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a b s t r a c t

We have studied two complementary decoherence measures, purity and fidelity, for a generic diffusive
noise in twodifferent chaotic systems (the bakermap and the catmap). For both quantities,we have found
classical structures in quantummechanics – the scar functions – that are specially stable when subjected
to environmental perturbations. We show that these quantum states constructed on classical invariants
are the most robust significant quantum distributions in generic dissipative maps.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

In quantum chaos (i.e. the study of quantum systems whose
classical counterparts are chaotic), the complete description of
the eigenfunctions is still an open problem. While there is a
semiclassical method for obtaining the eigenstates of an integrable
system (the well-known EBK/WKB quantization scheme [1,2]), the
same problem in the chaotic case has proven harder to solve. One
of the major advances in this sense has been Gutzwiller’s theory of
periodic orbits for the quantum chaotic spectra [3], devised in the
early 1970s.

A recently developed approach allows one to obtain all the
information of a generic quantum system simply by using the
shortest periodic orbits of its classical counterpart [4]. This
formalism has been successfully applied to the description of the
eigenstates ofmany chaotic quantumsystems such as, for example,
the Bunimovich billiard [5], the cat map [6], and the baker map [7].
These results suggest that states built using only this classical
information (the so-called scar functions) constitute the skeleton
of the eigenstates of any quantum chaotic system.

On the other hand, taking into account the restoration of the
classical dynamics induced by decoherence in an open quantum
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system [8] and the behavior of distributions against external
perturbations [9–11], we can ask ourselves the following: are scar
functions, as a consequence of their classical content, more robust
than other states facing an environment-induced decoherence?
Trying to answer this question, in [12] we have studied a very
simple model of a chaotic quantum system interacting with an
environment that produces dissipation and decoherence (an open
quantum map). In this article, we exhaustively expand the results
presented there by studying different open maps. This leads us to
our main result, i.e. we show here that scar functions are the most
robust significant quantum distributions in generic dissipative
maps.

In this paper, we study the behavior of classically motivated
states (by analyzing two differentmeasures, namely the purity and
fidelity) corresponding to two paradigmatic systems in quantum
chaos, the baker map and the cat map on the torus [13,14]. We
introduce decoherence by means of a diffusive noise model [15].
We have organized this work as follows. In Section 2, we describe
the main theoretical tools we need throughout our investigations
(open quantum maps and scar functions). In Section 3, we define
the maps considered. Section 4 presents our results. In Section 5,
we come to some conclusions.

2. Theoretical tools

Open quantum maps are the simplest systems that capture
all the essential features of chaotic dynamics and dissipation.
As such, they are the ideal testbed for studying the effect of
the environment on quantum distributions. Our main interest is
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focused on determining how the classical information emerges
from the quantum structures. For that purpose, we will make use
of scar functions, whose construction we explain at the end of this
section.

2.1. Open quantum maps

The quantization of maps on a compact phase space proceeds
in two stages: a kinematic one, which establishes the Hilbert
space appropriate to the phase space geometry, and a dynamical
one, which consists in defining a suitable quantum operator
corresponding to the classical dynamics. Finally, Kraus operators
take into account the effect of the environment.

2.1.1. Kinematics
In this work, the classical phase space associated with the

systems under investigation is the two-dimensional torus T2
=

R2/Z2, consisting of a square of unit side with opposite sides
identified. Points in this space have coordinates (q, p) ∈ [0, 1) ×

[0, 1). To be compatible with the phase space geometry, quantum
wave functions must be periodic in both position and momentum
(up to a phase):
ψ(q + 1) = exp(−i2πχq) ψ(q) (1)

ψ̃(p + 1) = exp(i2πχp) ψ̃(p) (2)
with

ψ̃(p) =
1

√
2π h̄

∫
∞

−∞

dq e−
i
h̄ qp ψ(q). (3)

The phases 2πχq, 2πχp are called Floquet’s angles, with 0 ≤

χq, χp < 1. Periodicity in q and p implies that

2π h̄N = 1. (4)
This means that the Hilbert space of wave functions HN , the
quantum counterpart of the classical compact phase space, is
effectively finite dimensional, with dimension N . In this context,
the semi-classical limit h̄ → 0 is equivalent to taking N → ∞.

The usual canonical commutation relations between posi-
tion and momentum operators (which are the generators of
infinitesimal translations in phase space) do not hold in the finite-
dimensional case, so we cannot define position and momen-
tum operators q̂, p̂. However, we can define finite displacement
operators Û and V̂ , whose form is analogous to that of the infinite-
dimensional case. These operators are unitary, and the eigenvec-
tors form a basis for HN [16–19].

The basis of position vectors |qj⟩ for this space will be defined
from the eigenvectors of themomentumdisplacement operator V̂ :

V̂ |qj⟩ = exp
[
2π i
N
(j + χq)

]
|qj⟩, j ∈ [0,N − 1]. (5)

The position in phase space associated with |qj⟩ is

qj =
j + χq

N
. (6)

Analogously, the momentum vectors |pk⟩ satisfy

Û|pk⟩ = exp
[
−

2π i
N
(k + χp)

]
|pk⟩ (7)

pk =
k + χp

N
, k ∈ [0,N − 1], (8)

where Û is the position displacement operator.
These bases are related by means of a discrete Fourier

transform:

⟨pk|qj⟩ = N−
1
2 exp

[
−

2π i
N
(j + χq)(k + χp)

]
≡ F̂ j,k

N . (9)
From the previous equations, it can be shown that [16–19]

Û|qj⟩ = |qj+1⟩ (10)

ÛN
|qj⟩ = |qj+N⟩ = exp(−i2πχq)|qj⟩ (11)

V̂ |pk⟩ = |pk+1⟩ (12)

V̂N
|pk⟩ = |pk+N⟩ = exp(i2πχp)|pk⟩. (13)

These operators satisfy the relation

Û jV̂ k
= V̂ kÛ j exp


2π i
N

jk

. (14)

With them, we can define a discrete version of the phase space
displacement operator:

T̂j,k =
1

√
N

exp

iπ
N

jk

V̂ jÛk, (15)

with the property T̂ Ď
j,k = T̂−j,−k. The set {T̂j,k}N

2
−1

j,k=0 of finite displace-
ments forms a basis for the Hilbert space HN2 = HN ⊗ H∗

N of
linear operators on HN (Liouville space) with the Hilbert–Schmidt
inner product:

(Â, B̂) = Tr(ÂĎB̂). (16)
This basis of N2 displacement operators satisfies

Tr(T̂ Ď
j,kT̂j′,k′) = δj,j′δk,k′ , (17)

so it constitutes a complete orthonormal set.

2.1.2. Dynamics
By virtue of the finite dimension of HN , the quantum dynamics

is given by a unitary N × N matrix ÛN , and the system state
evolution is obtained by means of a straightforward matrix
multiplication. In our case, this matrix will be the quantization
of a classical (chaotic) map P on T2. This means that, given the
mapping P(q, p), there exists a sequence of unitary operators ÛN
(called a quantummap) acting onHN such that the so-called Egorov
property is fulfilled; i.e.

lim
N→∞

‖Û−1
N Op(f )ÛN − Op(f ◦ P)‖ = 0 ∀f ∈ C∞(T2). (18)

Op(f ) represents the Weyl quantization of the observable f [18].

2.1.3. Environment
If the quantum system interacts with an environment, the

elements (kets) ofHN no longer represent its state. In this situation,
all that can be said about the system at time t is encoded in its
associated density operator ρ̂t [20–22]. The evolution of ρ̂t is given,
under sufficiently general conditions, by a completely positive,
trace-preserving map S of density matrices into density matrices
called a superoperator or a quantum operation [23,21,22].

In this context, we define an open quantum map S [24,15] as a
map whose action can be written in the form of a product of two
superoperators:

ρ̂t+1 = S(ρ̂t) = DεM(ρ̂t). (19)

M(ρ̂t) = M̂ρ̂tM̂Ď is a map that generates the unitary evolution
of the system, M̂ being the evolution operator that acts upon
elements of the Hilbert space associated to the non-interacting
system. Dε is a superoperator that models the interaction between
the system and the environment according to a set of parameters
ε related to the specific type of interaction. This last superoperator
is responsible for introducing noise in the – otherwise unitary –
system evolution.

In the present work, M̂ will be the quantization of a classically
chaotic map acting on the torus. In particular, wewill consider two
completely chaotic maps: the baker map and the cat map [13,14].
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Fig. 1. Action of the noise model in phase space. The first panel (left) shows the discrete Wigner function of a superposition of two coherent states centered at (0.35, 0.35)
and (0.65, 0.65). The value of the Wigner function is shown using a gray scale from white (minimum, negative) to black (maximum, positive) (same scale for all panels). As
time goes on (from left to right), the noise superoperator Dε acting on the state washes out the interference fringes. We have taken ε = 0.05 and N = 100.
Fig. 2. Action of the noise superoperator on the same initial state as in Fig. 1, but with stronger coupling (ε = 0.1). In this case, the interference fringes disappear already
in the first application of the noise superoperator. The gray scale chosen in this case enhances the visualization of the Wigner function spreading in phase space.
Besides, the noise superoperatorwill be expressed according to the
Kraus representation [23,21,22], which in general can be expressed
as

Dε(ρ̂t) =

N2
−1−

i=0

K̂iρ̂t K̂
Ď
i , (20)

with
∑

i K̂
Ď
i K̂i = 1 in order to preserve the trace of ρ̂t . The way

the system interacts with the environment will be completely
determined by the Kraus operators K̂i. In the following section, we
will define these operators explicitly. An example of the action of
the environment in phase space can be seen in Figs. 1 and 2.

2.2. Scar functions

The semiclassical theory of short periodic orbits [4] is a
formalism that allows one to obtain all the quantum information
of a chaotic Hamiltonian system in terms of a very small number
of short periodic orbits. The main elements in this theory are the
so-called scar functions. These are wavefunctions that are highly
localized in the neighborhood of the classical periodic orbits and on
their stable and unstable manifolds, satisfying a Bohr–Sommerfeld
quantization condition along the trajectory. They are defined for
Hamiltonian flows as

|φscar⟩ =

∫ T

−T
dt cos


π t
2T


e

i
h̄ (EBS−Ĥ)t

|φtube⟩, (21)

where Ĥ is the system’sHamiltonian, T is of the order of Ehrenfest’s
time, and |φtube⟩ is a wavefunction localized on the periodic orbit
with Bohr-quantized energy EBS . In [6,7], the formalism has been
adapted to quantum maps on the torus, and the resulting formula
for scar functions is given in terms of a sum:

|φmaps
scar ⟩ =

T−
t=−T

cos

π t
2T


e

i
h̄ EBS t Û t |φ

maps
POM ⟩, (22)

where Û is the evolution operator of the quantummap and |φ
maps
POM ⟩

(called the periodic orbit mode or POM) is a sum of coherent states
on the torus centered at the fixed points of a given periodic orbit,
each one having a phase. In this case, the Ehrenfest time is T =

lnN
λ

,
λ is the Lyapunov exponent of the map, and N is the Hilbert space
dimension.
As an example, the upper right panels of Figs. 3 and 4 show
Husimi representations of scar functions constructed for the baker
map and for the cat map, respectively. The enhancement of
probability that these wavefunctions have on the corresponding
periodic orbit and its stable and unstable manifolds is clearly
visible.

3. Systems

3.1. Baker map

The first model of chaotic dynamics we consider is the baker
map B : T2

→ T2, given by the transformation [14,13]

(q′, p′) = B(q, p) = [2q − ⌊2q⌋, (p + ⌊2q⌋)/2], (23)
where ⌊x⌋ stands for the integer part of x. This transformation
is an area-preserving, uniformly hyperbolic, piecewise-linear and
invertible map with Lyapunov exponent λ = ln 2. The vertical
(horizontal) lines q = q0 (p = p0) represent the stable (unstable)
manifolds.

The phase space has a very simple Markov partition consisting
of two regions (q < 1/2 and q ≥ 1/2) associated with the symbols
0 and 1, for which there is a complete symbolic dynamics. The
action of the map upon symbols can be understood by means of
the binary expansion of the coordinates:

(p|q) = . . . ν−1 · ν0ν1 . . .
B

−→ (p′|q′) = . . . ν−1ν0 · ν1 . . . , (24)

where q =
∑

∞

i=0 νi2
−(i+1) and p =

∑
−∞

i=−1 νi2
i. Then, a periodic

orbit of period L can be represented by a binary string ν of length L.
The coordinates of the first trajectory point (q0, p0) on the periodic
orbit can be obtained explicitly in terms of the binary string as
q0 = ·ννν · · · = ν/(2L

− 1) and p0 = ·νĎνĎνĎ · · · = νĎ/(2L
− 1),

where ν is the integer value of the string ν which represents a
binary number, and νĎ is the string formed by all L bits of ν in
reverse order. The other trajectory points can be easily calculated
by iterations of the map or by cyclic shifts of ν.

The unitary operator M̂ that performs the closed quantum
evolution is given in position representation by [25,26]

M̂ = F̂ ĎN


F̂N/2 O
O F̂N/2


, (25)
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Fig. 3. Purity and fidelity behavior for the noisy baker map. In the upper panels,
we show the Husimi representation of two initial states, localized near the period-2
orbit 01. Black corresponds tomaximumprobability, andwhite tominimum. Upper
left panel: map eigenstate. Upper right panel: scar function. Middle panel: purity
evolution (logarithmic scale). Lower panel: fidelity evolution (logarithmic scale).
In the last two panels, black dotted lines correspond to the map eigenstate, green
dashed lines to the POM, and red solid lines to the scar function. We have taken
ε = 0.1, N = 100. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

where F̂N is the N-dimensional Fourier transform operator whose
matrix elements were defined in (3). Throughout the paper, we
assume for the quantum baker map a phase space with anti-
symmetric boundary conditions (χq = χp = 1/2) in order to pre-
serve the classical map symmetries [26].

3.2. Cat map

Another simple model with strongly chaotic dynamics on T2 is
the cat map [14,13]. It is an invertible, area-preserving canonical
transformation A whose matrix has integer entries, and with
Tr(A) > 2 to ensure hyperbolicity. A common choice for A is
0.07

0.06

0.05

0.04

0.03

0.02

0.01

0 0
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0.2

0.25

0.3

Fig. 4. Purity and fidelity behavior for the noisy cat map. In the upper panels, we
show the Husimi representation of two initial states, localized near a period-3 orbit.
The colors, patterns, scales and parameters as in Fig. 3. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)


q′

p′


= A


q
p


=


2 1
3 2

 
q
p


mod 1. (26)

The Lyapunov exponent for this map is λ = ln(2 +
√
3) ≈ 1.317.

The expanding and contracting eigenspaces through the origin are
given by ξu = (−

√
3, 1) and ξs = (

√
3, 1). The irrational slope

of the two directions implies that stable and unstable linear
manifolds are densely distributed over the torus.

The map is quantized by means of its generating function
[27,13], giving a unitary propagator M̂ whose matrix elements in
position representation are

M̂j,k =
1

√
N

exp
[
2π i
N
(j2 − jk + k2)

]
. (27)
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3.3. Noise model

We define the superoperator Dε by means of translation
operators on the torus [15]:

Dε(ρ̂t) =

N−1−
j,k=0

cε(j, k) T̂j,k ρ̂t T̂
Ď
j,k. (28)

These translation operators (our Kraus operators) are defined by
Eq. (15). To preserve Tr(ρ̂t), we assume that

∑N−1
j,k=0 cε(j, k) = 1.

This way, the coefficient cε(j, k) represents the probability of a
translation being applied on the system in the direction (j, k).
Defining this function as a periodized Gaussian (to satisfy the
boundary conditions on the torus),

cε(j, k) ∝

∞−
µ,ν=−∞

exp


−
(j − µN)2 + (k − νN)2

2

εN
2π

2

, (29)

we obtain a noise superoperator which has the effect of diffusing
the state on a region of radius≈ ε in phase space. The consequence
of this incoherent superposition of translations is decoherence,
which can be visualized as the suppression of the small-scale
interference fringes in the Wigner representation. After a short
time, the Wigner function becomes positive and the state appears
‘‘smeared out’’ in phase space. As previously mentioned, this
behavior can be seen in Figs. 1 and 2,which show the effect of noise
over the discrete Wigner function [17,19,18] of a superposition of
coherent states. The parameter ε can be interpreted as a measure
of the coupling between the system and the environment.

4. Results

In order to quantify the stability of the states of interest against
decoherence, we have calculated the purity

P(t) = Tr(ρ2
t ) (30)

and the fidelity or autocorrelation function

F(t) =


⟨ψ |ρt |ψ⟩ (31)
as functions of time. In (31), |ψ⟩ represents the pure initial state;
hence, ρ0 = |ψ⟩⟨ψ |.

Purity is a measure of the correlation degree between the
system and the environment, and its evolution in time indicates
how fast the system loses coherence. Fidelity can be interpreted
as the distance between the evolved state and the initial state.
Its development in time allows us to measure the velocity with
which the evolved state ‘‘moves away’’ from the initial one under
the action of the noisy dynamics. Complementarily, this difference
between the initial and evolved states can be observed in terms of
a density operator representation in phase space, like Husimi or
Wigner distribution functions [28,18].

We have studied the evolution of these quantities from
initial states defined as scar functions, periodic orbit modes, and
eigenstates of the unitary quantummap. For each system, we have
built the scar functions and the periodic orbit modes on different
short periodic orbits of the corresponding classical map (without
noise) and then compared their evolution to those of the map
eigenstates, in particular with those localized on or nearer to the
same orbits.Wehave also studied the effect of varying the coupling
with the environment by means of taking different values for the
parameter ε.

In Figs. 3 and 4, we show some typical results of our numerical
calculations. They are illustrative of an exhaustive exploration of
the eigenstates of our systems. Fig. 3 shows the behavior of purity
and fidelity for the case of the noisy baker map model. The states
are localized over a period-2 orbit with symbolic code 01, as can
be seen in the Husimi representations of the upper panel. The
overlap between the scar function and themap eigenstate is 0.828,
so the states are quite similar in terms of this distance measure.
However, there is a visibly different behavior in terms of purity and
fidelity, favoring the semiclassically constructed states in general,
and the scar functions in particular, which lose purity and fidelity
at a slower pace.

For the noisy cat map we have a similar behavior, but the
differences between states in terms of purity and fidelity evolution
are less pronounced, as can be seen in Fig. 4. In this case, the
scarring of map eigenstates by periodic orbits is not so strong as in
the baker map case. However, the scar functions are more robust
than the other states, as in the previous model.

These results show that this behavior is independent of the
kind of noise considered, when compared to what has been shown
in [12]. There, a different open system was studied (a dissipative
baker map), in which the noise was non-generic because it acted
along a preferential direction in phase space, corresponding to the
stable manifolds of the classical map. Also, there is no dependence
on the kind of map. In fact, in a more generic system in terms of
scarring like the cat map, the same has been found.

In order to propose an explanation for the behavior of scar
functions, in Figs. 5 and 6 we show the Wigner distributions
corresponding to the first four steps of the evolution of the states
used in Figs. 3 and 4, respectively. In the upper panels we see the
eigenstates of the maps, which have a complicated background
structure along with localization on the corresponding orbit. The
scar functions and POMs have a much simpler shape, with details
that in general live longer than those present in the eigenstates.
In fact, the eigenstates seem to converge to the corresponding
scar functions. This is the underlying mechanism that produces
a faster loss of fidelity and purity in the eigenstates with respect
to the classically motivated quantum distributions. Finally, we
give a brief discussion about the similar behavior of the decay
of the purity and the fidelity. The first quantity measures the
rate of coherence loss, which can be seen very clearly through
the Wigner distributions. The second measures the correlation
between the initial state and the evolved ones. The interaction
with the environment essentially destroys the interference fringes
whilst the dynamics distorts the initial distributions. But all three
initial states are very localized on a periodic orbit and itsmanifolds.
Then the main initial contribution to the loss of both purity and
fidelity comes from the destruction of coherences.

5. Summary and conclusions

We have studied two complementary decoherence measures,
purity and fidelity, for a generic diffusive noise in two different
chaotic maps.

For both quantities, we have found classical structures in
quantum mechanics that are specially stable when subjected to
environmental perturbations. They are the scar functions, which
are associated to periodic orbits and the stable and unstable
manifolds in their vicinity.

We have seen that quantum states constructed on classical
invariants, periodic orbits, and their stable and unstablemanifolds,
are more stable against an external noise than the eigenstates
of the closed quantum system. This turns them into the most
robust significant quantum distributions in generic dissipative
maps.We conjecture that the scar functionswill be themost robust
structures also in general chaotic systems.

This result has already been announced for a particular
dissipative noise in the baker map. But in that case the noise
was along the stable direction of the hyperbolic structure of the
originalmap.Here,wehave confirmed the same result for a general
diffusive model for two different maps.

We can then say that the external noise destroys the stability
of the quantum invariants faster than the stability of the classical
ones. This is a consequence of the effect of the noise, as it quickly
destroys quantum interferences whilst it only spreads the classical
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Fig. 5. Wigner distributions corresponding to the first four steps of evolution of a baker map eigenstate (upper panels), the corresponding scar function (middle panels),
and the POM (lower panels). We have taken the same parameters as those chosen for Fig. 3.
Fig. 6. Wigner distributions corresponding to the first four steps of evolution of a cat map eigenstate (upper panels), the corresponding scar function (middle panels), and
the POM (lower panels). We have taken the same parameters as those chosen for Fig. 4.
structures in phase space. Despite the fact that we have only
shown results for ε = 0.1, we have verified that they represent the
generic behavior for awide range of couplings. For strong couplings
(ε > 1), the noise destroys the distributions very quickly, and for
weak couplings (ε < 0.001), the system behaves in a similar way
to the closed one.
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Then, we have shown that, for generic maps, scar functions
represent the stable classical skeleton of the map eigenstates
against environmental perturbations.

We are currently developing the theory to quantitatively ex-
plain this behavior.
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