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It is commonly claimed in the recent literature that certain solutions to wave equations
of positive energy of Dirac-type with internal variables are characterized by a non-
thermal spectrum. As part of that statement, it was said that the transformations and
symmetries involved in equations of such type corresponded to a particular representa-
tion of the Lorentz group. In this paper, we give the general solution to this problem
emphasizing the interplay between the group structure, the corresponding algebra and
the physical spectrum. This analysis is completed with a strong discussion and prov-
ing that: (i) the physical states are represented by coherent states; (ii) the solutions
in [Yu. P. Stepanovsky, Nucl. Phys. B (Proc. Suppl.) 102 (2001) 407–411; 103 (2001)
407–411] are not general, (iii) the symmetries of the considered physical system in [Yu.
P. Stepanovsky, Nucl. Phys. B (Proc. Suppl.) 102 (2001) 407–411; 103 (2001) 407–411]
(equations and geometry) do not correspond to the Lorentz group but to the fourth
covering: the Metaplectic group Mp(n).

Keywords: Group theory; relativistic wave equations; geometry and topology; coherent
states.

1. Introduction and Results

For the last 50 years, there has been an increased interest with respect to two
fundamental points of theoretical physics: the new representations of algebras with
variables of the harmonic oscillator and the study of relativistic wave equations.
These two points were developed placing great attention on the condition of positive
energy and the role of the spin in these representations. The main motives were
the theoretical problems of optics, the positive energy spectrum of physical states
and the close relation between the spin and the generalized statistics. Despite the
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recent interest and the continuous efforts into the study on compact groups and
their relationship to physics, there was no major progress on the issue.

For example, in a recent reference it was claimed that certain solutions to wave
equations of positive energy of the Dirac type with internal variables have as the
main characteristic a non-thermal spectrum. As part of that statement, it was said
that the transformations and symmetries involved in a such an equation would
correspond to a particular representation of the Lorentz group.

In this work, we will demonstrate that both claims and the same state solutions
in [1, 2] are unfortunately not fully correct. Calculating the solutions of the physical
system of [1, 2], we show that:

(i) the solutions are coherent states, as described before (e.g. [3, 6–15]);
(ii) we show that the transformations and symmetries involved into the rel-

ativistic wave equation of [1, 2] do not belong to the group of Lorentz but to
the double cover of the groups Sp(2) and SU(1, 1): the Metaplectic group Mp(2)
[3, 12, 13] and;

(iii) that these solutions have, in general, a thermal spectrum going under certain
conditions, to the non-classical behavior (squeezed) [1, 2, 6–11].

Regarding the theoretical basis of the problem, we start as follows:
Let such a spinor such that it can be described schematically by the chain:

Aα :∈Mp(2) ⊃ Sp(2R) ∼ SU(1, 1) ⊃ SO(1, 2) ≈ L(3) (1)

(take note of the above structure that will be important into the analysis that
follows) that is defined as:

Aα =

(
a

a+

)
β

⇒ [Aα, Aβ ] = εαβ, (2)

where a and a+ are standard annihilation and creation operators, respectively. As
we will see soon, there exists a close relation with the squeezed vacuum structure.
The equation to solve has the typical structure of the positive energy equation with
internal variables, as proposed by Majorana [5] and Dirac [6–11], and is explicitly
written as

(σi∂i −m)β
αAβ |ψ〉 = 0. (3)

In [1, 2], similar to the case of the Dirac positive energy equation, a wave solution
was proposed as:

|ψ〉 = eip·x|u〉. (4)

The first wrong fact in [1, 2] is to assume a priori that momentum p and x in the
exponent of the proposed wave equation (4) commute with the annihilation and
creation operators a and a+. Consequently, in our analysis we will consider the
phase space coordinates p and x in the exponent of the proposed wave equations
as constants or as if the annihilation and creation operators a and a+ act in an
internal or auxiliary space.
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Only under these conditions, we can insert (4) in (3) obtaining:

(ipiσi −m)β
α

(
a

a+

)
β

|u〉 = 0, (5)

(
ip3 −m ip1 − p2

ip1 + p2 −ip3 −m

)(
a

a+

)
β

|u〉 = 0. (6)

At this point, the second wrong fact in [1, 2] is evident: the author remains with
only one component of the spinor solution. In fact, if we impose the same conditions
as in [1, 2] namely pi = (0, p, iε), we have(

ε+m p

−p m− ε

)(
a

a+

)
β

|u〉 = 0, (7)

(
(ε+m)a+ pa+

−pa+ (m− ε)a+

)
β

|u〉 = 0. (8)

Note that there are two different and simultaneous conditions that |u〉 must satisfy.
If we put now p = 0 as in [1, 2], then(

(ε+m)a
(m− ε)a+

)
β

|u0〉 = 0. (9)

Here we clearly see that |u0〉 cannot be the Fock vacuum |0〉 as stated in [1, 2] (it
can only be if m = ε). Through the next sections, we will find the true vacuum,
the spectrum and the solution of the problem.

2. Relation with the Squeezed Vacuum

Looking at expressions (7), (8), it is not difficult to see that these can be obtained
from a similar form as the squeezed vacuum. The squeezed vacuum is generated by
the Mp(2) transformation U = S(ξ)

Aα → S(ξ)

(
a

a+

)
α

S† (ξ) =

(
λa+ µa+

λ∗a+ + µ∗a

)
α

, (10)

where λ(ξ) and µ(ξ) satisfy |λ|2 + |µ|2 = 1, e.g. SU(1, 1) elements.
We must note that the right-hand side of Eq. (10) is governed by the operators

S(ξ) ∈ Mp(2) being the right side affected by a matrix representation of SU(1, 1)
as follows

S(ξ)

(
a

a+

)
α

S†(ξ) =

(
λ µ

µ∗ λ∗

)(
a

a+

)
α

. (11)

Clearly, the above equivalence is only local (infinitesimal) since at the level
of the group structure (see the chain (1)) there is a homomorphism relationship.
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The homomorphisms between Mp(2) and SU(1, 1) (or Sp(2R)), which are two
to one and four to one in the case of SO(1, 2), can be expressed in α (polar)-
parameterization [12, 13] in the usual way:

S(α⊥, α3) ∈ Mp(2) → s(α⊥, [α3]4π) ∈ Sp(2R) (12)

→ s(α⊥, [α3]4π) ∈ SU(1, 1) (13)

[α3]4π ∈ (−2π, 2π] → [α3]4π mod 4π, α⊥ ∈ R
2, α3 ∈ (−4π, 4π]

for the SU(1, 1)(or Sp(2R)) case (14)

→ [α3]8π mod 8π, α⊥ ∈ R
2, α3 ∈ (−8π, 8π] (15)

for the SO(1, 2) case.

Consequently, it is clear that the “two to one” and the “two to four” nature are
involved in the reduction of the range of the parameter α3. This is the main reason
why, for the physical scenarios of current interest, the above parameterization is
better than the Iwasawa (KAN) one.

The most general expression for an element of the Metaplectic group can be
computed, with the following result:

eA(aa++a+a)+Ba+2+Ca2
= e−A/2 exp

(
Ba+2

∆ coth ∆ −A

)

× exp
[
H ln

(
∆ sech∆

∆ −A tanh ∆

)]
exp
(

Ca2

∆ coth ∆ −A

)
,

∆ ≡
√
A2 − 4BC, H ≡

(
aa+ + a+a

2

)
, N̂ ≡ a+a, (16)

where the Baker–Haussdorf–Campbell formula was used. A,B,C are arbitrary in
principle only linked by expression (16) (all group theoretical properties of the non-
compact groups involved, were assumed there). Therefore, with the parameters as
given by expressions (7)–(9), S(ξ) takes a concrete form as follows

S(ξ) = exp
(

p

m+ ε
a+2

)(
1√

m2 − ε2

)1/2

×
{ ∞∑

n=0

1
n!

[
ln
(

1√
m2 − ε2

)
N̂

]n
}

exp
(
− p

m− ε
a2

)
,

thus, the unitary (squeezed) operator acting on the true vacuum (fiducial vector)
defines the following general state

|ξ〉 ≡ S(ξ)|z0〉. (17)
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3. The Solution

We arrive at the construction of coherent states on a general vacuum: A|0〉 +B|1〉
with A and B depending on initial and boundary conditions. If |z0〉 ≡ A|0〉+B|1〉,
then

|ξ〉 ≡ S(ξ)|z0〉 =
exp(αa+2)

(m2 − ε2)1/4

[
A|0〉 +

B

(m2 − ε2)1/2
|1〉
]

(18)

= (m2 − ε2)−1/4
∞∑

n=0

αn

n!
(a+2)n

[
A+

B

(m2 − ε2)1/2
a

]
|0〉, (19)

with α ≡ p/2
m+ ε

. (20)

Note that a2 annihilates |z0〉 but a does not. After standard normalization,
the constants in the “thermal” (photon) case reach the critical point. When
the quantum state solution is simultaneously eigenstate of a and a2, they take
the particular fashion

A = (|m2 − ε2| + p2sign(ε2 −m2))1/4, (21)

B = (|m2 − ε2| + p2sign(ε2 −m2))3/4 = A3. (22)

We have a standard coherent state (eigenstate of the operator a ) as a linear combi-
nation of two states belonging to H1/4 and H3/4, respectively (that are independent
coherent states as eigenvalues of a2). In this particular case, we have

|z0〉th = A(1 +A2a+)|0〉. (23)

Note that this vacuum is not singular at m → ε but is analytically continued into
the complex plane where it is defined:

|ξ〉th ≡ S(ξ)|z0〉th =
(

1 +
p2sign(ε2 −m2)

|m2 − ε2|
)1/4

× e
p/2

m+ε a+2

[
1 +

(
1 +

p2sign(ε2 −m2)
|m2 − ε2|

)1/2

a+

]
|0〉. (24)

4. Bargmann Representation: Analytical Versus Geometrical
Viewpoint

4.1. The Bargmann representation

We have so far worked mainly with the photon-number description of the Hilbert
space H and the operators a, a+. In this section we analyze the misunderstanding
pointed out previously, introducing the Bargmann representation.
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The Bargmann representation of H associates an entire analytic function f(z)
of a complex variable z, with each vector |ϕ〉 ∈ H in the following manner:

|ϕ〉 ∈ H →f(z) =
∞∑

n=0

〈n |ϕ〉 z
n

√
n!
, (25)

〈ϕ |ϕ〉 ≡ ‖ϕ‖2 =
∞∑

n=0

|〈n |ϕ〉|2 (26)

=
∫
d2z

π
e−|z|2 |f(z)|2, (27)

where the integration is over the entire complex plane. The above association can
be compactly written in terms of the normalized coherent states of the Barut–
Girardello type, namely, (right) eigenstates of the annihilation operator a:

a|z〉 = z|z〉, (28)

|z〉 = e−|z|2/2
∞∑

n=0

zn

√
n!
|n〉, (29)

〈z′ | z〉 = e(−|z|2/2−|z′|2/2+z′∗z) (30)

then, we have

f(z) = e−|z|2/2〈z∗|ϕ〉. (31)

However, f(z) must be as |z| → ∞ so that ‖ϕ‖ is finite. In this particular represen-
tation, the actions of a and a+, and the functions representing |n〉 are as follows:

(a+f)(z) = zf(z), (32)

(af)(z) =
df(z)
dz

, (33)

|n〉 → zn

√
n!
. (34)

4.2. Mp(2) generalized coherent states in the Bargmann

representation

Having introduced the necessary ingredients, we can now describe the physical
states of the system under consideration.

(i) The H1/4 states occupy the sector even of the full Hilbert space H and we
may describe them as follows

f (+)(z, ω) = (1 − |ω|2)1/4eωz2/2 (35)

= (1 − |ω|2)1/4
∑

m=0,1,2,...

(ω/2)m

m!
z2m (36)
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then, in the vector representation we have:

|Ψ(+)(ω)〉 = (1 − |ω|2)1/4
∑

m=0,1,2,...

(ω/2)m

m!

√
2m!|2m〉 (37)

consequently, the number representation is obtained as:

〈2m |Ψ(+)(ω)〉 = (1 − |ω|2)1/4 (ω/2)m

m!

√
2m! (38)

〈2m+ 1 |Ψ(+)(ω)〉 ≡ 0. (39)

(ii) The H3/4 states occupy the odd sector of the full Hilbert space H and we
may describe them as before:

f (−)(z, ω) = (1 − |ω|2)3/4zeωz2/2

= (1 − |ω|2)3/4
∑

m=0,1,2,...

(ω/2)m

m!
z2m+1 (40)

then, in vector representation we have:

|Ψ(−)(ω)〉 = (1 − |ω|2)3/4
∑

m=0,1,2,...

(ω/2)m

m!

√
(2m+ 1)!|2m+ 1〉. (41)

The number representation is consequently:

〈2m+ 1 |Ψ(−)(ω)〉 = (1 − |ω|2)3/4 (ω/2)m

m!

√
(2m+ 1)!, (42)

〈2m |Ψ(−)(ω)〉 ≡ 0. (43)

(iii) The full Hilbert space, defined by the direct sum H = H1/4 ⊕ H3/4, is
trivially described as follows

f(z, ω) = f (+)(z, ω) + f (−)(z, ω) (44)

= (1 − |ω|2)1/4
∑

m=0,1,2,...

(ω/2)m

m!
z2m[1 + (1 − |ω|2)1/2z]. (45)

Then, in complete analogy as their even and odd subspaces, the corresponding
states are described by:

Ψ(ω) = Ψ(+)(ω) + Ψ(−)(ω) (46)

= (1 − |ω|2)1/4
∑

m=0,1,2,...

(ω/2)m

m!

√
2m![1 + (1 − |ω|2)1/2a+]|2m〉, (47)

〈m |Ψ(ω)〉


(1 − |ω|2)1/4 (ω/2)m

m!

√
2m!, m even,

(1 − |ω|2)3/4 (ω/2)m

m!

√
(2m+ 1)!, m odd,

(48)
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where the link between the physical observables and the group parameters is given
by the following expression (measure):(

1 +
p2sign(ε2 −m2)

|m2 − ε2|
)1/4

→ (1 − |ω|2)1/4. (49)

5. The Limit ε → m

This is precisely the limit |ω|2 → 1 from the point of view of the Metaplectic
analysis that corresponds to the edge of the complex disc. As we could see easily,
the state solutions are generally thermalized (full spectrum corresponding to H).
What happens is that in the limit ε → m the density of states corresponding to
H1/4 is greater than that of the odd states belonging to H3/4. It is for this reason
that states belonging to H1/4 will survive in this limit. As we will see in a separate
publication, there is a particular case of the two-dimensional electron transport
with a magnetic field in the plane whose states belong to metaplectic group.

6. Complete Equivalence Between Sannikov’s Representation
and Metaplectic One

The main characteristics of the particular representation introduced in [3] is the
following commutation relation that defines the generators Li:

[Li, a
α] =

1
2
aβ(σi) α

β . (50)

The above representation which corresponds to a non-compact Lie algebra with the
following matrix form [6–11, 13] is:

σi = i

(
0 1
1 0

)
, (51)

σj =

(
0 1

−1 0

)
, (52)

σk =

(
1 0
0 −1

)
, (53)

that fulfills evidently:

σi ∧ σj = −iσk, (54)

σk ∧ σi = iσj , (55)

σj ∧ σk = iσi. (56)

The equivalence that we want to remark is manifested by the following:

Proposition 1. The generators in the representation of [3] fulfill:

Li =
1
2
aβ(σi) α

β aα = Ti, (57)
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where Ti are the Metaplectic generators namely [12, 13]:

T1 =
i

4
(a+2 − a2), (58)

T2 =
−1
4

(a+2 + a2), (59)

T3 =
−1
4

(aa+ + a+a). (60)

Proof. Explicitly in matrix form we can write the generators proposed in [3] (and
for instance in [1, 2]) as

Li = uMiv, (61)

u ≡ (a+a), (62)

v ≡
(
a

a+

)
. (63)

In the representation (50), that is faithful, and taking into account that σk enter
as “metric” in the sense given by Sannikov [3], we have

M1 =
i

4

(
0 1

−1 0

)
=

1
4
σkσi, (64)

M2 = −1
4

(
0 1
1 0

)
= −1

4
σkσj , (65)

M3 = −1
4

(
1 0
0 1

)
= −1

4
σ2

k, (66)

consequently and by inspection (50) coincides with (61): thus, the equivalence (57)
is proved.

7. Concluding Remarks

In this paper, we have studied from the physical and group-theoretical points of
view, the close relation between the Metaplectic group, the Lorentz group and its
covering the SL(2, C) ones. The main emphasis was to clarify the existent con-
fusion between the representations of the considered non-compact groups. To this
end, using a typical example, a recently posed problem in [1, 2], we solved exactly
the corresponding equations to the physical scenario given in [1, 2], highlighting
consequently the common errors and misunderstandings that appear to confuse
representations: namely, the Metaplectic one with the other non-compact (Lorentz
and Special Linear) ones. The analysis was made easier using the group generators
written with the Harmonic oscillator variables, arriving at the following conclusions
and results:
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(i) the solutions are coherent states, coinciding with previous theoretical descrip-
tions (e.g. [13–15]);

(ii) the transformations and symmetries involved in the equation of [1, 2] do not
belong to the group of Lorentz but to the double cover of Sp(2) and SU(1, 1): the
Metaplectic group Mp(2) [3, 6–11, 13]; and

(iii) that these solutions are generally thermal going under certain conditions to
the non-classical condition (squeezed), as was verified before [6–11].
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