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Abstract In this paper we considered the theoretical treatment of a physical system
of excitons and its behaviour under temperature by means of a new coherent state
construction of bounded states in a quantum field theoretical context.
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1 Introduction

In previous work [1], new bounded coherent states construction, based on a Keldysh
conjecture, was introduced. As was shown in [1] the particular group structure aris-
ing from the model leads to new symmetry transformations for the coherent states
system. As was shown, the emergent new symmetry transformation is reminiscent
of the Bogoliubov ones and was successfully applied to describe an excitonic sys-
tem showing that it is intrinsically related to the stability and its general physical
behaviour. The group theoretical structure of the model permits to analyse its ther-
mal properties in theoretical frameworks that arise as a consequence of the definition
of the squeezed coherent states as transformed vacua under the automorphism group
of the commutation relations, as the thermofield dynamics case given by Umezawa
and other similar developments [11]. On the other hand, the idea of a possible Bose–
Einstein condensation (BEC) of excitons in semiconductors has attracted the attention
of both experimentalists and theoreticians for more than three decades being one of the
main questions what happens with the influence of non-zero temperature in the case
that such condensation really exists [2,3]. In this paper we considered the theoretical
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treatment of the excitonic behaviour by means of a new coherent state construction
of bounded states in a quantum field theoretical context. The possibility to introduce
the coherent states in a physical system of excitons is mainly fundamented by the idea
of “exciton state splitting” and “exciton wave function” introduced by Keldysh [4–7]
earlier and developed by us in [1]. This paper is organized as follows: in Sect. 1 we
make basically a short review of our earlier work [1] adding several new comments
and concepts necessary to the clear understanding of this approach, and Sect. 2 is
devoted to introduce the thermalization of excitonic coherent states by means of a
specific unitary transformation described by a composed displacement operator.

2 Exciton Model: Review and New Concepts

2.1 General Description

As was shown before [1], our starting point is based in the following splitting of the
fermionic state in the material to be considered

ψα (x) ≡ ψ(e)α (x)+ ψ†(h)
α (x) (1)

with ψ(e)α (x) ≡ ∑
j> j0 a jχ

j
α (x) , ψ

†(h)
α (x) ≡ ∑

j> j0 a jχ
j
α (x), where

[
a†

j , a j ′
]

+ =
δ j j ′,

[
a j , a j ′

]
+ = 0 We have defined χ j

α (x) the basic functions of Hartree–Fock (HF)
of the system and the indices j > j0 and j ≤ j0 numerate the bounded states from
the electronic zone and the free states, respectively.

Remark 1 Definition (1) describes correctly the excitonic operator being the same
operator acting in the characteristic zones. Then, in sharp contrast with the traditionally
accepted use of different operators for electron and hole, respectively, the construction
(1) avoid all type of overcounting and spurious states that are clearly non-physical.

Let us consider, without losing generality and only to exemplify in concrete cases,
the symmetries of a periodic system (e.g. crystal). In this case the functions of HF take
the form of a Bloch state χ jα (x) = eiP·xuPlα , where P is the quasi-momentum and
l is the number of zone, such that j = {P,l}. If the case is for a non-metallic crystal,
then the sum in j ≤ j0 corresponds to a sum over all P which live in the 1st Brillouin
zone. The HF functions obey the HF equation

∫

hαβ
(
x, x′)χβj

(
x′) d3x′ = ε jχ jα (x) (2)

with hαβ
(
x, x′)= δαβδ

(
x, x′)

{−h̄2

2m0
∇2−∑ Zk e2

|Rn,k−x| + e2

2

∫ gββ(y,y)d3y
|x−y|

}
−e2 gαβ(x,x′)

|x−x′|
being the HF operator, where we define gαβ

(
x, x′) ≡∑ j≤ j0 χ jα (x) χ

j
β

(
x′)

Remark 2 The important observation here (in concordance with our remark about
expression 1) is that the hamiltonian is not the sum of several terms involving electrons,
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holes, etc. as separate entities, as is currently taken in the literature: only the state
defined in expression (1) is involved into the Hamiltonian hαβ

(
x, x′).

2.2 Exciton Wave Equation

Due to the composite characteristic of the excitonic state, firstly we have particular
interest in the 2-particles 2-times Green functions

G(2)
αβ,γ δ

(
x, y,t; x′, y′, t ′

) = − i

h̄

〈
Tψ†

α (x,t) ψβ (y,t) ψ
†
γ

(
x′, t ′

)
ψδ
(
y′,t ′

)〉

0
, (3)

where ψβ (y,t) is Heisenberg operators and 〈T · · · .〉0 chronological product. The
second important point in the CS excitonic formulation is due to the observation
pointed out in [2,3], that the G(2)

αβ,γ δ

(
x, y,t; x′, y′, t ′

)
can be written as

i h̄G(2)
αβ,γ δ

(
x, y,t; x′, y′, t ′

)

= −
∑

PJ

⎧
⎪⎪⎨

⎪⎪⎩

ϕ JP
αβ (x, y) ϕ JP


γ δ

(
x′, y′) e

i
h̄

(
P·(x+y−x′−y′)

2 −E JP(t−t ′)
)

, t > t ′

ϕ JP

αβ (x, y) ϕ JP

γ δ

(
x′, y′) e

−i
h̄

(
P·(x+y−x′−y′)

2 −E JP(t−t ′)
)

, t < t ′
(4)

here is easily seen that

e
i
h̄

P·(x+y)
2 ϕ JP

αβ (x, y) =
〈
0
∣
∣
∣ψ†
α (x) ψβ (y)

∣
∣
∣ JP

〉
(5)

Then, the above expression can be assumed as the basic wave function of the exciton1

Taking account of the symmetries involved, the Von Karman periodic conditions are
ϕ JP
αβ

(
x + Rn, y + Rn

) = ϕ JP
αβ (x, y) with Rn a characteristic vector of the crystal

lattice. Fourier transforming (4) in the time we obtain

G(2)
αβ,γ δ

(
x, y; x′, y′; PE

) =
∑

J,δ→+0

2E JP

E2 − (E JP − iδ)2
ϕ JP

αβ (x, y) ϕ JP

γ δ

(
x′, y′) (6)

notice that, due the free field form, this formulas are independent of the specific form
of the hamiltonian considered.

Remark 3 Due the composite and extended character of the exciton systems, the wave
functions defined in (5) have a non-local behaviour in general

1 Notice that form Eq. (8) the factorization in pairs of the two times/two field Green’s functions is
automatically assumed.
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2.3 Excitonic Coherent State Construction

It is well known that CS provides naturally a close connection between classical and
quantum formulations of a given system [8–10]. As is well known, the importance
of coherent states in physics, and particularly in condensed matter physics, is huge.
All the physical processes, where the quantum world is macroscopically manifested
(as in BEC or laser physics) can be faithfully described by coherent states due the
semiclassical behaviour, temporal stability and other mathematical requisites needed
in the quantum field theoretical framework. There exist three standard definitions in
the construction of coherent states. The most suitable for our proposes here is by
means of a “displacing operator” acting over the vacuum (specific fiducial vector).
The unitary operators

BJP = 1

V

∫

ψα† (x) ϕ JP
αβ (x, y) e

i
h̄

P·(x+y)
2 ψβ (y) d3xd3y, (7)

B†
JP = 1

V

∫

e
−i
h̄

P·(x+y)
2 ψα† (x) ϕ†JP

αβ (x, y) ψβ (y) d3xd3y,

where ϕ†JP
αβ (x, y) =

[
ϕ JP
βα (y, x)

]

, (V = normalized volume) and the commutation

relations take the following form

[
BJP, B†

J ′P′
]

= δJ J ′δPP′

−
{

1

V

∫

ψα†(e) (x) e
i

2h̄ P·xϕ JP
αγ (x, z) e

−i
2h̄ (P−P′)·zϕ†J ′P′

γβ (z, y) e
−i
2h̄ P′·yψβ(e) (y)

+ 1

V

∫

ψα†(h) (x) e
−i
2h̄ P′·yϕ†J ′P′

γβ (y, z) e
−i
2h̄ (P−P′)·zϕ JP

αγ (z, x) e
i

2h̄ P·xψβ(h) (y)
}

d3xd3yd3z (8)

indicating exactly the intricated interplay in the electron-hole system (notice the lack
of canonicity). Although the complexity of expression (8), we take advantage of the
unitarity of the BJP (7) constructing the coherent states as

|β, JP〉 = exp
{
βB†

JPei E JPt/h̄ − β
BJPe−i E JPt/h̄
}

|0〉 ≡ |ϕ〉 (9)

where, after the use of Eq. (1), the explicit form of the displacement operator is as
follows:

Dϕ = exp

[∫

ψα†(e) (x) ϕαβ (x, y) e
−i
h̄

(
P·(x+y)

2 −mt
)

ψβ†(h) (x)

−ψα(h) (x) ϕ
αβ (x, y) e
−i
h̄

(
P·(x+y)

2 −mt
)

ψβ(e) (x)
]

d3xd3y (10)
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Remark 4 Expression (10) is the theoretical basis of our model being absolutely
general and does not depend, in principle, on the hamiltonian under consideration.

3 Thermalization: New Symmetries and Emergent Transformations

To begin with and only in order to make a concise analysis of the construction given
before in [1], let us consider a Wannier exciton system. As is well known, such sys-
tem of excitons is characterized by the screening of the crystal structure being well
described by the following Schrödinger equation

(
i h̄ ∂
∂t − h

) |ϕ〉 = 0 that can be writ-
ten using new displacement operators defined as D̃ ≡ Dth Dϕ , where Dth is the thermal
unitary operator that arises as a consequence of the definition of the squeezed coher-
ent states as transformed vacua under the automorphism group of the commutation
relations, as the thermofield dynamics case [11]. Then we have

D̃†
(

i h̄
∂

∂t
− h

)

D̃ |0〉 = 0 (11)

This transformation shows specifically the group structure, namely, the fundamental
symmetries underlying the physics of the system. Clearly, a Bogoliubov-like transfor-
mation arises as in the pure excitonic case [1] or by definition in the pure thermal case
[11]:

(
ψ̃
(e)
α

ψ̃
†(h)
α

)

=
⎛

⎝λ cosϕ + μ∗ ϕ∗
αβ

ϕ
sin ϕe− i

h̄ (P·x−mt) μ cosϕ + λ∗ ϕ∗
αβ

ϕ
sin ϕe− i

h̄ (P·x−mt)

−λϕαβ
ϕ

sin ϕe
i
h̄ (P·x−mt) + μ∗ cosϕ λ∗ cosϕ − μ

ϕαβ
ϕ

sin ϕe
i
h̄ (P·x−mt)

⎞

⎠

×
(
ψ
(e)
α

ψ
†(h)
α

)

(12)

|λ|2 − |μ|2 = 1

The structure of above transformation is regulated by the same Green function that
defines the exciton wave function plus the coefficients λ andμ that are related with the
eigenvalues of the exciton and fermion number operators of the system (Ne, Nh) given
precisely the specific form of the interaction hole electron in the thermal case [12].
Introducing the transformed fields via the displacement operator into the Schrödinger
equation we obtain schematically

[
ψ†(e)h̃(e)ψ(e) + ψ†(h)h̃(h)ψ(h) + ψ†(e)Qψ†(h) + ψ(h)Q†ψ(e)

]
|0〉 , (13)

where

h̃(e)αβ ≡ mδαβ
(
|λ|2 sin2 ϕ + |μ|2 cos2 ϕ

)
− hαβ

(
|λ|2 + |μ|2

)
cos 2ϕ
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and

Qth
αβ ≡ −

(
|λ|2 + |μ|2 + μλ

)
e

i
h̄ (P·x−mt) (mδγα − 2hγα

) sin (2ϕ)

ϕ
ϕγβ (14)

(and analogically for h̃(h)αβ and Q†
αβ). We see that expression (14) must be zero if the

number of particles is conserved. Is not difficult to see that one condition is m
2 = n f h :

the chemical potential m is proportional to the energy times the fermionic number of
the system (the total energy considering the binding). This is an equilibrium condition.
The other one gives a condition over the specific strength of the interaction electron-
hole, namely: sin (2ϕ) = 0 with ϕ being the norm of the exciton wave function defined
by expression (5). Notice that both conditions are independent of the thermal properties
of the system. Other condition namely

(|λ|2 + |μ|2 + μλ = 0
)

involves the thermal
properties of the system [11]. And this fact is far from being trivial due to the behaviour
of the transformations (12). The concrete explanation of these conditions from the
physical and mathematical point of view will be part of a separate publications, and
will not be discussed here [12]. But the main points arising from expressions (11–14)
are

(i) Transformations (14) control the general behaviour of the physical system,
(ii) The group dependence of the transformation changes due to the basic wave func-

tion of the exciton expression (5) that contains intrinsically the electron-hole
interaction. Notice that this interaction is precisely the building block of the
Green function (4) and (6).

(iii) Facts (i) and (ii) reflect the conductance properties of the material under consid-
eration and the thermal influence.

From points (i–iii) above, the model presented here can help to understand the
metal-insulator transition in the thermal case. The transition from the excitonic phase
of the electron-hole system to the conducting situation must be characterized by the
breaking of the pair, then this fact is immediately reflected in the changing of the trans-
formations (12). We believe that this effect is promising to be key to the interpretation
and understanding of the metal-insulator transition even in the thermal case [12].
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