice with
Hamiltonian (2.1). It can be bosonized as discussed, e.g. in [15,16], by applying a two-dimensional Jor-
dan–Wigner transformation. Let us first consider the case U = 0. As it is known from the one-dimen-
sional case, the Jordan–Wigner transformation owns its existence to a natural ordering of the particles
along the line. This ordering is lost in on two-dimensional lattice, but the mapping could still be de-
fined by adding extra degrees of freedom, in the form of attached statistical fluxes to the particles, i.e.,
by introducing branch-cuts on the otherwise analytic fermionic field operators. Equivalently, one con-
siders the Hamiltonian (2.1) with the additional Gauss law constrain:
qðxÞ � hBðrÞ ¼ 0; ð2:30Þ
where q(x) is the charge density and B(r) is the magnetic field defined on sites of the dual lattice, i.e., a
lattice obtained from the original (direct) one by translating its set of vertices to the centers of each
plaquette of the direct lattice:
B ¼ �ijDiAj; ð2:31Þ
DiAj ¼ Ajðxþ eiÞ � AðxÞ: ð2:32Þ
The Gauss law constraint (2.30) implies that for each fermion on the site x of the direct lattice, there is
also a quantum flux (or vortex) in the corresponding site r of the dual lattice. It can be implemented at
the field theory level by coupling the fermions to an Abelian statistical Chern–Simons (CS) Gauge field.
In order to show how to do it, let us consider the Lagrangian:
L2d ¼
X

x

wyðxÞiD0wðxÞ � t
X

x;j¼1;2

wyðxÞeiAj wðxþ ejÞ þ hc
� �

þ h
4

X
x

�l;m;kAlðxÞFmkðxÞ; ð2:33Þ
where
D0 ¼ @0 � iA0; ð2:34Þ
Fij ¼ DiAj � DjAi; ð2:35Þ
F0i ¼ @0Ai � DiA0: ð2:36Þ
The canonical quantization of the above Lagrangian in the Gauge A0 = 0 imposes the constraint
(2.30) at the level of the Hilbert space [17]. The classical solutions of the constraint can be written
as follows:
Aj ¼ Dj/ðxÞ ¼
1
h

X
x0
½Hðxþ ej; r0Þ �Hðx; r0Þ�qðx0Þ; ð2:37Þ
where H(x,r) is the lattice-angle function [18] which contains a branch cut from r to 1 satisfying:H
CDh = +1 for any closed curve C that encloses the point r of the dual lattice. Moreover, the

operators:
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aðxÞ ¼ ei/ðxÞwðxÞ; ð2:38Þ
ayðxÞ ¼ wyðxÞe�i/ðxÞ ð2:39Þ
satisfy bosonic commutations relations for 1/2h = mp and due to the Pauli principle, the operator (2.38)
are hard-core bosons representing charge density waves (CDW) states of the underlying electrons.So
that the mapping defined by Eqs. (2.38) and (2.39), relate the fermionic degree of freedom to bosonic
ones, and therefore the spinless fermion system can be mapped onto the following Hamiltonian:
H2d0

Bos ¼ �t
X

x;l¼1;2

½ayðxÞaðxþ elÞ þ h:c:� þ U
X

x

qðxÞqðxþ aÞ: ð2:40Þ
The identifications:
SþðxÞ ¼ ayðxÞ; ð2:41Þ
S�ðxÞ ¼ aðxÞ; ð2:42Þ
SzðxÞ ¼ qðxÞ � 1=2; ð2:43Þ
where the operators S+(x) and S�(x) are the raising and lowering spin operators for a s = 1/2 spin par-
ticle, allows us to map the original fermion system onto the two-dimensional XXZ-spin model:
H2d
XXZ ¼

X
hiji
� Sx

i Sx
j þ Sy

i Sy
j

	 

þ DSz

i S
z
j

h i
; ð2:44Þ
where i, j denote lattice sites and the sum is taken over nearest neighbors, and we have defined D = t/
U.

Summarizing, fermionic two-dimensional systems can be bosonized by attaching fluxes to parti-
cles, which is achieved at quantum level by constraining the Hilbert space states after imposing the
Gauss Law. The dynamics of these systems may be described at the Hamiltonian level in terms of these
bosonic degrees of freedom, which physically represent charge density waves. Alternatively, the
charge density waves may be replaced by another set of degrees of freedom, such as the spin waves
in the so-called XXZ spin model.

3. Integrability of the two-dimensional model

As we have seen in the previous section, the one-dimensional fermionic model with nearest neigh-
bors interaction displays a Mott transition. This property can be established through the integrability
of the (one-dimensional) XXZ spin chain, which is equivalent to the linearity of the associated free bo-
son system. Our strategy for discussing the Mott transition in the corresponding two-dimensional
spinless fermionic model on the square lattice (2.1) is to show that the property of integrability could
also be extended to encompass this case. The discussion of the Mott transition in this system could
then follow the line of reasoning of the previous Section. For reasons that will be clear latter, we will
first consider the Six-vertex model [20]), and later show its relation to the lattice fermionic model. The
Six-vertex model is a statistical model on a two-dimensional lattice, on which a classical electric cur-
rent defined on each link can interact with other currents at the lattice sites. Each site of the lattice
(which we will refer to as a vertex) may be in one of the six possible configurations shown in
Fig. 1. The energy �v associated with a given vertex depends on the four current states at the edges
only. If we further impose a parity (Z2) invariance, we are left with three possible vertices:
a ¼ w1 ¼ w2 ¼ e�b�1 ; ð3:1Þ
b ¼ w3 ¼ w4 ¼ e�b�2 ; ð3:2Þ
c ¼ w5 ¼ w6 ¼ e�b�3 : ð3:3Þ
Following Refs. [19,20], one defines a vector space Vi for each vertical link, another one in a given hor-
izontal row Va (the so-called auxiliary space) and a vertex operator R such that its matrix elements are
interpreted as the Boltzmann weights of a given vertex according to:
hliþ1;aijRjli;bii ¼Wðaibi;liþ1liÞ; ð3:4Þ



Fig. 1. Boltzmann weights of the Six-vertex model.
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where jaii, jbii denote the states on the vertical links, and jli+1i, jlii the ones on the horizontal links. In
this basis the R-matrix of the Six-vertex model reads:
R ¼

a 0 0 0
0 b c 0
0 c b 0
0 0 0 a

26664
37775: ð3:5Þ
Following Baxter, we introduce the row-to-row transfer matrix which plays the role of a discrete-time
evolution operator (the time variable is taken as flowing upwards from one row to the next). More
precisely, the transfer matrix is an endomorphism:
T : HN � V1 � V2 � � � � � VN ! V1 � V2 � � � � � VN; ð3:6Þ

defined by:
T ¼ Tra½RaNRaðN�1Þ � � �Ra1�; ð3:7Þ
where the trace Tra is taken on the auxiliary space. The integrability of the model is guaranteed by the
existence of a set of mutual commuting row-to-row transfer matrices. In fact, it has been shown [20]
that for two sets of Boltzmann weights, (a, b, c) and (a0, b0, c0) the transfer matrices of the Six-vertex
model satisfy:
½Tða; b; cÞ; Tða0; b0; c0Þ� ¼ 0() D6v ¼ D06v ; ð3:8Þ
where D6v = (a2 + b2 � c2)/(2ab) (D06v is defined in an analogous way) is the so-called anisotropy param-
eter. This condition is equivalent to the existence of solutions of the Yang–Baxter equation [20]:
R12ðuÞR13ðuþ vÞR23ðvÞ ¼ R23ðvÞR13ðuþ vÞR12ðuÞ; ð3:9Þ
where u is the spectral (uniformization) parameter, and each operator Rij acts non-trivially on Vi � Vj.
This equation can also be written in the form of the commutation relations for the quantum L-
operators
R12ðu� vÞL13ðuÞL23ðvÞ ¼ L23ðuÞLðvÞ13R12ðu� vÞ: ð3:10Þ
As it is known [19], the transfer matrix of the Six-vertex model is related to the Hamiltonian of the XXZ
model by:
TðlÞ ¼ e�lHxxzðDÞ; ð3:11Þ
which also shows that the Yang–Baxter equation implies the integrability of the XXZ spin model.
Moreover, Eq. (3.9) may be considered as an equation among operators, whose solutions define

integrable planar lattice models, i.e., (2 + 0) dimensional statistical systems or (1 + 1) dimensional
quantum systems. Within this approach, the Six-vertex model may be considered as one specific solu-
tion of the Yang–Baxter equation when the space Vi is the representation space of spin 1/2 particles.
Although a classification of the solutions of (3.9) is not known, some solutions have been found. These
solutions are related to the quantum deformations of Lie algebras or, more precisely to the quantum
deformations of the universal enveloping Lie algebras also called quantum groups. In fact, the universal
Yang–Baxter equation:
R12R13R23 ¼ R23R13R12; ð3:12Þ
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which is the Yang–Baxter equation independent of the spectral parameter, has the so-called universal
R-matrices as solutions. For example, when Vi is the space representation of spin 1/2, Drinfeld [21] has
given a solution:
R ¼ qH�H=2
X1
n¼0

ð1� q�2Þn

½n�q!
q

nð1�nÞ
2 qnH=2ðXþÞn � q�nH=2ðX�Þn; ð3:13Þ
where q is a complex parameter, [n]q = (qn � q�n)/(q � q�1) is a q-number and the generators X+, X�
and H satisfy the commutation relations:
½Xþ;X�� ¼
qH � q�H

q� q�1 ; ð3:14Þ

½H;Xþ� ¼ 2Xþ; ð3:15Þ
½H;X�� ¼ 2X�; ð3:16Þ
with co-products:
DðX�Þ ¼ X� � qH=2 þ q�H=2 � X�; ð3:17Þ
DðHÞ ¼ H � 1þ 1� H; ð3:18Þ
which define the quantum group Uq(sl(2)) (note that the co-multiplication operator D should not be
confused with the anisotropy parameter, as is clear from the context). Furthermore, we define the
operators [19]:
E1 ¼ elSþ; F1 ¼ e�lS�; H1 ¼ 2Sz; ð3:19Þ
Eo ¼ elS�; F0 ¼ e�lSþ; Ho ¼ �2Sz; ð3:20Þ
where S± are the raising (lowering) operators of the spin-1/2 particle and x = el is the affinization
parameter. These operators define an irreducible representation (el, 1/2) of the affine algebra dslð2Þ.
In this context, the R-matrix act as an intertwiner between the tensor product of two representations:
Rðel1 ; el2 ÞDðgÞ ¼ D0ðgÞRðel1 ; el2 Þ; ð3:21Þ
where g is any element of the quantum group and D0 is the inverse co-product, i.e., the co-product
composed with the operator permuting vector spaces. This R-matrix has the form:
Rðel1 ; el2 Þ ¼

qx� q�1x�1 0 0 0
0 x� x�1 q� q�1 0
0 q� q�1 x� x�1 0
0 0 0 qx� q�1x�1

26664
37775; ð3:22Þ
where x = el, l = l1 � l2. This R-matrix coincides with that of the Six-vertex model for the parametri-
zation a = sinh (u + ic), b = sinh (u), c = isincq = exp(ic) (for details see [19]), so that the Six-vertex mod-
el possesses symmetry dUqðslð2ÞÞ. Moreover, it have been shown in [22] that the Hamiltonian of the XXZ
model in the thermodynamic limit commutes with the Affine quantum group dUqðslð2ÞÞ and that the
space of states is identified with the tensor product of level 1 highest and level (�1) lowest represen-
tations of dUqðslð2ÞÞ. Besides, the corresponding L-operator is a q-deformation of the fundamental L-
operator of the XXX (Heisenberg) spin chain, given by [23]:
Lxxz
n;a ¼

xqSz
n � x�1q�Sz

n ðq� q�1ÞS�n
ðq� q�1ÞSþn xq�Sz � x�1qSz

n

" #
: ð3:23Þ
This Lax operator, together with the R-matrix (3.22) satisfies the LLR = RLL condition (3.10)). It is pos-
sible to rewrite this condition introducing
eLðxÞ ¼ QðxÞLðxÞQ�1ðxÞ eR ¼ QðxÞQðyÞRðx=yÞQ�1ðxÞQ�1ðyÞ; ð3:24Þ
where
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QðxÞ ¼ x1=2 0
0 x�1=2

" #
; ð3:25Þ
which yields:
eR ¼
qx� q�1x�1 0 0 0

0 x� x�1 x�1ðq� q�1Þ 0
0 xðq� q�1Þ x� x�1 0
0 0 0 qx� q�1x�1

26664
37775: ð3:26Þ
3.1. Three-dimensional structure of quantum groups and vertex models

The (2 + 1)-dimensional analogue of the Six-vertex model, is a ‘quantum-vertex model’ where the
classical weights e�b�a , e�b�b e�b�c , should be replaced by ‘quantum vertex operators’ defined on the lat-
tice Hilbert space. In order to define this vertex model, we need first to consider a quantum lattice [24]
defined as follows: for each lattice site (xi, yj), we define a Fock space Fij and a set of representation
spaces of spin 1/2 particles Vi, Vj, Vi+1 and Vj+1 on each link joining two lattice sites. The states of
the link in the lattice are arrows (as in the Six-vertex model), and the states in the Fock space Fij

are labeled by the number of particles in the site jniji as shown in Fig. 2. Then, we assign a scattering
amplitude (and a vertex operator) to each lattice site by:
S
a0

i
;b0j

ai ;bj
¼ ha0ib

0
jn
0
ijjLVi ;Vj ;Fij

jai;bjniji ¼ Li0 j0 ;n0

i;j;n ; ð3:27Þ
where LVi ;Vj ;Fij
is a ‘three dimensional Lax operator’ acting on the spaces Vi � Vj � F. Furthermore, it is

possible to define layer-to-layer transfer matrices Tm n({k}, {l}), where the pair (m,n) labels the rows
and columns of a given layer and ({k}, {l}) are the spectral parameters, associated to the rows and col-
umns, respectively, by:
Tmn ¼ TrVx�Vy

Y
i

Y
j

LVi ;Vj ;F;ðki;ljÞ
" #

¼ Tmnðfkg; flgÞ; ð3:28Þ
where Vx ¼ �n
i Vi and Vy ¼ �m

j Vj; fkg ¼ fk1; k2; . . . :kngflg ¼ fl1; . . . ;lmg. Here, the layer-to-layer
transfer matrix plays the role of a temporal evolution operator in an unitary time step, where the tem-
poral axis coincides with the direction perpendicular to the layer. For quantum systems in (2 + 1)-
Graphical representation of the sates jn = 0i and jn = 1i belonging to the Fock spaces at each lattice site. The arrows
ond to the states jaii, ja0ii, jbji, jb0ji.
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dimensions (and also for three-dimensional statistical systems), the integrability is guaranteed by the
commutativity of the layer-to-layer transfer matrices. The integrability is also encoded in the so-called
Zamolodchikov tetrahedron equation (TE) [27], which is the three-dimensional analogue of the Yang–
Baxter equation, or equivalently in terms of the Lax operators, through the three-dimensional ana-
logue of the LLR–RLL equation:
RabcRadeRbdf Rcef ¼ Rcef Rbdf RadcRabc; ð3:29Þ
L12;aL13;bL23;cRabc ¼ RabcL23cL13;cL13;b; ð3:30Þ
where the operators Rijk define the mapping Rabc: Fa � Fb � Fc ? Fa � Fb � Fc, and the operators L act on
V = V1 � V2 � V3 � Fa � Fb � Fc. If the Fock space Fa is considered as the representation space of some
algebra A, then the operators L can be represented as operator-valued matrices acting on Vi � Vj such
that their coefficients are given in terms of the generators va of the algebra A and some complex
parameters sa, so that Eq. (3.30) takes the form of a local-Yang–Baxter-equation:
L12ðva; saÞL13ðvb; sbÞL23ðvc; scÞ ¼ L23 v0c; sc
� �

L13 v0b; sb
� �

L1a v0a; sa
� �

: ð3:31Þ
For classical systems, the algebra A is chosen to be the Poisson algebra P. In this case, the matrix L
which solves the local Yang–Baxter equation (3.31) is given by
L1;2ðka; aa; a�aÞ ¼

1 0 0 0
0 ka a�a 0
0 �aa ka 0
0 0 0 1

26664
37775; ð3:32Þ
where the indices in the second space enumerate the two-dimensional blocks, while those for the first
space enumerate the elements inside the blocks and k = 1 � a⁄a. Moreover,
a�i ; aj
� �

PB ¼ 2dij fki; ajgPB ¼ dijkiaj ki; a�j
n o

PB
¼ �dijkia�j ; ð3:33Þ
where { , }PB denote the Poisson brackets. It was shown in [6] that Eq. (3.31) defines a canonical trans-
formation (automorphism) of the triple tensor product of the Poisson algebra. This solution corre-
spond to the classical three-wave problem, i.e., the linear propagation of three-dimensional waves
along to three mutually perpendicular axes.

In quantum systems, we expect that the Algebra A will be the either bosonic or fermionic. This is
actually the case for free Boson or fermion systems. However, we are interested in interacting solutions
of the TE. Recently, a new solution to the TE associated with the three-dimensional structure of the
affine quantum group dUqðslðnÞÞ has been found in [6] [7]. The new solution may be understood as
the quantization of either the classical three-dimensional wave problem or the quantization of fluctu-
ations of extended spatial objects. It amounts to taking L-operators as block matrices with two-dimen-
sional blocks, in which matrix indices in the second space enumerate the blocks while those for the
first space enumerate the elements inside the blocks.
Li;jðAvÞ ¼

1 0 0 0
0 kvkv ayv 0
0 �q�1kvlav lvkv 0
0 0 0 �q�1kvlv ;

26664
37775: ð3:34Þ
with i, j = 1,2,3, v = a,b,c and where now (k,a�,a) are quantum operators acting on the Hilbert space
and the algebra A is the q-oscillator algebra defined by [6]:
qaya� q�1aay ¼ q� q�1; ½h; ay� ¼ ay ½h; a� ¼ �a; ð3:35Þ
k2 ¼ ð1� ayaÞ; k ¼ qh: ð3:36Þ
The above solution allows one to define a ‘quantum vertex model’ by assigning ‘quantum vertex
operators’ fj at each vertex on the lattice, according the rules shown in the Fig. 3, where m2 = �q�1kl.
We now map the square lattice onto a torus, and let Ca and Cb be the two basic homotopy cycles on
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that torus, such that each homology cycle corresponds to a path along one coordinate axis of the
square lattice. Any path on the torus belongs to a given homotopy class P 	 nCa + mCb, and it is possi-
ble to define [25]:
Tn;m ¼
X

P

X
j2P

fj; ð3:37Þ
where the sum over P means the sum over different paths, which is exactly Eq. (3.28). The commuta-
tivity of the layer-to-layer transfer matrices follows from another (related) Tetrahedron equation [26]
[6]:
Mii0 ðH0l=l0ÞMjj0 ðH0k=k
0ÞLijðAv ; k;lÞLi0j0 ðAv ; k;lÞ

¼ Li0 j0 ðAv ; k;lÞLijðAv ; k;lÞMjj0 ðH0k=k
0ÞMii0 ðH0l=l0Þ; ð3:38Þ
where the matrix elements of M(H0, f) belong to an additional copy of the q-oscillator algebra denoted
by H0 and:
Mi;jðH0Þ ¼

fhO 0 0 0
0 k0ð�qfÞh0 m0f

�1=2þh0 ay0 0

0 l0f
1=2þh0 a0 l0ð�qfÞh0 0

0 0 0 l0f
h0

266664
377775; ð3:39Þ
with m2
0 ¼ q�1k0l0. Eq. (3.38) can be verified directly from the operator (3.39), and the commutativity

of the layer-to-layer transfer matrices follows from its definition and the use of Eq. (3.38). In the cubic
lattice with boundary conditions (where the third dimension corresponds to the temporal axis), the
solutions of the TE given in 3.34, 3.39 have the following properties:


 For q < 1, they yield the Fock space representation of the q-oscillator algebra:
aj0i ¼ 0; jni ¼ ðayÞnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq2; q2Þ

p j0i; kjni ¼ qnþ1=2jni; ð3:40Þ
where (x;q2) = (1 � x)(1 � q2x)� � �(1 � q2x).
It is possible to construct the elements of the R-matrix in the basis of the q-oscillator algebra
n01; n

0
2; n

0
3jRjn1;n2;n3


 �
. The resulting R-matrix is non-degenerate in F�

3
.


 The above solution implies that the standard Yang–Baxter equation is satisfied. One defines the
operators
Fig. 3. Weights of the quantum-vertex-model.
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Rbc ¼ TrFa ½Rab1 ;c1
Rab2 ;c2

� � �Rabn ;cn �; ð3:41Þ
Lvb ¼ TrV0 ½L0;1;b1

L0;2;b2
� � � L0;n;bn �; ð3:42Þ
where Fb ¼ Fb1 � Fb2 � � � � Fbn , Fc ¼ Fc1 � Fb2 � � � � Fcn , which involves the product of n operators along
the ‘third direction, i.e., the direction labeled by ‘a’. Due to the fact that the R-matrix is non-degenerate
in Fa � Fb � Fc, the TE implies that these operators satisfy
RbcRbdRcd ¼ RcdRbdRbc; ð3:43Þ
LVbLVcRbc ¼ RbcLVcLvb: ð3:44Þ
This construction yields a projection from the TE to the YB ones. Using a similar projection, Eq. (3.39)
implies that there also exists another Yang–Baxter equation (for details see [6]):
RVi ;Vj
LVi ;bLVj ;b ¼ LVi ;bLVj ;bRVi ;Vj

: ð3:45Þ

 The new solution is associated with the affine quantum group Uqð dslðnÞÞ, where n is the range of the
third dimension, i.e., n is the number of two-dimensional layers.

For simplicity we now take k = 1, l = 1 and the indices 1, 2, 3 denoting the quantum spaces a, b, c.
Inserting the operator L (3.34) in the local Yang–Baxter equation (3.31), we obtain the explicit map-
ping R123 given by:
k02 ay1
� �0 ¼ k3ay1 � k1ay2a3; k02a01 ¼ k3a1 � k1a2ay3;

ay2
� �0 ¼ ay2ay3 þ k1k3ay2; a02 ¼ a2a3 þ k1k3a2;

k02 ay3
� �0 ¼ k1ay3 � k3a1ay2; k02a03 ¼ k1a3 � k3ay1a2:

ð3:46Þ
Eq. (3.46) are the Heisenberg equations of motion for the quantum operators ai; a
y
i ; ki

� �
, where we have

denoted with primes those operators that evolve forward in time t0 = t + Dt which describe the time
evolution of the quantum three-wave problem.

3.2. Integrability and the two-dimensional Mott transition

In this section we will come back to the two-dimensional fermion model defined by (2.1) to study
its symmetries and integrability. We first recall (Section 1) that it is equivalent to a two-dimensional
XXZ spin model:
HF ¼ HXXZ ¼ �
X

ij

Sx
i Sx

J þ Sy
i Sy

J � DSz
i S

z
j

h i
:

On the other hand, the quantum vertex model defined in the previous Section has the remarkable
property that can be projected from three to two dimensions. This means that the equations:
LVbLVcRbc ¼ RbcLVcLVb; ð3:47Þ
LVi ;bLVj ;bRVi ;Vj

¼ RVi ;Vj
LVi ;bLVj ;b; ð3:48Þ
can be interpreted as arising from a two-dimensional system. Moreover, two remarkable properties of
the quantum vertex model and the associated three-dimensional structure of quantum groups have
been discussed in [6]:
LVb ¼ �n
i¼1Lðxk; k; fligÞ ð3:49Þ

Tm ¼ Trpxk
½Lðxk; kmfligÞ � � �Lðxk; k1; fligÞ�: ð3:50Þ
The first equation shows that the operator LVb decomposes into a direct sum of the fundamental
L-operators LslðnÞ of the affine quantum group Uqð dslðnÞÞ, where xk is the highest weigh of the
representation pxk

. The second one, shows that the row-to-row transfer matrix of the quantum vertex
model can be reconstructed from the fundamental L-operators.
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The quantum vertex model is stationary for L12ða; ay; kÞ ¼ L12ða0; ay
0
; k0Þ, i.e., for the case when the

patterns for two consecutive time slices are identical so that the third dimension has range n = 2. In
this case, the operator Lvb is:
LVbðuÞ ¼
1þ uk1k2qh1þh2 0 0

0 L 1
2 ;l
� �

0

0 0 l1l2ðqh1þh2 þ q�2ukik2Þ

264
375; ð3:51Þ
and
L
1
2
;u

� �
¼

l1ðqh1 � uk1k2qh2�1Þ �q�1k1l1a1ay2
�q�1uk2l2ay1a2 l2ðqh2 � uk1k2qh1�1Þ

" #
: ð3:52Þ
For h1 = h2 = 1/2 we have:
qh1 ¼
q 0
0 1

� �
; qh2 ¼

1 0
0 q

� �
; a1ay2 ¼

0 0
1� q2 0

� �
; ay1a2 ¼

0 1� q2

0 1

" #
:

If k1 = k2 = 1 and l1 = l2 = 1, the last operator is the R-matrix (3.26) of the XXZ spin chain (or Six-vertex
R-matrix). Since is possible to project the quantum vertex model onto any lattice direction, any row or
column should give rise to a XXZ spin chain, and one can expect that this system will be equivalent to a
two dimensional XXZ model.

We are now ready to map among each other the original two-dimensional fermion model, the
quantum vertex model and the two-dimensional XXZ spin model. The two-dimensional lattice fermion
model describes charge density waves propagating on the lattice of the underlying electrons above
(and below) the half-filling state. Viewed at a fixed time, the wave vectors of these charge density
waves cross themselves at each lattice site, defining a ‘Six-vertex model’. The half-filling condition
means that the Fock space of the q-oscillator algebra must be restricted to: {jni = j1i, j � 1i}. These
states are in one-to-one correspondence with the states j"ij;i of the two-dimensional spin model.
Therefore, the quantum (Fock) space is also in correspondence with the representation space of a spin
1/2 particle. Introducing this information in Eqs. (3.45), (3.51) and (3.52), we see that for each line on
the lattice we can define an XXZ (one dimensional) spin chain corresponding to the wave propagation
of the CDW along this line. This fact allows us to identify the parameter D = U/t (representing the nor-
malized Coulomb interaction) of the one-dimensional fermion model with D = �(q + q�1)/2, where
q = exp(ic) is the deformation parameter of the quantum group.

Moreover, let us consider an interaction star, i.e., the interaction among a central spin, labeled by
the index a an its nearest neighbors, labeled by the index b. A direct calculation shows that:
i
2

d
du

ln½1=aðuÞTra;bLðuÞ1=2ðraÞLðuÞ1=2ðrbÞ� ¼ �Ha;b; ð3:53Þ
where a(u) = sinh(u + ic), and we have taken the parameters u = v = 1. Tra,b is the trace over the space
Via � Vja � Vib � Vjb and Hab is the element (a, b) of the two-dimensional XXZ Hamiltonian. Now we
take:
Lijðki;ljÞ ¼
1 if jrb � rbj > 1
Lða; ay; k; raÞ ra; rb are nearest neighbors

�
ð3:54Þ
and we define the ‘link operator’ l̂a;b ¼ f̂a f̂b, such that the expectation value of a given path c is
wðcÞ ¼ h

P
a;b2c l̂a;bi. The partition function of the quantum vertex model can be therefore defined as:
ZðQVRÞ ¼
X

c

Y
a;l2c
hnanaþel jf̂ a f̂ aþel jnanaþel i

¼ Trnm
F

Y
al¼x;y

½TrVa�Vaþel
Lðaa; aya; ka; raÞLðaaþel ; a

y
aþel

; kaþel ; raþel Þ� ð3:55Þ
where f̂ a is the weigth operator defined in the previous subsection, a runs over all the lattice sites, ex

and ey are unit vectors pointing to the nearest neighbors of a given site, and Fnm = F�nn is the complete
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Fock space of the square lattice with n rows and m columns. Tracing over the vector space Vy0 (there is
nothing special about the ‘zero-th line’, and we can also trace over any row space Vy1

;Vy2
. . . :Vyn

) and
using Eq. (3.42), we have:
ZðQVMÞ ¼ TrFnm

Y
b

½TrVb ðLvbðybÞLvbðybþ1Þ
NÞ� ð3:56Þ
where now the index b labels the vector spaces along the ‘vertical lines’. Taken into account the fact
that we are using the two-dimensional (spin 1/2) representation of Uqð dslð2ÞÞ we have:
ZðQVMÞ ¼ TrFm

Y
b

½TrVb
ðRxxzðybÞR

xxzðybþ1ÞÞ
N� ð3:57Þ

¼ TrFm

Y
b

e

P
a

Ha;b

" #
ð3:58Þ

¼ TrF e

P
a;b

Ha;b
" #

ð3:59Þ

¼ ZðH2�D
XXZ Þ ð3:60Þ
Therefore, we arrive at the interesting identity:
ZðQVMÞ ¼ Z H2d
xxz

	 

; H2d

xxz ¼ HF : ð3:61Þ
This Eq. (3.61) shows that the two-dimensional XXZ spin lattice and the Lattice fermion system (2.1)
have quantum group symmetry Uqð dslð2ÞÞ.

Summing up: the two-dimensional lattice fermion model, viewed at two different times, can be
considered as a two-layered three-dimensional system where the third direction coincides with the
temporal axis (see Fig. 4). From an intuitive point of view, one can assign an arrow to the time prop-
agation direction of the charge density waves of the underlying fermions. At the stationary point,
where the pattern of arrows does not change with time, these arrows define a vertex model with
Fig. 4. Current patterns of the fermion model at two different times.
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quantum group symmetry dUqðslð2ÞÞ. Alternatively, one can say that due the projection-like property
(3.43), the two-dimensional XXZ spin system may be decomposed in a consistent way into two
one-dimensional chains, so that the entire system will have a quantum group symmetry
(ðUqð dslð2ÞÞÞ�N). The property that (2 + 1)-dimensional quantum systems in square lattice with periodic
boundary conditions reduce to (1 + 1)-dimensional quantum chains, implying that the ððUqð dslð2ÞÞÞ�NÞ
symmetry reduces to the Uqð dslð2ÞÞ quantum group symmetry, was first noted in [6,25].

4. Construction of the effective field theory

As we have shown in the previous Section, the two-dimensional fermionic system defined by (2.1)
has a (2 + 1) quantum-group symmetry Uqð dslð2ÞÞ. Discrete time evolution is given by the transfer ma-
trix Tmn({kn}, {lm}). We have presented an explicit form for it in (3.28) which is a solution of the Zamo-
lodchikov tetrahedron equation, rendering the model integrable in (2 + 1) dimensions. However, this
solution is not completely transparent from the physical point of view. To further study the system
and this solution, we will follow the path of writing down an Effective Field Theory (EFT) formulation
for it (for a review, see [3]), valid for long-distance and low-energy domains. EFTs provide useful
frameworks for analyzing the behavior of many-body systems, specially near to a phase transition
point, were universal properties are vastly dominating the physical properties of the systems under
study. The general scheme for applying the method of EFTs starts by identifying the effective degrees
of freedom that dominate the low-energy regime of a given system and their characteristic symme-
tries. Note that these degrees of freedom are usually chosen by phenomenological reasons and could
bear no resemblance with the microscopic degrees of freedom of any underlying model describing the
system. One then proceeds to write down the most general local action in terms of second-quantized
fields representing the selected degrees of freedom which are consistent with the noted symmetries.
In the case at hand, the construction of the EFT is obtained by choosing fermionic fields as the degrees
of freedom. By using the vertex model representation of the lattice fermion model (2.1),and its con-
nection to the Chern–Simons theory (and analytical continuation in the Chern–Simons coupling con-
stant given in [41]), we will now show that the corresponding effective field theory is a double Chern–
Simons theory with gauge group U(1) and quantum group symmetry dUqðslð2ÞÞ � dUqðslð2ÞÞ, which is
the symmetry of the exact solution (3.28) and (3.34).
4.1. The one-dimensional case

For the sake of completeness and clarity of exposition, let us start by considering the EFT describing
the one-dimensional Mott transition. As discussed in Section 1, the one dimensional counterpart of the
lattice fermion system (2.1) can be bosonized. Its effective degrees of freedom are the charge density
waves of the underlying strongly correlated electrons, and for a general coupling (D) the system has aduð1Þ Kac–Moody symmetry [28]. The Mott transition point (D = 1) coincides with the Lutter-Emery
point, where the degrees of freedom are two chiral non-interacting fermions. At this point, Eq.
(2.20) can be written in coordinate space on a circle domain as:
H ¼ v
2

Z 2pR

0
dx wyrðxÞð�i@xÞwrðxÞ þ cc þ wyl ðxÞð�i@xÞwlðxÞ þ cc
� �

; ð4:1Þ
where wr(x) (wl(x)) are the right (left) relativistic chiral fermions (Weyl fermions) moving on a cir-
cle of radius R with speed v. Each chiral branch can be bosonized independently. Let us focus on
one chiral component,say the right one. This can system has a quadratic action on a circle (of ra-
dius R = 1) [29]:
S ¼ � k
4p

Z 1

1
dt
Z 2p

0
ð@t þ v@xÞ/@x/; ð4:2Þ
where k is the coupling constant, /(x, t) is a real scalar field and x denotes the coordinate along
the circle of length 2p and v is the ‘speed of light’. By coupling this one-dimensional chiral sys-
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tem to an external electromagnetic field E, the equation of motion of the bosonic field changes to
[30]:
@tQ ¼
e
k

E; ð4:3Þ
where E = @tAx � @xAt is the electric field pointing along the circle and A is the U(1) electromagnetic
potential. Eq. (4.3) displays the chiral anomaly of the Weyl fermion. This description can be also ob-
tained from the Abelian Chern–Simons theory with Lagrangian
Lcs ¼
k

4p
�lmqAl@mAq ð4:4Þ
defined on the disc D, whose boundary is the circle of radius R = 1. By making a Gauge transformation
dAl = e@lk, the action undergoes a variation:
dSCS ¼
ke
4p

Z
kð@tAh � @hAtÞ; ð4:5Þ
showing that SCS is not Gauge invariant on the boundary. Equivalently, there is a chiral current
Jr ¼ dScs

dAr
¼ ke

2p
Eh; ð4:6Þ
that shows again the presence of the chiral anomaly of the Weyl fermion for k = 1 [30]. The chiral
anomaly of one chiral component is canceled by the corresponding anomaly of the anti-chiral sector
of the complete theory, which is anomaly free. This implies that the Mott transition in a one-dimen-
sional system is described by a double Chern–Simons theory:
S ¼ k
4p

Z
DxR

d3x�lmqAR
l@mAR

q �
k

4p

Z R

DxR
d3x�lmqAL

l@mAL
q; ð4:7Þ
which contains two chiral Gauge fields (AR, AL ) of opposite chiralities and where the value of the cou-
pling constant is k = 1.

4.2. Two-dimensional effective field theory

Now let us consider the EFT for the Mott transition in the two-dimensional square lattice. As it has
been remarked before, one must identify the correct degrees of freedom dominating the low-energy
regime and their characteristic symmetries. The two-dimensional Jordan–Wigner transformation
shows that the lattice fermionic system can be also considered as a bosonic system. We choose these
bosonic degrees of freedom as the characteristic ones for the low-energy regime of the system. Fur-
thermore, these can be viewed in more physical terms as charge density waves, which we choose
to construct the EFT. We look for an EFT with three-dimensional quantum group symmetry that is
consistent with the properties established in Section 2.2. Namely, that it should posses a kind of vertex
model interpretation, that it should be parity-invariant and that it must be projection-able onto one-
dimensional theories, each giving rise to a one-dimensional Mott transition. We recall that in these
one-dimensional theories the degrees of freedom split naturally in two non-interacting chiral
branches when the interaction parameter becomes D = 1. We will now show that this EFT is a lattice
double Chern–Simon theory with Uqð dslð2ÞÞ � Uqð dslð2ÞÞ quantum group symmetry.

4.2.1. Vertex models and Chern–Simon theory
A direct connection between vertex models and Chern–Simons Gauge theory was first established

in classical articles by Witten [41] [42] by using a non-Abelian Chern–Simons theory. Let us review
this connection and consider a Gauge connection A ¼ Aita

i that belongs to an a Lie group G, where ta
i

are the generators of the group. The non-Abelian Chern–Simons theory is defined by the action:
SCS ¼
k

4p
trR

Z
M

A ^ dAþ 2
3

A ^ A ^ A
� �

; ð4:8Þ
where M is an orientated topological manifold, and trR denotes the trace on the representation R of the
group G. The natural observables of this theory are Wilson loops: let us consider a link L as a disjoint
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union of the circles Ci and pick up a representation Ri for each circle. The expectation value of the Link
can be calculated as:
hLi ¼
Z

DAeLcs
Y

i

trRi
Pei
R

Ai : ð4:9Þ
Here we can take M ¼ RxR, where R represents the temporal axis and R is a Riemann surface. In [41] it
has been shown that it is possible to define vertex models by replacing the classical currents living on
the links of a lattice by Wilson lines in a Chern–Simons gauge theory. Furthermore, it has been shown
that the expectation values of this Wilson lines can be calculated from the data in the CS theory. More
specifically, taking the Gauge group SU(2) and projecting the three-dimensional knots onto the plane,
the ‘Boltzmann weights’ for these vertex models are given by:
Wup ¼ q1=2ds1�s3 ;0 � q�1=2ds1þs2 ;0qðs2�s3Þ;

Wund ¼ q�1=2ds1�s3 ;0 � q1=2ds1þs2 ;0qðs2�s3Þ;

Wpc ¼ �s1 ;s2 q�s1=2;

ð4:10Þ
where Wup(Wund) denotes the Boltzmann weight for the vertex in which the line labeled by the rep-
resentations of SU(2) denoted by s1 and s2, are above (below) the line labeled by s3 and s4. Further-
more, Wpc denotes the Boltzmann weights for the pair-creation, and q is the deformation parameter
of the quantum group, which is related to the coupling constant of the Chern–Simons theory by q = ex-
p(ip/k). Note the a different factor in the definition of the deformation parameter of the quantum
group with respect to [41]. Our definition match with the relations defining the quantum group
(Eqs. (3.14) and (3.15)) within the conventions adopted by Alvarez-Gaume et al. [47], while the def-
inition of the deformation parameter in [41] agrees with the convention adopted in [45]. To make con-
tact with the statistical Six-vertex model, one needs to take the Gauge group G = SU(2) and compute
the ‘Bob amplitude’. It was show using Skein theory that any four coupling (including over-crossing,
under-crossing and pair creation) is equivalent to the Bob-amplitude:
A ¼ u � ds1 ;s3 ds2 ;s4 þ v�s1 ;s2�s3 ;s4 :q
�ðs1þs3Þ ð4:11Þ
for some complex parameters u, v. Taking u = (qx�1 � q�1x) and v = (x � x�1) the corresponding R-ma-
trix Rsi ;sj

is given by:
Rðx; qÞ ¼ ðqx�1 � q�1xÞI þ ðx� x�1ÞUðqÞ; ð4:12Þ

UðqÞ ¼
q 1
1 q�1

� �
if i < j; ð4:13Þ

UðqÞ ¼ 0; if i ¼ j ð4:14Þ
which is a possible form of the R-matrix for the Six-vertex model [45]. For a Gauge group
G = SU(2), the Chern–Simons vertex models exhibit symmetry dUqðslð2ÞÞ in the same way that
the classical Six-vertex model does. Therefore, the mathematical structure of the quantum groups
encodes the topology of planar Wilson loops. A little of caution must be taken with the above de-
fined Boltzmann weights: first, note that since the Chern–Simons theory is well-defined for integer
values of the coupling constant k, not all real values of the Boltzmann weights are well defined if
we consider q = exp(pi/k). Second, the classical vertex model is defined in terms of classical de-
grees of freedom (the currents). However, the Chern–Simons action defines a non-dynamical the-
ory (i.e., there are no dynamical currents in CS theory). Both problems are solved by the following
argument: let us impose boundary conditions to the EFT, i.e., by compactifying the space domain
onto a torus. Cutting down the torus along any cycle induces a loose of the Gauge symmetry, so
that the Gauge fields become dynamical degrees of freedom, and as it is well-known that the CS
theory becomes then equivalent to a chiral Weiss–Zumino–Witten (WZW) model defined on a cir-
cle [42])
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SCWZW ¼ �k
Z

CxR
dhdttr½g�1@hgg�1@0g� þ k

3

Z
RxR
�l;m;qTr½½g�1@lgg�1@mgg�1@qg�; ð4:15Þ
where g(z) is the chiral WZW field living in the group manifold of G. This is a conformal field theory
(CFT) with central charge c = (k + jSU(2)j)/(k + cv), where jSU(2)j is the number of generators of the
SU(2) Lie algebra, and cv is the dual coxeter number. The WZW model splits naturally into holomor-
phic and antiholomorphic pieces. The (holomorphic) energy–momentum tensor is given by the
Sugawara form [43]:
TðzÞ ¼ 1
2ðkþ cvÞ

X
a

: JaðzÞJaðzÞ :; ð4:16Þ
where k is the Chern–Simons coupling constant and cv is the dual coxeter number, which for SU(2) is
cv = 2. In other words, after quantization of the WZW model, there is a shift of the parameter k ? k + cv
implied by the Sugawara construction. The currents Ja(z) and the tensor T(z) may be expanded in
modes in the usual way ( for a review see [44]):
JaðzÞ
X

n

z�n�1Ja
n; ð4:17Þ

TðzÞ ¼
X

n

z�n�2Ln: ð4:18Þ
The WZW model has conformal and affine dsuð2Þk symmetries which can be written in terms of the
Fourier modes of the Virasoro and current operators:
½Ln; Lm� ¼ ðn�mÞLnþm þ
c

12
dnþm;0ðn3 � nÞ; ð4:19Þ

Ja
n; J

b
m

h i
¼ i

ffiffiffi
2
p
�abcJc

nþm þ kndabdnþm;0; ð4:20Þ

Ln; J
a
n

� �
¼ �mJa

nþm: ð4:21Þ
The identification between the CS theory and WZW model was used in [41] to obtain an analytical
continuation in k, which follows from the Knizhnik–Zamolodchikov equation:
@z �
1

kþ g

X
i–j

ta
i ta

j

zi � zj

" #
hgðz1;�z1Þ � � � gðzN ;�zNi ¼ 0: ð4:22Þ
This can be used to compute the braiding matrices of this CFT. It has been shown that these braiding
matrices correspond to the Boltzmann Weights of the associated ‘interacting round a face’ (IRF) model
[47], which is equivalent to a vertex model (this is the so-called face-vertex equivalence). The Boltzmann
Weights can now be defined by Eq. (4.10), with the redefinition q = exp(pi/(k + 2)). As it is known, the
WZW model possesses a quantum group symmetry Uqð dslð2ÞÞ � Uqð dslð2ÞÞ [47], with q = exp(pi/(k + 2)).

4.2.2. Abelian Chern–Simons theory and quantum groups
However, as it was pointed out by Witten [41], in the reduction from CS Gauge theory with group G

to any vertex model, one losses the local and global G symmetry so that the vertex models retain only
the maximal torus T symmetry of the group G. For the case at hand where G = SU(2), the vertex model
has a U(1) symmetry which naturally corresponds to the Gauge symmetry of the charged fermions
(charge density waves) propagating on the lattice. The extended Kac–Moody symmetry dsuð2Þ1 present
in the WZW model is obtained by taking the equivalent CFT of (two) chiral bosons at self-dual point
i.e., where the currents:
J� ¼ e�i
ffiffi
2
p

/; ð4:23Þ
Jz ¼ i@/; ð4:24Þ
satisfy the algebra dsuð2Þk (Eq. (4.20)) at level k = 1. As we have seen in the previous section, charge
density waves are also naturally accounted by a Abelian Chern–Simons theory on the circle.
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Imposing periodic boundary conditions on the square lattice amounts to consider the Abelian CS
theory on a (spatial) torus, such that the square lattice on the plane defines the homology cycles on
the torus. In this domain, new degrees of freedom associated to the global Gauge transformations
arise. To be more precise, let us consider the Lagrangian of the Abelian CS theory:
L ¼ k
4p

Z
T

d2x�ijð _AiAj þ AoFijÞ; ð4:25Þ
where T denotes a torus with modular parameter s and homology cycle basis Ca Cb. As it is known
([33,32]), the Gauge field A can be parametrized in this domain by using the Hodge decomposition,
which incorporates the windings around the non-contractible loops on the torus. In holomorphic coor-
dinates z = x + iy, �z ¼ x� iy it is given by
A ¼ @�zvþ i
p

ImgðsÞ
�xðzÞa; ð4:26Þ
where the 1-form x satisfies
R

Ca
x ¼ 1 and

R
Cb

x ¼ s and a = a(t) is a complex (space independent )
function on time. The it can be shown that the Lagrangian, in the Gauge, A0 = 0 becomes [32]:
Lcs ¼ iBeff ð _aa� � _a�aÞ þ ik
Z

r
ð@�z _v@zv� � @z _v�@�zvÞ: ð4:27Þ
The second term in the Lagrangian corresponds to Abelian CS theory on the plane with coupling con-
stant k. The first one shows that the degree of freedom labeled by the function ‘a’ behaves as the coor-
dinate of a quantum mechanical particle moving into an effective magnetic field Beff = pk/Img(s)
restricted to the lowest Landau level. The quantization of this theory is well known and can be done
in the Schödinger picture [31]. The wave functional is:
W½A� ¼ wðvÞwðaÞ; ð4:28Þ
where wðvÞ ¼ e�
R

v@þ
@�ve�

R
jvj, and v ¼

ffiffiffiffi
k

4p

q
ðv1 þ iv2Þ, @± = (@1 ± i@2). Small Gauge transformations do not

affect the wave functional. However, due to the existence of non-contractible loops on the torus, the
global Gauge transformations defined by Bos [34]:
a! aþ n1 þ sn2; v! v; ð4:29Þ
A�z ! �i@�zRR�1; ð4:30Þ

Rðz;�zÞ ¼ exp �n1p
Ims

Z z

z0

ð �x�xÞ � n2p
Ims

Z z

z0

s �x� ð�sxÞ
� �

ð4:31Þ
affect both the zero and a modes. These large Gauge transformations are precisely the magnetic trans-
lations across a parallelogram unit cell:
TRwðaÞ ¼ eiB2ja^Rjwðaþ RÞ; ð4:32Þ
where
TR ¼ eðrþieAÞR; TaTb ¼ eiB=2ja^bjTaþb: ð4:33Þ
The exponential factor involves the flux through the parallelogram defined by~a and~b. Now, following
[35] [36] we take the combination of the magnetic translations:
E ¼ 1
q� q�1 ½Tða; aÞ � Tð�a; aÞ�; ð4:34Þ

F ¼ 1
q� q�1 ½Tð�a;�aÞ � Tða;�aÞ�; ð4:35Þ

K ¼ Tða;0Þ; ð4:36Þ
where the translations are made from the elemental square plaquette of side a. These operators satisfy
the relations:
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½E; F� ¼ K � K�1

q� q�1 ; ð4:37Þ

kE ¼ q2EK KF ¼ q�2FK; ð4:38Þ
that define the quantum group Uq(sl(2). Here q = exp(i B/2 a2) = exp(iU/2) is the deformation param-
eter of the quantum group, and U is the flux per plaquette. Note that for U = 2p we have q = �1 and
then
Tða;0ÞwðxÞ ¼ �wðxþ aÞ; ð4:39Þ
Tð2a;0ÞwðxÞ ¼ wðxþ 2aÞ: ð4:40Þ
This is reminiscent to the staggered flux phase [37], where the fluxes are antiferromagnetically or-
dered. Alternatively, the quantum group symmetry can be also analyzed directly at the level of the
Gauge transformations acting on the wave functionals and the resulting quantum group is also Uq(sl2)
where the deformation parameter is identified directly in terms of the coupling constant k of the CS
theory as q = eip/k [38]. Summarizing, the Gauge invariance of the Chern–Simons theory on the torus
implies the existence of a Quantum group symmetry hidden in the theory. Now following [19] we can
define the generators:
E0 ¼ euE; E1 ¼ euE; ð4:41Þ
F0 ¼ e�uE; F1 ¼ e�uE; ð4:42Þ
K0 ¼ K�1; K1 ¼ K; ð4:43Þ
where x = eu is an affinization parameter. These operators define a representation (eu,1/2) of the affine
quantum group dUqðsl2Þ. So that the double Abelian Chern–Simons theory on the torus possesses a
quantum group symmetry dUqðsl2Þ � dUqðsl2Þ, which is identified with the quantum group symmetry
of the Six-vertex model or, equivalently, with the symmetry Group of the two-dimensional lattice fer-
mion model. To write down the corresponding EFT on the square lattice with periodic boundary con-
ditions all we need to do is to take the modular parameter s = i and to restrict the motion of the
effective degrees of freedom (charge density waves) to the links on the lattice by replacing the
Chern–Simons term with the Lattice Chern–Simons term (which posses lattice differential operators).
Therefore, the EFT is defined by the action:
SDCS ¼
k

4p

Z
d3xaR

lKl;maR
m �

k
4p

Z
d3xaL

lKl;maL
m; ð4:44Þ
with Kl,m = Smu�l,a,mda, Slf(x) = f(x + a�l), dlf(x) = (f(x + a�l) � f(x))/a, (where a is the lattice spacing),
which can also be written as a mixed Chern–Simons theory [39,40].

4.2.3. Identification of the Mott point (q = �1)
We are now ready to identify the Mott point in the two-dimensional case. As we have seen in Sec-

tion 3.2 the two dimensional fermion model (2.1) which is equivalent to the XXZ spin lattice, can be
split into one dimensional systems for each row or column of the square lattice, with Hamiltonian
H1d
XXZ ¼

XL

i¼1

Sx
i Sx

iþ1 þ Sy
i Sy

iþ1 �
qþ q�1

2
Sz

i S
z
iþ1

� �
þ Hb; ð4:45Þ
where Hb ¼ a Sz
1 � Sz

L

� �
and a = (q � q�1)/2.

On the one hand the critical point of this system, which has been analyzed in Section 1, allows
us to identify the Mott transition point in the square lattice with the one-dimensional transition at
D = 1. Since we have defined D = �(q + q�1)/2, it implies q = �1. Besides the critical point in the
one-dimensional system was identified with the WZW model or a double Chern Simons theory
on the circle. On the other hand we have identified the critical point of the two dimensional (dou-
ble periodic) lattice fermion system (2.1) with the Double Chern Simon theory on the (space) torus
with quantum group symmetry Uqð dslð2ÞÞ � Uqð dslð2ÞÞ. As we discussed in the Section 4.2.1, cutting
down the torus the Gauge field become dynamical currents represented by a WZW model, which
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naturally splits its degrees of freedom in chiral components) with quantum group symmetry
Uqð dslð2ÞÞ � Uqð dslð2ÞÞ [47] with q = exp(ip/(k + 2)).However, since the identification of the deforma-
tion parameter q is done at the classical (Hamiltonian) level, there is no Sugawara shift in the
WZW coupling constant k due vacuum renormalization, an we should use q = exp(ip/k). Therefore,
since we can cut down the torus on any cycle, the affine Quantum group symmetry of the double
Chern–Simons theory on the domain T � R implies the quantum Group symmetry of each XXZ spin
system cut down in any circle. We therefore conclude that q = �1 is the correct value of the defor-
mation parameter characterizing the Mott point.

The above statement is the EFT formulation of the statement discussed in [6] and reviewed in Sec-
tion 3: the Quantum TE implies the standard Yang–Baxter equation, so that the integrability in the
(2 + 1)-dimensional quantum system implies the integrability of the (1 + 1)-dimensional systems ob-
tained from it by the projection-like character of the solution (3.34). Sumarizing, the EFT of the lattice
fermion system (2.1) at the Mott transition point is represented by a double Chern–Simons theory at
coupling constant k = 1, in agreement with the analysis based on the magnetic algebra presented in
Section 4.2.1.

4.3. The order parameter

We would now like to discuss the emergence of the order parameter characterizing the transition.
We can do this either from the point of view of the double-Chern–Simons theory or from the point of
view of the equivalent CFT. First, we recall that, as we stated in Section 3.2, each row and column of
the lattice system (2.1) can be considered as a one-dimensional system, which exhibit charge density
wave order as we have stated in Section 1. At D = 1 + � the one dimensional system in the row is in
gap-full state which correspond to the antiferromagnetic phase of the equivalent XXZ spin chain.
For D = 1, the one-dimensional fermion system is in a gapless phase and is described by a CFT withdsuð2Þ1 � dsuð2Þ1 symmetry, which is encoded in the WZW action or in a chiral-antichiral bosonic sys-
tem compactified on a circle at the self-dual radius. Let us now consider the transition in the square
lattice: since we can cut along any cycle of the torus (defined in Section 4.2.2, we can obtain the above
bosonic CFT at the self-dual radius in any row or column in the lattice. Invariance under surgery of the
states in the CS theory, implies by consistency that the fermion system on the lattice should be de-
scribed by a CFT with c = 1. This is interpreted as the theory of the free boson on the (space) torus, with
partition function:
2 By
is also
filling s
Z ¼ 1
gðsÞ

X
e;m

q1=2ðe=RþmR=2Þ�q1=2ðe=R�mR=2Þ; ð4:46Þ
where g(s) is the Dedekind function, s is the modular parameter of the torus and e and m are the elec-
tric and magnetic charges. Under R-duality (i.e., the interchange R M 2/R) the partition function is
invariant if one exchanges the electric and magnetic charges (e M m).2 This is also the partition func-
tion of an equivalent two-dimensional Coulomb gas described by the action:
SCG ¼
1
2

X
jk

ejffiffiffi
g
p þmj

ffiffiffi
g
p� �

GðRj � RkÞ
ekffiffiffi

g
p þmk

ffiffiffi
g
p� �� �

; ð4:47Þ
where G is the two-dimensional lattice Green function. Note that the above action describes the
charge–charge, vortex–vortex and charge–vortex interactions. The Mott transition on the tours
(square lattice with periodic boundary conditions) is given by the above partition function at the
self-dual radius R ¼

ffiffiffi
2
p

, such that the system exhibits electric–magnetic duality.
We would now like to discuss the behavior of the EFT away from the Mott critical point. We

consider first the one-dimensional theory describing one of the orientations on the lattice. For
including all possible boundary conditions (periodic and anti-periodic) one obtains the S1/Z2 orbifold partition function that
related to the Six-vertex model at the critical line [46]. We are not focusing in this case because we are working at half-
tates, which fixes the boundary conditions to be periodic.
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D > 1, the massive antiferromagnetic phase is represented in the continuous limit by a Sine Gordon
theory:
SSG ¼
Z

d2x½@l/@l/þ 2a0 cos b/�: ð4:48Þ
It is well-known that the partition function may be written as [48]:
Z ¼ lim
�!0

X
n

a2n

ð2nÞ!2

Z Y2n

i¼1

d2zi exp
b2

8p
X
i–j

qiqjLnjzi � zjj2 þ �2

 !
: ð4:49Þ
Here z = x + iy denotes the position of the charges qi in complex coordinates, that take values ±1. The
renormalized coupling constant a ¼ a0ð�2Þ

b2

8p plays the role of a fugacity (� is a short distance regula-
tor). This describes the antiferroelectric phase of the Coulomb gas model.

Moreover, the staggered flux phase revealed by the quantum group analysis of the previous Sec-
tion can be described by a CS theory defined on a torus with punctures, by defining pseudo-spins
on the dual lattice representing these fluxes. If we define the dual system as the two-dimensional
XXZ model made from these pseudo-spins with coupling constant D0 = D�1, then the self-dual point
is defined by D = 1. Here the self-duality in defined by invariance under exchange among the spins
with coupling constant D in the direct lattice, and spins in the dual lattice with coupling constant
D0. Just below the Mott transition,i.e., for D = 1 � �, the dual system is in the frozen (Mott) state with
the pseudo-spins in an Neel state, so that the fluxes are also antiferromagnetically ordered. In this a
case the EFT is given by a:
SCS ¼
k

4p

Z
d3xalKl;mak þ

X0
p

/0½dðxd; ydÞ � dðxd þ 1; yÞ � dðxd; yd þ 1Þ þ dðxd þ 1; yd þ 1Þ�;

ð4:50Þ
where ak is an Abelian CS field and
P0

p means that the sum is taken over all fundamental domains.
Each domain has period 2a and contains four vortices in antiferromagnetic array. The emergence of
only one CS term reflects the breakdown of the chiral symmetry (as can be seen comparing Eq.
(4.50) with Eq. (4.44) which contain two chiral fields), and the classical low-lying states reproduce
an staggered-flux phase current pattern. This fact coincides with the quantum group analysis at
q = �1 presented in Section 4.2. At the quantum level, Gauss law selects the physical states from
the lattice CS Gauge theory on the torus with punctures. Therefore, the quantum order of the ground
state of this theory is characterized as a staggered flux phase.

The EFT that we have presented above allows one to study some properties of the system under
doping. By analogy with the CS theory of the quantum Hall effect, we could expect a ground state sta-
ble against small doping. In that case, for the simplest inverse filling fractions k = m (m odd integer),
the ground state is described as a droplet of incompressible quantum liquid [49] (however, other
phases with more exotic quantum orders, like Nematic phases are also possible in other regimes
([52]) ([53]) ([54]) and is stable under small perturbations away from the center of a given plateau
in the conductivity. In the Mott system, we have already assumed that the dynamically generated vor-
tices act as external statistical fields for the new electrons injected in the system by doping (this can be
considered as an extension of the R-duality). At the self-dual point, statistical magnetic fields can be
interchanged with statistical electric fields (on a torus). After imposing the lattice symmetries, the
low-lying effective Hamiltonian for the injected electrons (in first quantization) is:
H ¼
X

i

��h2 1
2m

@2

@x2
i

þ @2

@y2
i

 !
þ ki x2

i � y2
i

� �" #
; ð4:51Þ
where ki can take the values ±k. Therefore, the electric potential changes sign in x = ±y, producing do-
main walls between regions with different electron densities. Similar results can be obtained using the
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W4 symmetry, which is related to the relevant perturbations of the Ashkin–Teller and Six-vertex mod-
els away from the critical point [50,51].

One consequence of having discussed the EFT is that, a posteriori, the behavior of the electrons can
be more easily understood. It can be shown that the interaction term in the Hamiltonian (2.1) in the
continuum limit contains a chemical potential term of the form �lq, with l = D, which ensures the
half-filling condition. Therefore, changing the chemical potential by doping in dl modifies the Ham-
iltonian (in the spin representation (2.6) by:
HðDÞ ! HðDÞ þ dl
X
hiji

Sz
i Sz

j : ð4:52Þ
For D = 1, the dynamics of the electron system is given by the double CS theory (4.44), whose Ham-
iltonian can be defined as the temporal component of the stress-energy tensor Hcs = T00, where
Tlm = dSCS/dglm and glm is the metric tensor. However, the CS action is topological and, therefore, inde-
pendent of the metric implying Hcs = 0 for each chiral component, which leads to H(D = 1) = 0. This
means that doping the system away from the critical point, the dynamics is controlled by an effective
Ising Hamiltonian.

5. Conclusions

In this paper, we have studied the Mott transition in an interacting electron system with a hopping
term and nearest neighbors density–density coupling defined on a square lattice (2.1). We have first
reviewed the one-dimensional case with periodic boundary conditions (i.e. when the system lives on a
circle) in Section 1, and we have written down a conformal field theory description leading to the
identification of the Mott transition point (i.e., when the coupling constant is D = 1) as the Lutter–Em-
ery point in the bosonic formulation, and the degrees of freedom with charge density waves. We have
also pointed out that the low-energy dynamics at the transition is described by a Wess–Zumino–Wit-
ten model, as it was already implicit in the literature.

We have also discussed the two-dimensional Mott transition, starting with the study of the inte-
grability of the two-dimensional fermion system (2.1). To do that, we have used a two-dimensional
Jordan–Wigner transformation and a new solution of the Zamolodchikov tetrahedron equation, which
allowed us to identify the fermion system (2.1) as a ‘quantum vertex model’, and shown that the fer-
mion system is characterized by an affine quantum group symmetry. As a consequence of the projec-
tion-like property of the new solution, we concluded that the two-dimensional lattice system
factorizes into two one-dimensional systems, one for any row and one for any column of the two-
dimensional square lattice. This fact allowed for the identification of the two-dimensional Mott tran-
sition with the one-dimensional one, which occurs when the coupling parameter is D = �(q + q�1)/
2 = 1. The identification of the symmetry and of the effective degrees of freedom (charge density
waves) led to the construction of the Effective Field Theory at the critical point, which is a double
(Abelian) Chern–Simons theory with quantum group symmetry Uqð dslð2ÞÞ � Uqð dslð2ÞÞ and deformation
parameter given by q = exp(�ip/k). Furthermore, this effective theory may be considered as the broken
phase of a non-Abelian Chern–Simons theory associated to the vertex models (which has been already
pointed out by Witten).

Finally, the behavior of the system near the Mott point has also been investigated using the ideas of
EFT. We have found that the transition is of the Kosterlitz–Thouless class, characterized by an array of
Chern–Simons vortices in a anti-ferromagnetic order. This description corresponds to a d-density-
wave order parameter for the matter currents. Upon doping with electrons, the magnetic-electric
duality of the KT transition implies the appearance of domain walls between region of different
densities.

References

[1] N.F. Mott, Rev. Mod. Phys. 40 (1968) 677–683.
[2] A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68 (1996) 13.



1940 F.L. Bottesi, G.R. Zemba / Annals of Physics 326 (2011) 1916–1940
[3] J. Polchinski, Effective field theory and the Fermi surface, Lectures given at TASI-92, Boulder, USA, 1992. Available from:
<hep-th/9210046>.

[4] A.M. Tikofsky, S.B. Libby, R.B. Laughlin, Nucl. Phys. B 413 (FS) (1994) 579.
[5] E. Fradkin, Phys. Rev. Lett. 63 (1989) 322.
[6] V.V. Bazhanov, V.V. Mangazeev, S.M. Sergeev, J. Stat. Mech. 0807 (2008) P07004.
[7] V.V. Bazhanov, S.M. Sergeev, J. Phys. A 39 (2006) 3295.
[8] E. Fradkin, Field Theory of Condensed Matter Systems, Addison Wesley, Redwood City, 1991.
[9] A. Lutter, I. Peschel, Phys. Rev. B 12 (1975) 3908.

[10] R. Shankar, Int. J. Mod. Phys. B 4 (1990) 2371.
[11] E.H. Lieb, F.Y. Wu, Phys. Rev. Lett. 20 (1968) 1448.
[12] H.J. Schulz, G. Cuniberti, P. Pieri, in: G. Morandi et al. (Eds.), Field Theories for Low-Dimensional Condensed Matter

Systems, Springer, 2000.
[13] A. Luther, V. Emery, Phys. Rev. Lett. 33 (1974) 589.
[14] I. Affleck, Phys. Rev. Lett. 55 (1985) 1355.
[15] E. Fradkin, Phys. Rev. Lett. 63 (1989) 322.
[16] A.M. Tsvelik, Quantum Field Theory in Condensed Matter Physics, Cambridge University Press, Cambridge, 1995.
[17] G.V. Dunne, R. Jackiw, C.A. Trugenberger, Ann. Phys. 194 (1989) 197.
[18] M. Lüscher, Nucl. Phys. B 326 (1989) 557.
[19] C. Gomez, M. Ruiz-Altaba, G. Sierra, Quantum Groups in Two dimensional Physics, Cambridge University Press, Cambridge,

1996.
[20] R.J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1972.
[21] V.G. Drinfeld, Quantum groups, in: A. Gleason (Ed.), Proceedings of the International Congress of Mathematicians,

American Mathematical Society, Providence, RI, 1986, p. 798.
[22] B. Davies, O. Foda, M. Jimbo, T. Miwa, A. Nakayashiki, Commun. Math. Phys. 151 (1993) 89.
[23] L. Faddeev, How algebraic Bethe Ansatz Works for Integrable Model, Les Houches Lectures 1995, Elsevier, Amsterdam,

1996, p. 149. Available from: <hep-th/9605187>.
[24] S.M. Sergeev, Phys. Part. Nucl. 35 (2004) 1–31.
[25] S. Sergeev, J. Phys. A 39 (2006) 3035.
[26] S. Sergeev, Phys. Lett. A 357 (2006) 411–417.
[27] A.B. Zamolodchikov, Sov. Phys. JETP 52 (1980) 325–336;

A.B. Zamolodchikov, Zh. Eksp. Teor. Fiz. 79 (1980) 641–664;
A.B. Zamolodchikov, Commun. Math. Phys. 79 (1981) 489.

[28] J. Voit, Rep. Prog. Phys. 58 (1995) 977.
[29] R. Floreanini, R. Jackiw, Phys. Rev. Lett. 59 (1987) 1873.
[30] A. Cappelli, G.V. Dunne, C.A. Trugenberger, G.R. Zemba, Nucl. Phys. B 398 (1993) 531.
[31] G.V. Dunne, R. Jackiw, C.A. Trugenberger, Ann. Phys. 19 (1989) 4.
[32] G.V. Dunne, in: Les Houches Summer School in Theoretical Physics, Session 69: Topological Aspects of Low-dimensional

Systems, Les Houches, France, 7–31 July 1998. Available from: <hep-th/9902115>.
[33] M. Bos, V.P. Nair, Phys. Lett. B 223 (1989) 61.
[34] M. Bos, V.P. Nair, Int. J. Mod. Phys. A 5 (1990) 959.
[35] H.T. Sato, Mod. Phys. Lett. A 9 (1994) 1819–1826.
[36] I. Kogan, Int. J. Mod. Phys. A9 (1994) 3887–3911.
[37] J.B. Martson, I. Affleck, Phys. Rev. B 39 (1989) 11538.
[38] G. Grensing, Phys. Lett. B 419 258 (1998).
[39] C.A. Trugengerber, Topics in planar Gauge Theories, Lectures Given at Lausanne U, Winter 1994–1995.
[40] M.C. Diamantini, P. Sodano, C.A. Trugenberger, Eur. Phys. J. B 53 (2006) 19.
[41] E. Witten, Nucl. Phys. 330 (1990) 285.
[42] E. Witten, Commun. Math. Phys. 121 (1989) 351.
[43] H. Sugawara, Phys. Rev. 170 (1968) 1659.
[44] P. Di Francesco, P. Mathieu, D. Senechal, Conformal Field Theory, Springer, New York, 1997.
[45] V. Pasquier, Nucl. Phys. B 295 (1988) 491.
[46] P.H. Ginsparg, Applied conformal field theory, in: E. Brezin, J. Zinn-Justin (Eds.), Proceedings of Les Houches Summer

School, 1988, published in Fields, strings, critical phenomena, North Holland, Amsterdam, 1990.
[47] L. Alvarez-Gaume, C. Gomez, G. Sierra, Phys. Lett. B 220 (1989) 142.
[48] D.J. Amit et al, J. Phys. A 13 (1980) 585.
[49] R.B. Laughlin, Phys. Rev. Lett. 50 (1983) 1395.
[50] F.L. Bottesi,G.R. Zemba, in preparation.
[51] J. Gaite, Phys. Lett. B 380 (1996) 42.
[52] D.G. Barci, E. Fradkin, S.A. Kivelson, V. Oganesyan, Phys. Rev. B 65 (2002) 245319.
[53] D.G. Barci, E. Fradkin, Phys. Rev. B 65 (2002) 245320.
[54] V. Oganesyan, S.A. Kivelson, E. Fradkin, Phys. Rev. B 64 (2001) 195109.


	Effective field theory and integrability in two-dimensional  Mott transition
	1 Introduction
	2 The two-dimensional fermion lattice model
	2.1 Review of the one-dimensional model
	2.2 Bosonization of the two-dimensional fermion model

	3 Integrability of the two-dimensional model
	3.1 Three-dimensional structure of quantum groups and vertex models
	3.2 Integrability and the two-dimensional Mott transition

	4 Construction of the effective field theory
	4.1 The one-dimensional case
	4.2 Two-dimensional effective field theory
	4.2.1 Vertex models and Chern–Simon theory
	4.2.2 Abelian Chern–Simons theory and quantum groups
	4.2.3 Identification of the Mott point (q=−1)

	4.3 The order parameter

	5 Conclusions
	References


