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abstract
This work outlines the development of a fault diagnostic system for an MSF (multi-stage flash) 
desalination plant by using BNs (Bayesian networks). This diagnostic system processes the plant 
data to determine whether the process state is normal or not. In the latter case, the diagnostic sys-
tem determines the cause of the abnormal process state; i.e., it finds out which is the fault that is 
affecting the supervised process. A BN is a graphical model that encodes probabilistic relationships 
among variables of interest. When used in conjunction with statistical techniques, the graphical 
model has several advantages for data analysis. A BN readily handles situations where some data 
entries are missing. This paper determines both the structure and parameters of a BN intended for 
a diagnostic system. The implemented system is evaluated by using a dynamic simulator, which 
was developed for a real MSF desalination plant. Besides, the diagnostic system performance is 
compared with the performances of two other diagnostic systems. The obtained results show some 
advantages for the BN based diagnostic system.
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1. Introduction

Quick and correct detection and identification of pro-
cess faults (i.e., fault diagnosis) are extremely important 
when efficient, economic and safe operation of chemi-
cal processes is concerned. Undetected process fault 
may lead to poor quality off-spec products, resulting in 
poor plant economy and sometimes even catastrophic 
consequences like accidents, injury to plant personnel. 

Successful detection and identification of process faults 
at an early stage can increase the rate of fault recovery 
during operations, preventing in this manner costly acci-
dents and unnecessary shutdowns. However, those tasks 
are difficult for operators of industrial plants. Indeed, 
there are too many process variables to be continuously 
supervised, and the relation among those variables and 
the potential faults usually is rather complex. For all 
those reasons, diagnostic systems are developed to aid 
the operators to detect and indentify faults.



Several methodologies have been proposed for fault
detection and identification in chemical processes.
Those methodologies can be classified in the following
groups: quantitative model-based methods [1], qualita-
tive models and search strategies [2] and process his-
tory based methods [3]. Each method has it own
strengths and weaknesses for practical applications;
therefore, they can be judiciously combined to yield a
better system [4,5].

BNs (Bayesian networks) have been successfully
applied in fault diagnosis [6,7]. A BN is used to model
a domain containing uncertainty in some manner. This
uncertainty can be due to imperfect understanding of
the domain, incomplete knowledge of the state of the
domain, randomness in the mechanisms governing the
behavior of the domain, or a combination of those. A
BN is a graphical model that encodes probabilistic rela-
tionships among variables of interest. When used in
conjunction with statistical techniques, the graphical
model has several advantages for data analysis. A BN
readily handles situations where some data entries are
missing. It is also an ideal representation for combining
prior knowledge (which often comes in causal form)
and data because the model has both a causal and
probabilistic semantics. Bayesian statistical methods
in conjunction with BNs offer an efficient approach for
avoiding the overfitting of data [8].

This work outlines the development of a fault diag-
nostic system for a MSF (multi-stage flash) desalination
plant by using BNs. A diagnostic system processes the
plant measured data to determine whether the process
state is normal or not. In the latter case, the diagnostic
system determines the cause of the abnormal state; e.g.,
a damaged piece of equipment, an operator’s action, an
alteration of the process inputs. In this work, that cause
is considered a fault [9,10].

When a fault affects a plant, a process parameter or
variable is directly perturbed by it; then, that original
perturbation propagates itself throughout the plant
taking the process variables away from their normal
values. The evolution of the process variables is a func-
tion of the process and fault characteristics. Indeed,
there will be different evolutions depending on which
process parameter or variable is directly affected by the
fault and the form of the original perturbation. In this
work, the form of that original perturbation is estab-
lished by two parameters: the magnitude and the
development period. The former specifies the maxi-
mum magnitude by which the normal value of the
directly affected process parameter or variable will be
perturbed by the fault; the latter specifies the time
elapsed from the perturbation beginning, with null
magnitude, and the perturbation full development,
when it reaches the maximum magnitude. Therefore,

serious faults are modeled with large magnitudes;
whereas mild faults are modeled with small magni-
tudes; abrupt faults are modeled with short develop-
ment periods; whereas gradual faults are modeled
with long development periods.

Fig. 1 shows the structure of the diagnostic system
proposed in this work. For each sampling period, the
plant measured data are processed by a detector block
whose mission is to compare the current process vari-
ables values X with the values Xn corresponding to the
normal evolution. The detector output is a vector of
standardized deviations dX. This vector is sent to a
BN. The network output is a vector of probabilities p,
therefore its components are values between 0 and 1.
Every component of p is the probability associated to
a potential fault. The fault with the highest probability
is the most probable cause of the abnormal state
reported by the detector block.

In this work, a real desalination plant is studied.
Tarifa and Scenna [11] developed the dynamic simula-
tor MSF 2000 for the considered plant. That simulator
was used in this work to evaluate de proposed diag-
nostic system.

2. Faults and sensors

The first step in the development of the diagnostic
system is the determination of the scope of application.
This scope is given by the list of faults that must be
recognized by the diagnostic system and the desired
format of the report. In this work, except the ‘‘Recovery
low’’ and ‘‘Rejection low’’, all the faults modelled in
the simulator MSF 2000 [11] are considered: a total of
55 faults and the normal state.

The desired format of the report is the probability, a
number belonging to the closed interval [0, 1], for each
potential fault. This number represents the certainty
about the corresponding fault is affecting the plant. The
higher is the probability, the higher is the certainty of
the affirmation.

For a given scope of application, not all variables
provide useful information. Irrelevant data may com-
plicate the structure and affect the performance of the
diagnostic system. To identify the relevant variables,
the outputs of the simulator MSF 2000 [11] must be

Process Detector Bayesian
network
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Faults p
δX

Fig. 1. Fault diagnostic system structure.
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carefully analyzed. Once identified those variables,
only the corresponding sensors must be selected to
be supervised by the diagnostic system. To identify the
relevant variables, all the potential faults were simu-
lated for a set of magnitudes and development periods.
The evolution obtained for a given fault, magnitude
and development period is defined as a dynamic state.
All the dynamic states obtained in that way were then
analyzed to select the suitable sensors by applying the
rules suggested by Tarifa and Scenna [9]. From the ana-
lysis of 270 dynamic states and the normal half bands
showed in Table 1, 30 sensors were selected; they are
shown in Table 2.

3. Detector block

The mission of the detector block is to detect any
dynamic state as soon as possible. To do that, it calcu-
lates standardized deviations from the process data,
the normal evolution and the normal bands. The stan-
dardized deviation for the variable j is defined as:

dXj ¼
Xj � Xnj

�Xnj
; ð1Þ

where Xj is the variable value, Xnj is the normal value
(for steady state, it is constant) and ~Xnj is the normal

half band for the considered variable. The value of a
given variable is classified as normal if it belongs to the
open interval (Xnj � ~Xnj, Xnj þ ~Xnj). The normal
half band is fixed taking in to account the disturbances
(i.e., noises) that affect the variable during the normal
operation of the process. The advantage of using stan-
dardized deviations is they can be compared with one
another (they are dimensionless numbers). Moreover, a
dynamic state can be detected when the absolute value
of a standardized deviation becomes equal or higher
than 1, that time is the detecting time t0.

For a given sampling period ~t, the sampling time
tk is defined as:

tk ¼ t0 þ k �t: ð2Þ

Since a qualitative method was selected for this work,
and the ‘‘first change’’ approach [9] is used to process
the data, the standardized deviations are transformed
into qualitative ones according to:

dXj;k  

dXj;k�1

1
�1
0

k > 0ð Þ ^ dXj;k�1

�� �� ¼ 1
� �

dXj;k � 1
dXj;k � �1
otherwise

8>><
>>:

ð3Þ

In this way, qualitative deviations can only be 0, �1 or
þ1. In the normal state, all qualitative deviations are
null. Once a qualitative deviation becomes �1 or þ1,
it keeps that value.

4. Bayesian networks

4.1. Definition

As was stated above, when a fault occurs, it origi-
nates a sequence of symptoms; however, some

Table 1
Normal bands

2�C for temperatures.
500 tn/h for flow rates.
5 cm for levels.
2% for outputs of controllers.
for Rmus (set point of make-up controller).

Table 2
Selected sensors

Controller CL Controller CH Controller CT Controller CW

Lm (cm)
Ls (cm)
EL (cm)
AL (pc)

T0m (�C)
T0s (�C)
ET0 (�C)
AT0 (pc)

Tcwm (�C)
Tcws (�C)
ETcw (�C)
ATcw (pc)

Wcwm (tn/h)
Wcws (tn/h)
EWcw (tn/h)
AWcw (pc)

Controller CM Controller CR Others

Wpm (tn/h)
Wmum (tn/h)
Rmus (frac)
EWmu (tn/h)
AWmu (pc)

Wbm (tn/h)
Wbs (tn/h)
EWb (tn/h)
AWb (pc)

L[17] (cm)
Pvh (atm)
T[1] (�C)
Wbd (tn/h)
Whw (tn/h).
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symptoms may be detected in an unexpected sequence
(i.e., sooner or later than when they are expected), or
not be detected at all. The reason for that difficulty is
the size of the normal half bands, which is adjusted
according to the signal-to-noise ratio of each variable.
Therefore, the diagnostic system must be able to han-
dle the uncertainty associated to the information pro-
vided by the detector block. BNs, by definition,
possess such ability.

A BN is a network of nodes connected by directed
links with a probability function attached to each node
[6–8]. The network of a BN is a DAG (directed acyclic
graph); that is, there is no directed path starting and
ending at the same node. A node represents either a
discrete random variable with a finite number of states
or a continuous (Gaussian distributed) random vari-
able. A link between two nodes represents causal rela-
tionships between them. In this work, only discrete
variables were considered.

If a node does not have any parents (i.e., there
are not nodes with links pointing towards it), the
node will contain a marginal probability table (also
called unconditional probability table). If a node
does have parents (i.e., there is one or more links
pointing towards it), the node contains a CPT (condi-
tional probability table). If the node is discrete, each
cell in its CPT contains a conditional probability for
the node being in a specific state given a specific con-
figuration of states of its parents. Thus, the number of
cells in a CPT for a discrete node equals the product
of the number of possible states for the node and
the product of the number of possible states for the
parent nodes.

The building of a BN involves two stages: the draw-
ing of the DAG and the determination of the CPT of
every node. Both stages can be carried out by using
expert knowledge only. However, there are works
aimed to obtain automatically both DAG and CPT from
available data by utilizing structure learning (i.e., the
task of drawing the DAG from data) and parameter
learning (i.e., the task of determining the CPT from
data) [8]. This work use a mixed approach: the DAG
is obtained from a traditional BN type, whereas the
parameter learning is automatic from data.

Once completed the BN, it calculates the probability
associated to every node. When new data or evidences
are available, the BN updates those probabilities by
inference, which means computing the conditional
probability for some variables given information (evi-
dence) on other variables. This is straightforward when
all available evidence is on variables that are ancestors
of the variables of interest. But when evidence is avail-
able on a descendant of the variables of interest (which
is the case in this work), the BN has to perform

inference opposite the direction of the edges. To this
end, Bayes’ Theorem is employed:

PðAjBÞ ¼ PðBjAÞPðAÞ
PðBÞ ; ð4Þ

where P(A|B) is the conditional probability of a node
being on state A assuming that a descendant is on
state B.

4.2. Classification

In this work, fault diagnosis is considered as a clas-
sification problem; BNs are often used for that kind of
problems. In the classification learning problem, a lear-
ner attempts to construct a classier from a given set of
labeled training examples that are represented by a
tuple of attribute variables used collectively to predict
the value of the class variable [12]. In the fault diagno-
sis problem, the attribute variables are the qualitative
deviations provided by the detector block, and the
class variable represents the potential faults.

The Naive Bayes is the simplest BN classifier [12], in
which each attribute node (corresponding to an attri-
bute variable) has the class node (corresponding to the
class variable) as its parent, and does not have any
other parent. Fig. 2 shows the Naive Bayes classifier
implemented in this work. Since the class node has
56 possible states (55 faults and the normal state) and
30 sensors were selected – each of them with three pos-
sible states: �1, 0 or þ1 –, the CPT belonging to each
attribute node has 168 conditional probabilities. There-
fore, a total of 5040 conditional probabilities have to be
determined. Those values were obtained by processing
1100 dynamic states, and by evaluating the relative fre-
quency associated to each cell of every CPT. The
dynamic states were obtained by using the simulator
MSF 2000 [11]; for each potential fault, 20 dynamic
states were simulated for the combination of 25%,
50%, 75% and 100% of magnitude with 0%, 25%, 50%,
75% and 100% of development period. The uncondi-
tional probabilities associated to each state of the class
node were obtained by assuming a uniform distribu-
tion; therefore, each probability is equal to 1/56; a

dX1 dX3dX2 dX30...

C

Fig. 2. Naive Bayes classifier.
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better alternative is to estimate those unconditional
probabilities from maintenance department records.

The Naive Bayes classifier is a simple probabilistic
classifier based on applying Bayes’ theorem with
strong (naive) independence assumptions; namely, the
Naive Bayes classifier assumes that the presence (or
absence) of a particular feature of a class is unrelated
to the presence (or absence) of any other feature. In
spite of their naive design and apparently over-
simplified assumptions, Naive Bayes classifiers often
work well in many complex real-world situations
[13]. Zhang [14] carried out a careful analysis of the
Bayesian classification problem, and showed that there
are some theoretical reasons for the apparently unrea-
sonable efficacy of Naive Bayes classifiers.

4.3. System evaluation

To evaluate the proposed diagnostic system, every
potential fault was simulated by using the simulator
MSF 2000 [11] for a set of magnitudes and development
periods different from those employed in the learning
stage. The outputs were transformed into qualitative
deviations, and they were entered into the Naive Bayes
classifier. The network was implemented with the soft-
ware GeNIe 2.0.

Tables 3 and 4 present the evolution of the first
detected symptoms for the faults #CH Set Point High
(set point of controller CH becomes higher than the
normal) and #CH Set Point Low (set point of controller
CH becomes lower than normal), respectively. For both
cases, the fault was simulated beginning at 0 min with
55% of magnitude and 45% of development period.
The detecting time t0 was equal to 4.24 min, at that time
the detector block detected the first symptom and
started the classifier up. Figs. 3 and 4 contain the

corresponding classifier outputs. Considering those
figures, the diagnostics are correct for both cases; i.e.,
only the simulated fault was placed at the top with
probability equal to 1 almost instantaneously. A similar
behavior was observed for all the tested cases. In gen-
eral, the faults more serious and abrupt (they have
large magnitudes and short development periods), are
more quickly identified by de classifier. That is a con-
venient feature.

If the magnitude decreases and the development
period increases, classifier efficacy decreases. In fact, for
faults simulated with 50% of magnitude and 50% of
development period, the classifier efficiency degrades
to 70% (rejecting probabilities below 0.5). That is not
due to an intrinsic limitation of the Naive Bayes classi-
fier; rather, that occurs because, for those magnitude
and development period values, the faults are not
strong enough to originate the number of symptoms
needed to identify them. For example, Table 5 shows the
symptoms detected when the fault #CH Output Low
(output of controller CH is lower than normal) with

Table 3
Qualitative deviations for fault #CH Set Point High

t (min) T0s AT0

0 0 0
4.24 0 1
9.09 1 1

Table 4
Qualitative deviations for fault #CH Set Point Low

t (min) T0s AT0

0 0 0
4.24 0 �1
9.09 �1 �1

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
t (min)
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CH Output High

CR Input Low

Vapor Low

Fig. 3. Diagnostic for fault #CH Set Point High.

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
t (min)

Pr
ob

ab
ili

ty

CH Set Point Low

CR Input High

Vapor High

VH High

Fig. 4. Diagnostic for fault #CH Set Point Low.
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50% of magnitude and 50% of development, and Fig. 5
shows the corresponding classifier output. In this case,
the classifier receives only one symptom, which is not
enough to identify the simulated fault. The same pro-
blem was reported by Tarifa and Scenna [9]; they
employed an expert system as classifier, which also
failed to identify the aforementioned fault. However,
in Fig. 5, the faults reported with high probabilities are
located in the plant sector corresponding to the simu-
lated one, which is a convenient result because at least
the right plant sector was identified.

The analyzed MSF desalination plant was also stu-
died by previous works. As was mentioned above,
Tarifa and Scenna [9] employed an expert system. The
expert system rules were obtained automatically from
a SDG (Signed Directed Graph) by using qualitative
simulation. The rules were evaluated by using fuzzy
logic. The selected sensors were the same. The detector
block was the same one used in this work, and the
‘‘first change’’ approach was also used. The perfor-
mance of that diagnostic system was comparable to the
performance of the diagnostic system proposed in this
work for the particular analyzed plant. However, in
favor of the first diagnostic system are its capability
to generate natural explanation for the obtained
results, and its potential to obtain better resolution (dis-
crimination) of faults. In favor of the diagnostic system
proposed in this work are its simplicity and its capacity
to give faster results. Those differences are due to the
nature of the model used in each work. In fact, the SDG

takes into account the sequence of the symptoms,
whereas the Naive Bayes classifier does not. The
complementary characteristics of both diagnostic sys-
tems suggest the convenience of combining both.

Other work studied the same MSF desalination plant
by using ANNs (Artificial Neural Networks) [10]. The
selected sensors were the same. The detector block pro-
duces quantitative deviations instead of qualitative
ones, and the ‘‘first change’’ approach was not used.
The performance of that diagnostic system was better
than the performance of the diagnostic system pro-
posed in this work for the particular analyzed plant.
However, in favor of the diagnostic system proposed
in this work are still its simplicity and its capacity to give
faster results. Those differences are due to the nature of
the model used in each work. In fact, the ANNs take into
account both the sequence and magnitude of the symp-
toms, whereas the Naive Bayes classifier does not. The
complementary characteristics of both diagnostic sys-
tems suggest the convenience of combining both.

5. Conclusions

A diagnostic system for a MSF plant was presented.
The variables to be analyzed were selected to enable an
early fault detection and discrimination. Those vari-
ables were transformed in qualitative deviations by a
detector block. The qualitative deviations were entered
into a Naive Bayes classifier. The system performance
was evaluated by using a dynamic simulator. The
obtained results agree with previous works in the sense
that a Naive Bayes classifier has high efficacy in spite of
its simplicity. Moreover, the wrong diagnostics
observed during the evaluation were caused by lack
of information, not by an intrinsic limitation of the clas-
sifier. Considering that, further research is needed to
generate additional information from plant data.

The proposed diagnostic system was compared
with two alternatives systems. That comparison
showed the convenience of combining the studied sys-
tems due to their complementary characteristics.
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List of symbols

dX vector of qualitative or quantitative standar-
dized deviations of process variables.

~t sampling period.
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Fig. 5. Diagnostic for fault #CH Output Low.

Table 5
Qualitative deviations for fault #CH Output Low

t (min) T0s AT0

0 0 0
9.70 0 �1
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~Xn vector of normal half bands of process
variables.

j subscript that represents a process variable.
k subscript that represents a sampling period.
p vector of fault probabilities.
t sampling time.
t0 detecting time, at which the first symptom is

observed.
X vector of quantitative values of process

variables.
Xn vector or array of normal values of process

variables.
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