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a b s t r a c t

We have found, by varying two parameters, several stationary trajectories in a system
consisting in many elastically coupled particles that are placed in a periodic ratchet
potential on a ring. The system is assumed to be over-damped and driven by an external
potential that is periodic both in space and time. The transport properties of these orbits
are quite different and their values are quantified. The symmetries allow us to study the
orbits with and without the presence of thermal fluctuations and there is found current
inversions due to the addition of white Gaussian noise.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that a ratchet system is a set of particles (interacting or not) far from the equilibrium and due to their
spatial-temporal symmetries may present a directional current even when the acting forces have zero mean value. They
may be classified as deterministic [1], stochastic [2] (Brownian), and inertial [3] (under damped [4] or over damped). From
early works, this kind of system [5,6] (for comprehensive reviews see refs in [7] and [8]) have been the object of interest in
many fields [9], since it provides not only the understanding of the transport phenomena in biological systems [10–12] but
has quite an importance in the design and construction of artificial devices (classical or quantum, [13] and the references
therein).

One of the properties in these systems is the inversion of the current with the variation of some system parameters
that modify the dynamical symmetry of the potential and therefore the current direction [14–18]. On the other hand,
the addition of noise in moderate quantities in a deterministic system contributes to the order of the system rather than
the disorder as was shown in stochastic resonators or in Brownian ratchets. These are deterministic systems with no
net transport of particles but for an optimal level of noise a directional current arises. It is worthwhile to mention that
under appropriate conditions (i.e. multi-stability) the inclusion of noise leads to diminishing the Lyapunov exponent of a
deterministic ratchet [3] or can enhance the stability of metastable orbits [19].

Hence, a new question arises regarding if it is possible to reverse the current by the simple addition of noise in a
deterministic ratchet. Recently some work in that direction was performed, using colored noise or cross-correlated noise
sources [20–22].

In the present work we studied the dynamics in a deterministic coupled ratchet (the same as in [23]) but with more
particles. The system is inspired in the Frenkel–Kontorowa model (FKM) [24]. More precisely it is an underdamped, driven
FKM. This kind of models were extensively used to describe many physical phenomena and systems such as dislocation
and other lattice defects (crownions, self-interstitials or vacancies) dynamics, magnetic chains, Josephson junction arrays,
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nonlinear DNA dynamics, interfacial slip andmicroscopic models of friction (nanotribology) [25]. The main characteristic of
this system is the huge number of stationary orbits present as the parameters change. These orbits may be quite different
among them, in particular the flow can change their direction and it is quantified. Each stationary orbit defines different
regions in the parameter space separated by well-defined curves (separatrices). Since the deterministic dynamic is robust
under the presence of a moderate quantity of non-correlated noise, this can induce transitions among the different types of
stationary orbits. That means that, while the stationary orbits of the system is deterministic for a given set of parameters
(and thereforewith a certain current directional), the inclusion of uncorrelatedwhite noise can change ormix the stationary
orbits corresponding to another region of parameter space.

This paper is organized as follows. In Section 2 a description of themodel is shown. Section 3 is devoted to the description
and discussion of the stationary orbits in parameter space for the deterministic system. Section 4 shows the behavior when
the uncorrelated Gaussian noise is added and in Section 5 a summary and conclusions are drawn.

2. The model

The system under study consists in N interacting particles placed in a one-dimensional ring of length L subject to a
periodic potential Vα(x) and driven by an external force in the over-damped regime.

The time evolution of the i-th particle is given by the equation:

ẋi(t) +
∂Vα(xi)

∂xi
+

∂V osc(xi−1, xi, xi+1)

∂xi
= Fdr(xi, t) +


2kBTξi(t). (1)

In Eq. (1), xi(t) represents the coordinate of the i−th particle, i = 1, 2, . . . ,N with the conventions xN+1 = x1 and x0 = xN .
These are measured in the counterclockwise direction along a ring of length L, therefore fulfills the periodicity condition
xi + L = xi. Vα(x) is a one-dimensional, asymmetric periodic potential given by
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The potential fulfills the periodicity condition Vα(x + d, t) = Vα(x, t) and therefore the total length of the circle is L = nd
where n is the number of minima and d is the linear distance between consecutive minima of the ratchet. α (α > 0)
controls the left–right asymmetry. Solutions for α > 1, in which the minima of the wells of the ratchet are displaced in the
counterclockwise direction, are equal to the time reversed solutions with α < 1 in which the minima are displaced in the
opposite (clockwise) direction.

The coupling potential is V osc(xi−1, xi, xi+1) =
1
2k[(xi−1 − xi)2 + (xi − xi+1)

2
]. In addition these are driven by an external

periodic driving force Fdr(xi, t) given by the gradient of a time-dependent potential with a spatial periodicity that is twice
the one of Vα

Fdr(xi, t) = −ε
∂V dr(xi, t)

∂xi
= −ε sin(ωt)

∂ sin(πxi/d)
∂xi

. (3)

With this choice, consecutive wells alternate in time as absolute minima and are driven in opposite phases. Consequently
the number of minima of the ratchet is restricted to be even.

The last term in Eq. (1) represents independent Gaussian white noise sources fulfilling ⟨ξi(t)ξi(t ′)⟩ = δ(t − t ′). The factor√
2kBT (where kB is the Boltzmann constant) insures that the last term in the equation corresponds to a thermal bath of

temperature T .
Time is measured in units of the period τ = 2π/ω of the external driving and ε is the coupling strength of the external

driving. All the calculations that we report were made for d = 1, Vo = 5, α = 1/3 and ω = 0.2. The space spanned by the
other parameters (mainly k, ε and the temperature T ) is explored in order to have a general picture of the dynamics of the
system.

Since as was discussed in a previous paper [23], hereafter called CM, four constants in the model have the dimensions of
an energy, therefore it is possible to construct with them three dimensionless quantities. We define Πk = k(nd/N)2/2Vo;
Πε = ε/2Vo and ΠT = kBT/2Vo where N is the number of particles of the system and n is the (even) number of minima of
the circular ratchet. Πk is a measure of the average potential elastic energy per particle in units of the depth of the periodic
potential. The parameter Πε compares the energy provided by the external driving with the depth of the ratchet potential
2Vo. The last parameter ΠT compares the energy delivered by the thermal bath also with the depth of the ratchet potential.

3. The stationary trajectories

The Langevin equations given by Eq. (1) were integrated by reducing the derivatives to first order finite differences. The
numerical integration times change between t = 0 and 100 in units of τ = 2π/ω. The collisions (elastic) between particles
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Fig. 1. (a) Phase diagram of the dynamics in the plane Πε vs. Πk for ΠT = 0 in the case of 20 particles and 4 wells. The numbers on each region indicate
the mean (temporal) velocity v̄.

are allowed and the particles are assumed to be identical. The dynamics of the deterministic coupled ratchet model have
been widely discussed in CM where we have defined for a non-vanishing value of k, the static solution requires that each
well should be occupied by the same number of particles ns = ρ = N/n, ∀s, s = 1, 2, . . . labeling theminima of the ratchet.
The external driving causes that consecutive wells alternate in time as absolute minima. Its periodicity forces the dynamics
to be invariant under rotations of 2π/(n/2) (or equivalently under translations of 2d). Thus, the total number of particles in
every pair of wells is 2ρ, and it is a constant of motion.

As long as thermal fluctuations are small and the external driving force is weak enough, orbits are bound, i.e. particles
oscillate around their equilibriumpositionswithout leaving thewell inwhich they are placed. As increasingΠε may give rise
to transport solutions. In this case the transport of particles is a highly ordered, collective motion in which the net current
scales as the density of particles of the system, that is j = ρv̄ where v̄ is the mean (temporal) velocity of the particles in the
stationary orbit and due to be an integer multiple of 1/ρ. Therefore the current is quantified as j = m,m = 0, ±1, ±2 · · ·.
It is worthwhile to recall that the different values of the current correspond to the flow produced by jumps of clusters with
different numbers of particles per period of the driving force in counterclockwise (+) or clockwise (−) directions.

In Fig. 1 a phase diagram in the plane (Πk − Πε) for ρ = 5 without noise is displayed. The corresponding phase diagram
for ρ = 2was shown in Fig. 1 of CM. It is worth noting the huge complexity in the present case. The regions are labeled with
the values of v̄ of the corresponding stationary orbit. The separatrices have an intricate behavior, therefore for the sake of
clarity we have amplified two areas (they are shown in Figs. 2 and 3). We also perform two blow ups of Fig. 2 depicted in
Fig. 4 (a) and (b).

Starting of Πk = 0 the separatrices are born of a common point. One of them (which separates the region v̄ = −2, j =

−10 from the region v̄ = −1.6, j = −8) is increasing and at Πk ∼ 0.05 breaks being almost vertical. The other separatrices
are decreasing as almost a paralel beam separating regions of v̄ = 0, j = 0; v̄ = −0.2, j = −1; v̄ = −0.4, j = −2; v̄ =

−0.6, j = −3; v̄ = −0.8, j = −4; v̄ = −1, j = −5; v̄ = −1.2, j = 6; v̄ = −1.4, j = −7; v̄ = −1.6, j = −8
(see Fig. 3). Some regions disappear (because some lines stick together) and at a determined point the lines also break and
become almost vertical. Near to Πk = 0.15 regions with v̄ > 0, j > 0 appear upwards and downwards (see Fig. 2). Except
in the vicinity to Πk = 0.15 (see Fig. 1), the regions with v̄ < 0 and the region with v̄ > 0 are quite separate by a region in
which there is no current (v̄ = 0, j = 0).

By control of the parameters Πk and Πε it is possible to vary the current. For example, maintaining Πk = 0.05 and
varying Πε from 1.9 to 1.96, the current takes different values (0,-1,-2,-3,-4,-5,-6,-7,-8). Or by keeping constant Πk = 0.19
and varying Πε from 0.7 to 1.1 we will obtain reverse currents (0,1,2,3,4,5,6,8). Taking Πε = 2 and varying Πk from 0.152
to 0.158, we will be able to vary the current of -2 to 2, etc.

4. The effect of noise

By inspection of Figs. 2 and 4, it is feasible to expect, for certain values of the parameters Πk and Πε , that the addition of
an adequate amount of noise in the deterministic system generates different transport properties than those. This assertion
is confirmed by Fig. 5 where we show the average ⟨v̄⟩ over 20 realizations of noise and initial conditions as a function of
the noise intensity ΠT . Panels (a), (b) and (c) correspond to deterministic orbits with v̄ = 0.2, j = 1; v̄ = 0.6, j = 3 and
v̄ = 1, j = 5. In all the cases, an inversion of current is clearly obtained by the addition of noise.
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Fig. 2. Blow up of the phase diagram of the dynamics in the plane Πε vs. Πk corresponding to the dashed frame shown in Fig. 1.

Fig. 3. Blow up of the phase diagram of the dynamics in the plane Πε vs. Πk corresponding to the dotted frame shown in Fig. 1.

In these cases, the current inversion is produced by the mix of stationary trajectories of different regions. Fig. 6 is an
example of these facts. Panel (a), (b), (c) and (d) show the position of one particle (the particle labeled as 11) on the ring
as a function of time t/τ corresponding to four different deterministic stationary trajectories,v̄ = 1, j = 5; v̄ = 0.4, j =

2; v̄ = 0, j = 0; v̄ = −0.4, j = 2 respectively. Although there are 20 particles, they are all equivalent and it is sufficient
to study the trajectory of one of them. The parameters Πk and Πε are very close for the four trajectories displayed.

The addition of noise in the orbit of Fig. 6 (a) leads to the velocity of Fig. 5 (c). When the intensity of the noise is
indicated by the arrow (labeled (e) in Fig. 5 (c)), trajectories are typified by those shown in Fig. 6 (e): it is a mix of the
deterministic trajectories (b) and (c). The noise of the arrow (f) corresponds to the trajectory of Fig. 6 (f): it is very similar
to the deterministic orbit (c). The typical orbit when the noise is indicated by the arrow (g) is displayed in Fig. 6 (g): a mix
of the deterministic orbits (c) and (d). When the noise is sufficiently intense (arrow h), so the motion becomes Brownian
(Fig. 6 (h)). Similarly one can see that typical orbits displayed in noisy systems that give rise to the curves of Fig. 5 (a) and
(b) are different mixtures (as noise intensity increases) from those that appear in the regions shown in Fig. 4.

5. Summary and conclusions

We have studied the dynamics of a deterministic ratchet system consisting of many interacting particles in the damped
regime. By varying the system parameters a bunch of stationary orbits appear with different currents, not only inmagnitude
but also in direction. This allows us to control the current by varying the parametersmentioned above. Sowe have found the
boundaries (separatrices) among different regions in the parameter space, in which every one of these orbits laid. Moreover,
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a

b

Fig. 4. (a) Blow up of the phase diagram of the dynamics in the plane Πε vs. Πk corresponding to the dotted frame shown in Fig. 2. (b) Blow up of the
Phase diagram of the dynamics in the plane Πε vs. Πk corresponding to the dashed frame shown in Fig. 2.

a

b

c

Fig. 5. Average mean velocity ⟨v̄⟩ vs. noise intensity ΠT . The parameters are (a) Πk = 0.15, Πε = 1.425; (b) Πk = 0.155 and Πε = 1.430 and (c)
Πk = 0.158 and Πε = 1.422, the arrows (labeled by e, f, g and h) indicate the values of noise corresponding to the (typical) orbits displayed in Fig. 6 e, f, g
and h respectively (see the text).

currents are quantified since their magnitude is associated with jumps of clusters with different numbers of particles
between adjacent minima of the potential ratchet. Thus, the disposition of the separatrices in some places of parameter
space implies that continuous variation of the parameters leads to a discrete change in the current.

In addition we have included uncorrelated white noise in the system to verify the robustness of the deterministic
dynamics.We have recognized, in the noisy trajectories, structures that are related to deterministic trajectories for different
regionsmentioned above. Before reaching the Brownian regime the noise produces amix of different trajectories. Especially
when the deterministic systemparameters towhich is added the noise are close to another region inwhich the deterministic
stationary orbit has opposite current, a current inversion assisted by noise can occur.
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Fig. 6. Position on the ring of particle 11, X11 as a function of time t/τ . Deterministic trajectories,Πk = 0.158: (a)Πε = 1.422 and v̄ = 1; (b)Πk = 0.158,
Πε = 1.4448 and v̄ = 0.4; (c) Πk = 0.158, Πε = 1.5 and v̄ = 0; (d) Πk = 0.158, Πε = 1.6 and v̄ = −0.4. For Πk = 0.158 and Πε = 1.422. Noisy
trajectories: (e) ΠT = 0.01032; (f) ΠT = 0.0725; (g) ΠT = 0.1386; (h) ΠT = 0.4.

The existence of the regions in the space of parameters with different stationary orbits and separatrices between them
does not depend on the type of interaction between the particles. However, rings with another kind of interaction (for
example (xi −xj)α, α > 0) or the inclusion of second ormore neighbor interactions will have another distribution of regions
and separatrices. This fact might be used for designing the separatrices’ layout, thus the characteristic of the controlled
current by the parameters.

Up to now,we haveworkedwith integer densities ρ = ns, that is an integer number ns of particles per site (or aminimum
of the ratchet potential). These configurations are equivalent to a perfect lattice and the transport effects are collective
and extended phenomena. However, for non-integer densities the system will have some disorder. This type of disorder is
quite different to that described in ref. [26] where this is introduced in the ratchet potential. For instance, in systems with
ρ = ns ± (k/n), k < n/2 (n is the number of sites), they will have k self-interstitials or vacancies. In such systems we expect
a non-collective and localized transport regime associated with the migration of the defects.
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