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Abstract Since the nervous system has limited self-repair
capability, a great interest in using stem cells is generated to
repair it. The adipose tissue is an abundant source of stem cells
and previous reports have shown the differentiation of them in
neuron-like cells when cultures are enriched with growth
factors involved in neurogenesis. Regarding this, it could be
thought that a functional parallelism between neurogenesis and
neuronal differentiation of human adipose stem cells (hASCs)
exists. For this reason, we investigated the putative involve-
ment of Notch andWnt pathways in neuronal differentiation of
hASCs through real-time PCR. We found that both Wnt and
Notch signaling are present in proliferating hASCs and that
both cascades are downregulated when cells are differentiated
to a neuronal phenotype. These results are in concordance with
previous works where it was found that both pathways are
involved in the maintenance of the proliferative state of stem
cells, probably through inhibition of the expression of cell-fate-
specific genes. These results could support the notion that
hASCs differentiation into neuron-like cells represents a
regulated process analogous to what occurs during neuronal
differentiation of NSCs and could partially contribute to
elucidate the molecular mechanisms involved in neuronal
differentiation of adult human nonneural tissues.
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Introduction

Neurodegenerative diseases are difficult to treat because
damaged neurons have a limited capacity for regeneration
and repair. Therefore, efforts to identify suitable tissue sources
to replace lost neuronal populations have intensified (Reynolds
and Weiss 1992; Richards et al. 1992). Stem cells are an
exciting source because they can undergo expansion and
neuronal differentiation in vitro and in vivo (Bain et al. 1995;
McKay, 1997; Gage, 2000; Freed et al. 2001). Adipose tissue
is an abundant source of stem cells that can be easily isolated
(Hauner et al. 1987; Gronthos et al. 2001), termed adipose
tissue-derived stem cells (ASCs) (Zuk et al. 2001). They have
the capacity to differentiate in vitro into mesodermal and
nonmesodermal lineages. One of the cell type obtained in
vitro was neuron-like cells (Safford et al. 2002; Ashjian et al.
2003; Dhar et al. 2007; Anghileri et al. 2008; Cardozo et al.
2010; Jang et al. 2010); and in vivo may contribute to
functional benefits in a wide range of neurological insults
(Kang et al. 2003; Kim et al. 2007; Kulikov et al. 2008; Wei
et al. 2009; Chi et al. 2010). This transdifferentiation to
nonmesodermal lineages of hASCs is supported by the
expression of genes across the three germ layers (Boquest
et al. 2005; Katz et al. 2005; Peroni et al. 2008).

The most common techniques used for differentiating
ASCs into the neural lineage involve treatment of the cells
with retinoic acid (RA), butylated hidroxyanisole (BHA),
different growth factors, inhibition of BMP signaling and
growth at low density (Safford et al. 2002; Zuk et al. 2002;
Ashjian et al. 2003; McCaffery et al. 2003; Dhar et al. 2007;
Anghileri et al. 2008; Cardozo et al. 2010; Jang et al. 2010).
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Unlike the normal differentiation of NSCs into neurons,
however, the differentiation of hASCs into neuron-like cells
is essentially a cross-lineage transdifferentiation process. The
mechanisms underlying neuronal lineage commitment
induced by these techniques remain unclear.

Differentiation is normally associated with an upregula-
tion of transcripts required for the specialized functions of
the differentiated cell and a corresponding downregulation
of transcripts required for proliferation or for alternative
lineages. It is important to have a thorough understanding
of the specific signals dictating cellular behavior and the
specific cues that induce or inhibit differentiation, and/or
promote the maintenance of these stem cells.

Decisions regarding self-renewal vs. commitment are
based on microenvironmental cues, which predominantly
use the Notch, Wnt, BMP, and Shh signaling pathways
(Reynolds and Weiss 1992; Lyden et al. 1999; Gaiano and
Fishell 2002; Cai et al. 2008). Stem cell signaling network,
especially Wnt, Notch, and BMP signaling cascades are
implicated in the regulation of the balance for neural
stem cell, progenitor cells, and differentiated neural cells
(Israsena et al. 2004; Akai et al. 2005).

One candidate pathway for neural lineage commitment
by ASCs is the Wnt/β-catenin pathway that has been
shown to be an inducer of neurogenesis (Dorsky et al.
1998; Baker et al. 1999; Patapoutian and Reichardt 2000).
Wnt proteins are secreted glycoproteins that regulate
development, cell proliferation, cell-fate determination, axo-
nal growth, remodeling, and synaptogenesis in developing
neurons (Cadigan and Nusse 1997; Dale, 1998; Hall et al.
2000; Huelsken and Behrens 2002; Salinas, 2003). Whether
they promote self-renewal of stem cells (Willert et al. 2003)
or fate decisions seems to depend on the specific Wnt
molecule and cell type (Lee et al. 2004).

Wnts bind to receptors of the Frizzled family on the plasma
membrane to initiate the canonical pathway (Ling et al. 2009).
Canonical Wnt signal induces the assembly of Frizzled–
Disheveled (Fzd-Dvl) and LRP5/6-Axin complexes to
releases β-catenin from the glycogen synthase kinase-3β
(GSK-3β) degradation complex. Phosphorylation of the β-
catenin by GSK-3β is inhibited by Dvl, causing β-catenin
stabilization and accumulation, before translocation to the
nucleus, where it binds with members of the T cell factor,
lymphoid enhancer factor, and Sox family (TCF/LEF/SOX),
to induce expression of target genes (Morin et al. 1997; Jiang
and Struhl 1998). Myc, CyclinD1, Axin2, Fgf20, Wisp1,
Jag1, and Dkk1 are target genes of this canonical cascade (He
et al. 1998; Ishitani et al. 1999; Dejmek et al. 2006; Katoh
and Katoh 2006).

Wnt signaling plays a pivotal role in the regulation of
proliferation and differentiation of neural progenitors cells,
hematopoietic and mesenchymal stem cells (HSCs and
MSCs) (Zechner et al. 2003; Etheridge et al. 2004). Several

studies have suggested that canonical Wnt signaling keeps
stem cells in a self-renewing and undifferentiated state
(Reya et al. 2003; Cho et al. 2006). So, Wnt signaling
appears to regulate proliferation and differentiation of
neuronal lineages in a stage-specific and cellular context-
dependent manner (Kasai et al. 2005).

The Notch pathway is a signaling mechanism that
controls cell-fate decisions, proliferation and apoptosis
during development and in the adult (Artavanis-Tsakonas
et al. 1999; Lai, 2004). In mammals, Notch proteins
comprise a family of transmembrane receptors. Specific
transmembrane ligands interact with Notch receptors on
neighboring cells, inducing the cleavage of the Notch
intracellular domain (NCID) by gamma secretase, resulting
in the release and nuclear translocation of NCID
(Artavanis-Tsakonas et al. 1999; Bray, 2006). Nuclear
NCID interacts with the transcriptional repressor RBP-Jk
(RBP-J/CSL/CBF1/Su(H)/Lag1), and converts it into an
activator, leading to the expression of direct Notch target
genes (Kageyama et al. 2005; Hurlbut et al. 2007). The
best characterized transcriptional targets belong to the
hairy/enhancer of split (HES) and the HES-related repres-
sor protein (HERP), which are basic-loop-helix transcrip-
tion factors that negatively regulate the expression of
downstream target genes, such as tissue specific transcrip-
tion factors, regulating lineage-specific differentiation (Iso
et al. 2003; Fischer and Gessler 2007).

The outcome of Notch signaling is highly dependent on
the cellular context. Notch activity affects differentiation,
proliferation, and apoptotic programs in concert with other
cell-intrinsic or cell-extrinsic developmental cues that are
necessary to execute specific developmental programs
(Artavanis-Tsakonas et al. 1999). The delicate balance
between stem cell self-renewal and differentiation has to
be tightly controlled by a network of signaling routes, in
which Notch cross talks with several other pathways, such
as Wnt (Duncan et al. 2005).

Several stem cell types were shown to express elements
of the Notch pathway (Karanu et al. 2003; Walsh and
Andrews 2003; Duncan et al. 2005; Androutsellis-
Theotokis et al. 2006; Chiba, 2006). Its function is
necessary to maintain an undifferentiated state and to
prevent lineage commitment. In fact, inhibition of Notch
signaling leads to a higher rate of differentiation. Then,
Notch signaling is required for the prevention of lineage
commitment and differentiation (Duncan et al. 2005). The
apparent tendency of Notch to inhibit differentiation has
suggested that this pathway is an indirect regulator of cell
fate, rather than a direct or “instructive” regulator.

During vertebrate neural development, Notch signaling
is used to maintain a pool of uncommitment precursors,
while a subset of cells is selected to leave this pool and
differentiate into neurons. This balance between progenitor

J Mol Neurosci (2011) 44:186–194 187



maintenance and neuronal differentiation allows the con-
tinuous generation of neurons throughout development and
permits temporal control over the specification of distinct
neuronal fates (Lewis 1996; Gaiano and Fishell 2002).

Notch and Wnt pathways are important regulators of
progenitors and stem cells function. But whether these
signals influence distinct elements of self-renewal, such as
proliferation or inhibition of differentiation, and how these
signals are integrated with one another remains less clear.

In our previous work, we studied Shh and BMP
signaling before and after neural differentiation of human
adipose tissue stem cells, discovering important findings
and similarities between the neural differentiation of these
cells and neurogenesis (Cardozo et al. 2010). For this
reason, in the present work we analyzed the differential
gene expression of Wnt and Notch signaling trying to find a
parallelism between neural differentiation of hASCs and
neurogenesis.

Materials and Methods

Cell Isolation and Culture

After informed consent and approval of ethics committee
of research protocols from Hospital Italiano de Buenos
Aires, adipose tissue samples were obtained during
abdominal and mammary plastic surgeries of 23 healthy
donors between 26 and 56 years old. The adipose tissue
was extensively washed with Hank’s balanced salt
solution (Sigma, Argentina) to remove blood, fibrous
material and vessels were carefully dissected and dis-
carded. The remaining tissue was finely minced and
digested with 0.1% of Collagenase Type I (Gibco, USA)
at 37°C for 45 min with gentle agitation. Enzyme activity
was neutralized with a twofold volume of standard
medium containing Dulbecco’s modified Eagle’s medium
(DMEM; Gibco) with 20% of fetal bovine serum (FBS;
Gibco), 100 U/ml penicillin, 100 μg/ml streptomycin,
and 0.25 μg/ml amphotericin (Gibco), and centrifuged
for 12 min at 400×g. The supernatant containing the lipid
droplets was discarded. The stromal vascular fraction
(SVF) settled at the bottom was resuspended in standard
medium and seeded in culture dishes (Nunc International,
Denmark). SVF cultures were incubated at 37°C in a 5%
CO2 atmosphere. After 48 h, nonadherent cells were
removed. When they reached 70–80% of confluence,
adherent cells were trypsinized (0.25% at 37°C for
5 min, Sigma), harvested, and washed with standard
medium to remove trypsin and were then expanded in
larger dishes. A homogenous cell population of hASCs
was obtained after 2 or 3 weeks of culture. Cells at early
passages (3–5) in culture were used for the experiments.

Neuronal Differentiation

Neuronal differentiation of 12 samples was initiated at
passages 3–5 using a modification of previous neuronal
induction protocols (Woodbury et al. 2000; Zuk et al.
2002; Levy et al. 2003; Tao et al. 2005; Mareschi et al.
2006). Briefly, the cells were plated in dishes until they
were subconfluent. Preinduction was performed for 48 h
after discarding the medium, washing the cells, and adding
new DMEM containing 20% FBS and 1 mM β-
mercaptoethanol (Riedel, Germany). Then, the preinduc-
tion medium was removed and the induction medium was
added to the culture. The composition of induction
medium was: DMEM with 100 μM butylated hydroxya-
nisole (BHA, Sigma), 10–6 M retinoic acid (RA, Sigma),
10 ng/ml epidermal growth factor (EGF, Invitrogen,
Brazil), and 10 ng/ml basic fibroblast growth factor
(bFGF, Invitrogen). Cells were incubated in this medium
during 14 days. The medium was changed every 3 days.
The cells were monitored continually after neuronal
induction and were lysed for RNA extraction or fixed for
immunostaining. One noninduced culture dish was also
analyzed with every experiment as a control.

RNA Isolation and Quantitative Real-time PCR

Quantification was performed using real-time polymerase
chain reaction (PCR) to compare the levels of expression of
Wnt and Notch signaling genes involved in proliferation
and neuronal determination. For this purpose, between six
and twelve samples of induced and noninduced hASCs
were analyzed. Total RNA from hASCs before and 14 days
after neuronal induction was extracted using TRIzol
Reagent (Invitrogen) according to the manufacturer’s recom-
mendations. The purity and integrity of the extracted RNA
were evaluated by optical density measurements (260:280 nm
ratios) and by visual observation of samples electrophoresed
on agarose (Biodynamics, Argentina) gels. Two micrograms
of each total RNAwere treated with RQ1 RNase-free DNase
(Promega, USA) to eliminate possible contamination of
genomic DNA. One microgram of treated RNAwas used as
template in a 20-μl volume cDNA synthesis reaction. Primer
sequences were designed using LightCycler Probe Design
Software 2.0 (Roche Applied Science, Mannheim, Germany)
using gene sequences obtained from the GenBank database
(Table 1).

Quantitative real-time PCR was performed using SYBR
Green (Invitrogen), Platinum Taq Polymerase (Invitrogen),
and LightCycler 2.0 Instrument (Roche Applied Science).
The expression of human β-actin was used to standardize
gene expression levels. Each sample was run four times.
Control experiments without template cDNA revealed no
nonspecific amplification. When PCR results were nega-
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tive, cDNAs from human cell lines or tissues were run as
positive controls in order to eliminate the possibility of
false negative results. To verify the identity of amplified
DNAs, the size of the PCR products was checked on
agarose gel.

Statistical Analysis

All data are presented as mean±error deviation. The values
obtained from the real-time PCR were analyzed with
Relative Standard Curve method and the error deviations
were obtained according to the Applied Biosystems User
Bulletin No. 2 (P/N 4303859).

Statistical comparison of the results obtained with induced
and noninduced hASCs was carried out according to the
Student’s t test (to compare two treatment groups). Differ-
ences were considered statistically significant when p<0.05.
Statistical analysis was performed using the program Primer
of Byostatistics version 5.0 (McGraw-Hill, 2002).

Results

hASCs Cell Characterization

As we have previously described (Cardozo et al. 2010), the
SVF exhibited a heterogeneous cell population with
different morphologies that included spindle-shaped, large,
flat and small round cells. With continued cell growth and
division in culture, the spindle-shaped cells gradually
become predominant. Immunocytochemistry analysis of
hASCs demonstrated that the cells were negative for
CD34 and CD45, cell surface markers associated with
hematopoietic cells. In contrast, hASCs expressed CD90
and Stro-1, two typical markers of mesenchymal stem cells
(data not shown). Thus, we obtained a mesenchymal stem

cell population with morphology, plasticity and expression
of the characteristic membrane markers.

Changes after Neuronal Induction

To induce neuronal phenotype, hASCs were maintained in
subconfluent cultures. After the neuronal induction, the
morphology of hASCs began to change, cells changed from
flat, elongated, spindle-shaped to round cell bodies with
several branching extensions and retractile characteristics
similar to those observed in cultured neuronal cells. As we
have previously shown (Cardozo et al. 2010), we detected
the expression of the neural markers βIII-tubulin, Tau, NF-
200, synaptophysin, and GFAP after the differentiation and
induced cells stained with the recycling synaptic vesicles
dye FM1-43 (Table 2). No labeling was detected in
noninduced cells.

Taken together, these data indicate that exposure to
neuritizing cocktails induces process outgrowth, expression
of neuroglial markers, and membrane excitability in hASCs;

Table 2 Summary of immunocytochemical profile in neuronal-
induced and noninduced hASCs demonstrated by immunocytochem-
istry and Western blot

Marker Induced hASCS Noninduced hASCs

Nestin + +

GFAP + +

S100 − −
βIII-tubulin + −
NeuN − −
NF200 + −
Synaptophysin + −
Tau + −
FM1-43 + −

Table 1 Primers used for real-time PCR experiments

Gene GenBank Forward Reverse Annealing T° (°C)

Wnt1 NM 005430.3 ACGAGTTTGGATGTTGTA AGAAAGGAGAGAAGAGTG 57

Wnt5a NM 003392.3 ATCCCATTCACAGGTTCTC CTCAAATAGGTTGTCTGCTCT 58

Dkk1 NM 012242.2 ACCAAAGGACAAGAAGGTT TGGACCAGAAGTGTCTAGCA 57

Wisp1 NM 080838.1 CTGTGAGTGCTGTAAGATGT TCCTATTGCGTACCTCGG 56

CyclinD1 NM 053056.2 GGTGTCCTACTTCAAATG CTCCTCGCACTTCTGTTC 58

Notch1 NM 017617.3 TCTITGTTTCAGGTTCAGT CCTACATTTCAAGAACGG 58

CBF1 NM 005349.2 ACCAGTGTCACATCATCTA ACACTCAAGTCAGTTTAAG 58

Dtx1 NM 004416.2 ACTCCAATGGCAACAAGGA CGGATGGTCTGGGTATCAG 57

Hes1 NM 005524.2 AGAGGCGGCTAAGGTGTTT CTGGTGTAGACGGGGATGA 58

Herp1 AF232238.1 GCAATAGTAACTGAATGTCCT GGCATCTGTATGGCTACC 58

Hey1 NM 012258.3 CTATCGGAGTTTGGGATTTCG GGGTCAGAGGCATCTAGTC 58

β-Actin NM 001101 CCCTTGCCATCCTAAAAGC TGCTATCACCTCCCCTGTGT 57
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but electrophysiological studies are necessary to support that
these cells are competent to differentiate into mature and
functional neurons upon exposure to neuritizing stimuli.

Wnt Signaling in Neuron-Like Phenotype Cells

To gain insight into the molecular mechanisms involved in
proliferation and neuronal differentiation of hASCs, we
evaluated the expression before and after 14 days of
neuronal induction of Wnt signaling genes known to have
important roles during proliferation and differentiation
(Baek et al. 2003; Reya et al. 2003; Zechner et al. 2003;
Etheridge et al. 2004; Kasai et al. 2005; Cho et al. 2006).
Using quantitative real-time PCR, induced and noninduced
hASCs gene expression profiles of the following factors
were compared: Wnt ligands (Wnt1 and Wnt5a), inhibitor
(Dkk1), and target genes (CyclinD1, Wisp1).

We detected the presence of the canonical Wnt
signaling in hASCs, which probably is involved in
proliferation of these cells. Wnt5a, CyclinD1, Wisp1,
and Dkk1 expression were detected in hASCs but
expression of Wnt1 was not observed in these cells
using this technique. After neuronal induction, it was a
downregulation of the cascade’s transcripts (Fig. 1),
according with previous works were Wnt signaling was
associated with the control of “stemness” of mesenchymal
stem cells (Etheridge et al. 2004). But we could not detect
an upregulation of its inhibitor (Dkk1) which probably is
involved in the control of the determination of the
different lineages.

Notch Signaling in Neuron-Like Phenotype Cells

Given the well-documented role of Notch signaling in
regulating proliferative capacity, cell-fate acquisition, and
differentiation of neural stem cell populations (Lewis, 1996;
Gaiano and Fishell 2002; Duncan et al. 2005; Chiba 2006),
we investigated the presence of Notch pathway transcripts
(Notch1, CBF1, Dtx1, Herp1, Hes1, and Hey1) by real-time
PCR in hASCs before and 14 days after neuronal induction.

We found expression of transcripts for elements func-
tioning at distinct levels of the signaling cascade in
uninduced hASCs. Notch1, CBF1, Hes1, Herp1, and
Hey1 transcripts were expressed in hASCs. Dtx1 were
expressed at undetectable levels.

After neuronal induction, it was detected a statistically
significant decrease (p<0.05) of the expression of all Notch
signaling transcripts analyzed (Fig. 2).

Taken together, mRNA expression of Notch pathway
components was differentially regulated by neuronal dif-
ferentiation in hASCs. There was an active Notch pathway
in hASCs according to the function of this cascade in
maintain the self-renew of these cells and a downregulation
of it after the neuronal induction, necessary to the
commitment of these cells to the neural lineage.

Discussion

To date, differentiation into neuron-like cells of hASCs has
been promoted by adding various factors, cytokines or

Fig. 1 Wnt signaling is
downregulated in hASCs
after neuronal differentiation.
hASCs were cultured in
neuronal induction medium
during 14 days. Real-time
PCR analysis shows decreased
mRNA levels of Wnt5a,
Wisp1, Dkk1, and CyclinD1
in induced hASCs relative to
noninduced hASCs. Relative
gene expression of each gene
(mean±error deviation),
normalized to the relative
expression of the housekeeping
gene β-actin, for induced
and noninduced hASCs is
shown. *p<0.05, significantly
different from control
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antioxidants (Safford et al. 2002; Ashjian et al. 2003;
Dhar et al. 2007; Anghileri et al. 2008; Cardozo et al.
2010; Jang et al. 2010). The efficiency of these strategies,
however, was not sufficient enough for therapeutic
applications. If we could elucidate the underlying molecular
mechanism of neuronal differentiation of hASCs, it may
become possible to increase the efficiency sufficiently.
Furthermore, hASCs may provide an easily obtainable,
reliable source of autologous stem cells; it could solve the
problems such as histocompatibility, inadequate tissue supply
and ethical concerns existing when NSCs and ESCs were
used in cell therapy. In the present study, we have detected the
presence of Wnt and Notch signaling pathways in hASCs
proliferating cells and the decrease of both cascades after
neuronal differentiation.

This work has shown expression of several components
of Wnt signaling pathway by hASCs, which suggests that
this signaling pathway may be of fundamental importance
in these cells. It is clear that more specific techniques to
manipulate particular components of the canonical Wnt
signaling pathway are necessary to determine more pre-
cisely how Wnt signaling participates in neuronal differen-

tiation of hASCs. However, our findings support previous
data, which suggest that Wnt signaling may regulate
differentiation pathways in various mesenchymal cell types
(Ross et al. 2000; Bennett et al. 2002; Etheridge et al. 2004)
Endogenous canonical Wnt signaling in preadipocytes and
BMSCs inhibits further differentiation and spontaneous
differentiation occurs following inhibition of this pathway.
Wnt expression levels are high in preadipocytes or BMSCs,
but decrease when differentiation is stimulated.

However, activated Wnt signaling has also been shown
to promote neurogenesis; for example, Wnt5a was a weak
mitogen; it efficiently promoted the acquisition of a DA
phenotype in neural precursors (Castelo-Branco et al.
2003). The functional diversity of the various Wnt proteins
is thought to be due, at least in part, to the specific Fzd with
which they bind and the particular signaling cascade that is
subsequently stimulated within the cell. It now appears
likely that individual Wnts are able to bind multiple Fzd
receptors, and each receptor can bind numerous Wnt
proteins (Dale 1998). Stimulation of a pathway by a
particular Wnt also appears to depend on the experimental
system employed, a specific ligand could signal via both

Fig. 2 Notch signaling is
downregulated in hASCs after
neuronal differentiation.
Real-time PCR analysis
shows a decrease of Notch1,
CBF1, Hes1, Herp1, and
Hey1 mRNA levels in
hASCs that were cultured
in neuronal induction medium
during 14 days relative to
noninduced hASCs. Relative
gene expression of each gene
(mean±error deviation),
normalized to the relative
expression of housekeeping
gene β-actin, for induced
and noninduced hASCs is
shown. *p<0.05; **p<0.01,
significantly different from
control
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canonical and noncanonical mechanisms (Hartmann and
Tabin 2000). Therefore, the specific intracellular pathways
stimulated by each of the Wnt proteins expressed by hASCs
need to be established to fully understand the signaling
mechanisms involved in regulating neuronal differentiation.

In the present work, we used bFGF and retinoic acid as
neuritizing agents and it is important to note the interactions
of these agents with the Wnt signaling. FGF2 treatment of
neural progenitor cells provides mitogenic and trophic
support and also influences progenitor cell-fate choice
(Maric et al. 2003). Members of the Wnt family are usually
found in the proximity of high FGF synthesis domains
during neural development and act in cooperation with
FGFs in controlling cell fate (Viti et al. 2003). FGF2
increases the pool of β-catenin, which plays an important
role in maintaining neural potential by directly and
indirectly controlling expression of proneural genes (Israsena
et al. 2004). It has been reported that retinoic acid treatment
can induce P19 cells to become neurons, and Wnt signaling
it is involved in this process with an increase of the level of
both nuclear and cytosolic β-catenin (Papkoff 1994; Tang et
al. 2002). While β-catenin has mitogenic effects, it is not by
itself sufficient to maintain cells in the proliferative state and
requires other growth factors like serum. In situations where
serum is limited, the proneuronal effects of β-catenin
predominate in pluripotent and multipotent cells. β-catenin
can activate a number of fate determination genes of the
bHLH family and that this effect is very likely to play an
important role in the regulation of stem cell lineage
commitment (Israsena et al. 2004). β-catenin binds directly
to the promoters of several proneural genes and activates
their expression, which may underlie the proneural effects of
it.

Notch has been widely studied in the context of stem
cells, hoping that specific modulation of the signal may
provide an in vitro tool for stem cells expansion and for the
manipulation of lineage-specific differentiation in the
future. We demonstrated that key Notch signaling compo-
nents are present in hASCs. Notch1, CBF1 and the target
genes Hes1, Herp1, and Hey1 were detected, allowing us to
conclude that hASCs posses the necessary elements
required for a functional Notch signal and that this signal
is downregulated after 14 days of neuronal differentiation.
Hes1, Herp1, and Hey1 act as repressors of bHLH
transcription factors to regulate lineage commitment by
inhibiting expression of cell-fate-specific genes, thereby
maintaining stem/progenitor cells. These results are similar
to those obtained in a previous work in HSCs (Duncan et
al. 2005; Yu et al. 2006), where it was demonstrated that
Notch signaling is used by HSCs and is downregulated as
these cells differentiate; and in NSCs, targets of Notch
signaling work together to prevent terminal differentiation
and preserve a pool of stem cells, downregulating proneural

genes such as Mash1 (Alexson et al. 2006). Based on these
data, we could suggest that Notch1 and they target genes,
key gatekeepers of progenitor populations and regulators of
glial and neural stem cell fates (Artavanis-Tsakonas et al.
1999; Gaiano and Fishell 2002), probably regulate the
proliferation and differentiation-induced expression of
neural-glial markers in hASCs, supporting the notion that
hASCs differentiation into neuron-like cells represents a
regulated process analogous to what occurs during normal
neuronal differentiation of NSCs.

If these two signaling pathways are interconnected in
hASCs is unclear. In HSCs, Notch signaling is required for the
influence of Wnt, probably Wnt signaling exerts its influence
by activating the Notch pathway, but it is also possible that
represent parallel pathways, withWnt enhancing proliferation
and Notch preventing differentiation (Duncan et al. 2005).

Future studies elucidating the function of Wnt and Notch
signaling in fate specification and the relationship between
them in hASCs will lead to a more thorough understanding
of the stem cell biology, which hopefully will result in the
development of practical applications in cell therapy.

In summary, while it is unlikely that hASCs will be able to
directly replace lost neurons and restore function to neuronal
circuits through mechanisms that involve hASCs adopting
and maintaining robust neuronal phenotypes, hASCsmay still
be able to contribute to neural repair through other mecha-
nisms. Additional studies are needed to determine the extent
to which autologous transplants of hADSCs at an injury site
survive, engraft, and interact with endogenous progenitor
populations to enhance neural repair.
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