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a b s t r a c t

Used lubricants assessment could be suitable to reveal wear mechanisms undergoing in a machine. In
the proposed work an effective, reliable and cost-efficient technique combining inductively coupled
plasma optical emission spectrometry (ICP-OES) and chemometrics was developed to perform wear
analysis for industrial application. Thus, multielemental determination of a large amount of used
lubricants from diesel heavy machines (truck, bulldozer, loaders and backhoe) was carried out by
ICP-OES. Multivariate analysis was done by the non supervised method principal component analysis
(PCA) and supervised method sequential discriminant analysis (SDA). The recognition ability for the
groups was highly satisfactory. For PCA, the main three principal components explained 99.98% of total
variance for samples lubricants. SDA allowed, in training and prediction sets, a correct classification of
97.12% and 95.75% respectively for the lubricant analyzed samples, obtaining three groups classified
according to the use. The outcomes demonstrate that lubricant wear effect could be assessed quickly and
accurately, having great potential to become a very useful tool in the machine monitoring industry.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Under normal operation conditions engine and turbine compo-
nents present continuous wear; the use of lubricant oils could
minimize this fact [1]. Accurate data on the wear characteristics are
relevant to assess the status of the machinery and reliability in
mechanical systems. The quantitative determination of metals in used
lubricant oils is performed to monitor and diagnoses engine wear, in
order to attain preventive maintenance procedures, increasing equip-
ment reliability before the collapse [1,2]. Metals in lubricating oil could
emerge from various sources, such as wear from friction or corrosion
of the engine components, contamination and additives [3–5].

Wear analysis has gained commercial interest and several
analytical methodologies based on atomic spectrometric techni-
ques have been developed to determine elemental composition of
lubricants [1,3,6–11]. Thus, chemical data from lubricant analysis

reveals the presence and amount of metallic wear particles in the
lubricating. Inductively coupled plasma atomic emission spectro-
scopy (ICP-OES) is an efficient technique to simultaneously mea-
sure almost all metals, including refractory metals, and some non-
metals. It has been considered by several workers to determine
trace elements related to the wear in lubricating oils, due to
its excellent conditions for elemental excitation and continuous
sampling capability, which results in a higher productivity in the
analysis of a large amount of samples, making easy the automation
of methods for routine multi-element determinations [1,2,8,9].

Pretreatment in complex organic samples for trace elements
analysis has always been a challenge in analytical chemistry. In
fact, it is one of the most relevant and decisive stages in the whole
analytical procedure for trace elements determination [12,13]. In
the analytical determination of elements in crude oils and their
sub-products by spectroscopic instrumental techniques, it is
necessary to submit samples to a variety of treatment in order to
make them compatible to sample introduction systems and
atomizers. Various methods have been reported for the prepara-
tion of samples prior to instrumental analysis [1,14–16]. Direct
introduction of organic sample solution has been proposed, but
could involve transport interference problems due to physical
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properties, matrix effect, etc. Thus, total destruction of organic
matter is still the most reliable procedure for metal determina-
tions in petroleum and their sub-products [17]. In order to avoid
element losses, as well as to prepare greater number of samples
simultaneously, the use of sulphanilic acid as ashing agent had
been reported as a simple, rapid and precise procedure, because
improves the release of wear metals in used lubricating oils and
the accuracy of the analytical results [14].

The current efforts in tribology research groups focuses on the
development of methods for the classification of wear particles,
with the aim of revise manufacturing processes, machine condi-
tion monitoring and failure analysis in engineering components.
However, the most common techniques are based in surface
topography characterization, which is usually time consuming
and expensive [18–22]. This fact suggests the need to find different
procedures for a rapid and easy evaluation of the oil formulations,
in particular when a large number of oil samples are considered.
Through the years, chemometrics has provided a substantial
support in different fields of chemistry. It could be regarded as
a powerful tool for be implemented as useful in wear metal
classification analysis. Principal component analysis (PCA) have
been recently proposed as a chemometric tool to differentiate the
performance of engine oils evaluating natural and artificial degra-
dation of lubricating oils [23]. In this sense, chemometrics along
with the determination of several elements by ICP-OES could be
used to attempt understanding the phenomenon that occurs
during lubricant wear.

Accordingly, in this work the possibility of using chemometric
techniques to provide early information on wear modes occurring
and the condition of a machine was investigated. The elemental
determination was routinely carried out by ICP-OES in a large
amount of used lubricants in diesel engines of trucks, bulldozer,
loaders and backhoe. Chemometric data analysis was performed
by principal component analysis (PCA) and sequential discrimi-
nant analysis (SDA) to assess the effect of use time related to the
wear, as an equipment maintenance program for diesel heavy
machines engines.

2. Material and methods

2.1. Instrumentation

An inductively coupled plasma atomic emission spectrometer,
Perkin Elmer ICP-OES 7300 DV (Waltham, MA) was used. Instru-
ment conditions were: peak hopping measurement mode, read
delay time of 45 s, 2 s lecture time, 40 s flush time, 1 reading per
replicate and 3 replicates. The argon gas with a minimum purity of
99.996% was supplied by Praxair (Córdoba, Argentina).

2.2. Reagents and samples

Ultrapure water (18.2 MΩ cm) used to prepare all standards
and samples solutions, was obtained by a Millipore Synergy
Ultrapure Water System (Darmstadt, Germany). Concentrated
nitric acid (65%v/v) was purchased from Sigma-Aldrich (Germany),
Hydrochloric acid (37%v/v) and sulphanilic acid (499%) from
Merck (Darmstadt, Germany) and hydrogen peroxide acquired
from Sigma (St. Louis, MO). All glasses and other lab materials
were cleaned by soaking in 10% HNO3, and rinsing with ultrapure
water. Synthetic standard stock solutions (1000 mg l�1) of Ag, Al,
Ba, Ca, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, Pb, Si, Sn, V, Zn were
obtained from Fluka (Switzerland). Calibration standard solutions
were prepared by step-wise dilutions of the stock solution in
ultrapure water and acidified with nitric acid. The selected para-
meters on ICP-OES for the determination of the evaluated metals

were conformed to those recommended by Perkin-Elmer. The
solutions were introduced into the plasma at 1.5 mL min�1 apply-
ing 1300 W RF power and 0.8 L min�1 nebulizer gas flow rate.

The analyzed lubricant engines oil samples were a total of 1018
samples corresponding to: trucks (532 samples), bulldozers (120
samples), loaders (255 samples) and backhoes (111 samples). Oil
samples were collected bimonthly after use (in the lubricant
change) from every machine during two years (among June 2012
to June 2014) in plastic flask, labeled and saved until analysis. All
the analyzed lubricants were normal type and 15W40.

2.3. Analytical procedure

A mixture of 10.0 g used lubricating oil and 1.0 g sulphanilic
acid was heated in a beaker. The coke formed was muffled at
550 1C until the ash was free of carbon particles (approx. 45 min).
The ash was cooled, dissolved with 20 mL HCl (dilution 1:1) and
digested in a boiling water bath.

Fifty random samples of lubricating oil were spiked with the
elements standard solutions to final concentrations of 50 μg L�1 of
each one, to evaluate the recovery due the sample treatment. A
blank solution was always measured and taken into consideration.

The concentrations of the 19 elements (Ag, Al, Ba, Ca, Cr, Cu, Fe,
K, Mg, Mn, Mo, Na, Ni, P, Pb, Si, Sn, V, Zn) were determined by
direct nebulization into ICP-OES. Calibration models for each
element were performed against aqueous standards and were
obtained using five different concentration levels in triplicate. The
regression coefficient (r2) values of such straight ranged from
0.987 to 0.999.

2.4. Data analysis

A matrix with rows representing lubricant samples and col-
umns corresponding to metal concentrations was created for the
chemometric calculations. PCA was used as exploratory technique.
SDA was applied to obtain classification rules. A data pretreatment
was made in order to avoid the differences in measurement units.
Autoscaling is the most widely used scaling technique [24]. All
data were autoscaled for every variable. The Unscrambler version
X v.10.3 software package (Throndheim, Norway) was used for the
statistical analysis.

3. Results and discussion

3.1. Instrument and sample optimization

Sample preparation is a decisive step for the establishment and
application of a spectroanalytical technique. For lubricant oils
analysis, their chemical composition and size of particles in wear
remains could determine the method of choice. Organic solvents
have been used by several authors to dissolve oil samples, as the
same time as ICP-OES has been chosen for trace elements
determination [10,17,25,26]. The main drawback of this sample
preparation is that many times, large solid particles present in
used lubricants are complicated to dissolve, resulting in sensitivity
loss in the nebulization, atomization and detection of wear metals
by ICP-OES. For this reason, direct dissolution of oils with organic
solvents for element determination, it is not proper to be used if
samples contain large amounts particles bigger than 10 μm. The
proposed size limit depends on the instrument used as well as its
properties [25,26]; for that, these issues were tackled in our work
following sample preparation proposed by Ekanem, Udoh, and
coworkers [14,16]. Using sulphanilic acid as an auxiliary reagent,
organic material is burned remaining only in inorganic ashes.
Sulphanilic acid strengthens metals release in the digestion stage
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and increases metals recovery. The optimal wavelengths for the
determination of metal by ICP-OES are described in Table 1.

3.2. Analytical performance

A total of nineteen elements (Ag, Al, Ba, Ca, Cr, Cu, Fe, K, Mg,
Mn, Mo, Na, Ni, P, Pb, Si, Sn, V, and Zn) were determined by
ICP-OES following selected sample preparation. Table 1 displays
the figures of merit for the trace elements determination in
lubricant oil samples. Considering the complexity of the sample,
the analytical performance was satisfactory. The recommended
procedure involved low limits of detection (LOD) for most analytes
(between 0.002 mg Kg�1 for Si, and 0.255 mg Kg�1 for P). LOD and
limits of quantification (LOQ) were calculated as blank signal
added of 3.3 and 10 times, respectively, the standard deviation
of a blank for ten replicate measurements (n¼10). The relative
standard deviation (RSD, n¼5), used to estimate the precision, was
smaller than 5% for all elements. The precision of the proposed
method was usually equal or better than that obtained for the
analysis of conventional digested samples. In all cases, the deter-
minations were carried out following the recommended method
by comparison against simple aqueous standards.

3.3. Analytical validation and application to real samples

Recovery studies were carried out with fifty random samples
by standard addition. The samples were spiked with 50 μg L�1 of
every element and prepared as indicated in 2.3. In this study, was
evaluated the accuracy of the results by comparison (t-test, 95%
confidence interval) with an independent sample treatment. In all
cases, quantitative recoveries (above 9577%) were obtained.

The proposed method for sample preparation using sulphanilic
acid was applied for the determination of wear metals in lubricat-
ing oils. Table 2 shows the average concentration and standard
deviation of the 19 elements determined by ICP-OES, in the 1018
samples of heavy equipment (trucks, bulldozers, loaders and
backhoes). The concentrations of the elements in every machine
were quite different, which could be associated to the power of
engine, use condition, etc. Although of differences that were
found, the multivariate models showed that they were not affected
by the type of machine.

In all cases Ag, Ba, Sn, and V concentrations were lower than
LOD. The presence of Al, Ca, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, Pb,
Si and Zn was evidenced in one or more lubricant samples
collected from the heavy equipment.

3.4. Principal component analysis

Principal component analysis (PCA) is a non supervised
method, which was performed as a descriptive tool to visualize
the data in two dimensions. This method provides new variables
as linear combinations of the original variables, which are called
principal components (PCs), allowing the visualization of samples
in a new dimensional space and the assessment of those variables
that most contribute to the classification of samples [27,28].

In the present work, PCA was applied to select the most
important variables for the model in a matrix formed by 10
columns (elemental concentrations) and 1080 rows corresponding
to the lubricant samples. PCA model was built using as initial
variables, the elemental concentrations determined for Al, Ca, Cu,
Fe, K, Mg, Na, P, Si and Zn. PCA model obtained using only three
principal components, explains more than 99.98% of the total
variance of the system. Fig. 1 shows the classification attained by
PCA through the scores plot of samples in the bi-dimensional
space of the first two PCs. From this exploratory analysis, three
groups clearly separated could be observed. Each group formed
corresponds to different ranges of use degree which could be
related with wear over time of the lubricants used on heavy
machines, namely: used more than 280 h (Group A), used from
210–280 h (Group B), and used from 50 to 210 h (Group C).

Loading vectors could be considered as the connection between
the initial variables and the PCs [29]. In this case, loadings are the
coefficients of the linear combination for all the elemental con-
centrations (initial variables) and represent the influence of these
variables in the explanation of the data variance. Thus, it is
necessary to determine elements in which the greatest differences
are found. In order to establish these differences, loadings were
analyzed. Fig. 2 exposes the loading of every variable on each PC.
Accordingly, the most important elements (variables) used in the
PCA model include P, Ca, Mg and Zn. It can observe that PC-1 is
influenced positively by calcium and zinc, while PC-2 is mainly
associated positively to phosphorus. Mg had a minor influence, but
it was retained to use three principal components in the model,
which allowed to obtain a 99.98% of explained variance (Fig. 3),
indicating that all the information was correctly modeled by PCA.

The use degree of lubricant could be determined by changes on
the elemental composition and classification was reached mainly
because the variation of P. According to this, P concentration was
higher in the less used lubricants, but it decrease while the hours
of use of lubricant increase. Thus, the less used lubricants (group
C) had more P content, while the lesser concentration of P (group
A) represents the more used lubricant situation. The correlation
between the variations of initial phosphorous concentrations with
the increase in the use hours of the lubricants could be explained
because most widely used additives in engine oil contain phos-
phorous that might partially volatilize during engine operation
[17]. On the other hand, it was found a little increasing in the
concentration of Zn in the more used lubricants, which can be
attributed to a possible wear engine.

3.5. Sequential discriminant analysis.

Sequential discriminant analysis (SDA) is a supervised method
that was performed to evaluate if the lubricant samples could be
mathematically distinguished according to their use degree. The
variables most significant obtained in PCA were used again to
obtain the SDA model.

Table 1
Figures of merit of elemental determination in lubricant oil samples treated with
sulphanilic acid (proposed method), n¼10.

Analyte Wavelength used LODa LODb LOQb

[nm] [μg L�1] [mg Kg�1] [mg Kg�1]

Ag 328.068 4.7 0.024 0.078
Al 396.153 19.0 0.095 0.314
Ba 233.527 2.7 0.014 0.045
Ca 317.933 6.7 0.034 0.111
Cr 267.716 4.7 0.024 0.078
Cu 327.393 6.5 0.033 0.107
Fe 238.204 3.1 0.016 0.051
K 766.490 0.6 0.003 0.010
Mg 285.213 1.1 0.006 0.018
Mn 257.610 0.9 0.005 0.015
Mo 202.031 5.3 0.027 0.087
Na 589.592 46.0 0.230 0.759
Ni 231.604 10.0 0.050 0.165
P 213.617 51.0 0.255 0.842
Pb 220.353 28.0 0.140 0.462
Sn 189.927 17.0 0.085 0.281
Si 251.611 0.3 0.002 0.005
V 290.880 5.9 0.030 0.097
Zn 206.200 3.9 0.020 0.064

a Instrumental limit of detection.
b Procedure limit of detection.
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The SDA was applied to the initial matrix; 644 and 374 random
samples were used for the training set and the validation set
respectively. The model consists of linear equations involving all or
some of the selected variables [30,31]. SDA generates all the
combinations of variables and selects the combination that repro-
duces a discriminant function showing the least number of
classification errors.

In this study, discriminant functions (D) were obtained to
classify data samples into three groups and two discriminant
functions were needed to fully partition the data

D1 ¼ �5:76�3:310�4Ca–5:110�4Mgþ3:010�4Zn–0:01P

D2 ¼ �1:88–988–9:110�4Ca–0:01Mgþ6:110�4Znþ5:810�5P

Table 3 shows SDA results. The recognition ability for the groups
was highly satisfactory, analyzed samples were 97.12% and 95.75%
correctly classified in the training and prediction sets, respectively.
Three groups were obtained, classified according to the wear over

time or use degree: group A (lubricants used more than 280 h),
group B (lubricant used between 210–280 h), and group C (lubri-
cants used from 50 to 210 h). The occurrence of different wear
metals in lubricating oils naturally depends on the machine studied
and the materials of its components. Nevertheless, multivariate
models were not affected by the type of machine. Table 3 demon-
strates low errors for training and validation step (from 0 to 3.22%)
in the three groups, indicating that the model fit adequately and
also, corroborating the previous classification obtained by PCA.
These low errors allow using these models to assess the degree of
use or wear over time of the lubricants as quality control tools.

4. Conclusion

The present work evidences an advance in the comprehension
of wear over time of use in lubricants based on their elemental
composition. PCA, non supervised chemometric tool, allowed the

Table 2
Proposed analytes determination in used lubricant oils collected in two years campaign in a private company of Argentina, average and standard deviation of the 1018 oil
engines samples.

Analyte [mg Kg�1] Trucks Bulldozers Loaders Backhoes

Ag oLOQ oLOQ oLOQ oLOQ
Al 4.8670.75 5.5070.67 6.0770.81 5.4170.66
Ba oLOQ oLOQ oLOQ oLOQ
Ca 2844.357233.42 1786.257191.82 3063.227485.23 2966.327356.13
Cr oLOQ oLOQ oLOQ 1.8270.33
Cu 4.0170.53 2.6970.87 1.5170.19 7.0670.89
Fe 20.5672.37 14.6871.56 12.5370.23 36.3170.45
K 10.5271.41 6.0570.56 5.1270.69 12.0771.56
Mg 23.0372.51 12.2471.36 31.1570.47 23.3271.58
Mn 2.8070.75 oLOQ oLOQ oLOQ
Mo 3.4870.77 oLOQ oLOQ 60.6170.78
Na 2.9570.63 5.0570.66 3.8970.51 3.5470.71
Ni oLOQ oLOQ oLOQ oLOQ
P 839.35797.63 1403.517185.63 1192.54787.42 962.637114.51
Pb 1.7370.59 oLOQ oLOQ 3.7370.47
Si 7.5470.83 8.8770.95 7.2370.91 9.7171.25
Sn oLOQ oLOQ oLOQ oLOQ
V oLOQ oLOQ oLOQ oLOQ
Zn 1378.237143.62 817.057104.33 1338.537157.22 1427.117137.63

Fig. 1. Scores plot for PCA model, showing three discriminated groups according to use degree of lubricants.
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visualization of three different groups according to the use degree.
The most important variables for the model were defined, includ-
ing P, Ca, Mg and Zn. By means of SDA supervised method, it was
possible to confirm the previous classification by PCA, obtaining a
low error of prediction for the three obtained groups. The decrease
in phosphorous concentrations observed in this analysis could be
indicator of changes in lubricants, preventing a possible engine
breakdown in the machine. For all the exposed, the described
chemometric method demonstrated to be a powerful tool suitable
in wear metal analysis in lubricants, allowing an early machine

condition monitoring. In addition, it is a trustworthy and cost-
efficient technique to be applied for quality control in heavy
vehicles and lubricant factories. However, further studies must
be performed for other type of lubricants or machines. On the
basis of the obtained results, it could be recommended to perform
the change of lubricants in heavy machines before 280 h of use.
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