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Abstract Two neural network-based schemes for fault

diagnosis and identification on induction motors are

presented in this paper. Fault identification is performed

using self-organizing maps neural networks. The first

scheme uses the information of the motor phase current for

feeding the network, in order to perform the diagnosis of

load unbalance and shaft misalignment faults. The network

is trained using data generated through the simulation of a

motor-load system model, which allows including the

effects of load unbalance and shaft misalignment. The

second scheme is based on the motor’s active and reactive

instantaneous powers, in order to detect and diagnose faults

whose characteristic frequencies are very close each other,

such as broken rotor bars and oscillating loads. This

network is trained using data obtained through the exper-

imental measurements. Additional experimental data are

later applied to both networks in order to validate the

proposal. It is demonstrated that the proposed strategies are

able to correctly identify, both unbalanced and misaligned

load, as well as broken bars and low-frequency oscillating

loads, thus avoiding the need for an expert to perform the

task.

Keywords Fault diagnosis � Self-organizing maps �
Neural networks � Induction motors

1 Introduction

Predictive maintenance attempts to avoid unexpected faults

in the industry, which cause great economic losses due to

interruptions in continuous production processes. Hence, it

arises the need and interest for the industry to develop

strategies for on-line detection and diagnosis of incipient

faults in electrical machines. In this way, process inter-

ruptions can be planned, and machines maintenance can be

performed during programmed stops. This allows reducing

the maintenance time and the associated economic losses.

Among various strategies actually used in predictive

maintenance, those based on measurement of motor volt-

ages and currents allow detecting different types of faults

by measuring from the switchboard, thus reducing the risks

for the operator in hazardous environments or difficult to

access. Such strategies have also been used for detecting

problems associated with the load driven by the motor.

The detection and diagnosis of electrical or mechanical

faults on induction motor (IM) implies, in most cases,

the interpretation of the frequency spectrum of the motor

current, power, Park’s vector, among others [1]. This

requires an expert who performs the task, based on the

information obtained from the processed signals.

At present, the study of different alternatives, such as

artificial intelligence (AI) techniques, has taken great

importance because they require a minimal interpretation

of the studied system, that is, a detailed analysis of the

mechanism or the system model is not necessary to use

these techniques. Thus, the diagnosis task is simplified

[2–5].

A general review of the advances on the field of electric

machines and drives diagnosis based on AI, such as expert

systems, fuzzy logic, neural networks among others can be

found in [2].
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Unsupervised neural network (UNN) was one of the

AI techniques proposed for fault diagnosis on electric

drives [3]. In the same work, the advantages of using

UNN (in particular self-organizing maps—SOM) over

perceptron type neural networks for IM condition moni-

toring are presented. In [4] SOM networks are used to

detect and diagnose motor faults adaptively, with

emphasis on faults occurred in the motors bearings. In [5]

an UNN was proposed for discriminating and classifying

load anomalies based on the analysis of the stator current

spectrum of IM.

Usually, AI-based techniques perform the fault diag-

nosis from symptoms generated through a pre-processing

of the input data. In electric machines, such data pre-

processing is often done from the measurement of volt-

ages and currents, and using techniques such as motor

current signature analysis, active power, among others

[6–8]. In [6] a method for diagnosing unbalances caused

by mechanical failures in machines driven by IM and

shaft misalignment between motor load using SOM net-

works was presented. In order to detect and classify

broken rotor bars and misalignment mechanical faults that

often occur in IM, a SOM-based technique is proposed in

[7]. In [8] the SOM network has been successively

applied for rolling bearing failures and supply asymmetry

recognition, as well as early detection of stator inter-turn

short circuits.

Even when other neural networks topologies have been

applied for fault detection on MI, these previous works

have greatly demonstrated the usefulness of SOM networks

for fault classification, allowing a more general and flexible

analysis of the faults [9, 10].

However, when the characteristics of the faults are very

similar, or even the same, the use of only the information of

the phase-current spectrum components is not enough. This

is the case of broken rotor bar faults and low-frequency

load oscillation. In order to improve the diagnosis, in this

paper, we propose a redesign of the network, using a pre-

processing of input data, from a previous result of the

authors presented in [11]. Consequently, the novelty of this

proposal is a new strategy for fault diagnosis that effi-

ciently combines the SOM network design with pre-pro-

cessing of input data based on the theory of instantaneous

active and reactive powers. This allows obtaining an

automatic diagnosis of these types of faults, which have

similar symptoms and are difficult to identify, and has not

been reported previously.

This second network is trained using experimental data

and allows detecting and diagnosing broken rotor bars and

low-frequency load oscillations. These networks may be

later used to obtain an automatic diagnosis of such prob-

lems, from data obtained from measurements made in

industries.

2 Self-organizing maps

Kohonen’s self-organizing maps are a type of neural net-

works which meant to mimic in a simplified way the

brain’s ability to form topological maps from signals

received from outside [12]. SOM-type networks are based

on a competitive unsupervised learning. Because there is

no output target toward which the neural network to be

built, there is no external master who indicates whether the

network is operating correctly or incorrectly.

The modus operandi of a self-organizing network is

through the discovery of common features, correlations,

regularities or categories in the input data and incorporates

them into its internal structure of connections. For this

reason is that neurons must self-organize according to the

stimuli (data) from outside.

In competitive learning, neurons compete with each

other to perform a given task, ensuring that when presented

an input pattern to the network, only one output neuron (or

group of neighbors) is activated. Thus, neurons compete for

activation, eventually leaving only one as the winner

neuron and the other forced to their minimum response

values. This is with the aim of categorizing the data

entering the network. For correct classification, similar

values in a given category should activate the same output

neuron. In addition, classes or categories must be created

by the network itself, using the correlations between the

input data, which is the goal of unsupervised learning.

2.1 SOM architecture

A SOM model is composed by two layers of neurons. One of

them, called input layer (composed by N neurons, one for

each input variable), is responsible for receiving and trans-

mitting information from outside to the output layer. The

output layer (formed by M neurons) is in charge of infor-

mation processing and the construction of map features [12].

Usually, neurons in the output layer are organized in

two-dimensional map, as shown in Fig. 1.

The form of connection between the two layers that

compose the network is always moving forward, that is,

information is propagated from the input layer to the output

Output Layer (M)

Weights wij

Input Layer (N)
Neurons

Fig. 1 SOM Architecture
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layer, so that each input neuron i is connected to each

output neuron j through a weight wij. Thus, the output

neurons have an associated weight vector called reference

vector (or codebook), as it is the prototype vector (or

average) category represented by the output neuron j. Thus,

the SOM defines a projection from an area of high-

dimensional data in a two-dimensional map of neurons.

It should be noted that among the neurons in the output

layer, there is the possibility of lateral connections of

excitation and inhibition implied, without being necessarily

linked, each neuron having a certain influence on its

neighboring neurons. This is achieved through a process of

competition between neurons and the application of a so-

called neighborhood function, which produces the topology

or structure of the map.

Adjacent neurons belong to a neighborhood Nj of the

neuron j. The topology and the number of neurons remain

fixed from the beginning. The number of neurons deter-

mines the smoothness of the projection, influencing the

adjustment capacity and generalization of SOM.

In the training stage, the SOM forms an ‘‘elastic net’’

that folds into the original data cloud. The algorithm con-

trols the network in a manner which tends to approximate

the data density. The codebook reference vectors are close

to areas where the data density is high. Occasionally few

codebook vectors are in areas with low density of data.

2.2 SOM algorithm

The SOM learning process is carried out through the fol-

lowing two steps [13]:

First: a vector x is randomly selected from the dataset,

and its distance (similarity) to the codebook vectors is

calculated using Euclidean distance:

x� wck k ¼ min
j
f x� wj

�
�

�
�g ð1Þ

where c is the neuron whose weight is closest to the input

vector.

Second: After finding the closest vector (or Best

Matching Unit, BMU), the remainder of the codebook

vectors is updated. The BMU and its neighbors (adjacent)

move close to the vector x in the data space. The magnitude

of the attraction is governed by the rate of learning.

As the update process occurs and new vectors are

assigned to the map, the learning rate gradually decreases

to zero as the radius of neighborhood.

For the update of a given reference vector, i, the fol-

lowing rule is used:

wjðt þ 1Þ ¼ wjðtÞ þ aðtÞðxðtÞ � wjðtÞÞ j 2 NcðtÞ
wjðtÞ j 62 NcðtÞ

�

ð2Þ

Both steps are repeated until the end of training, taking

into account the number of training steps should be fixed a

priori and can thus calculate the rate of convergence of the

neighborhood function and the learning rate a.

Finally, after completing the training, the map is ordered

in topological sense. That is, topologically closest n vectors

are applied to n adjacent neurons or even within the same

neuron.

2.3 SOM visualization

The most popular method to display the SOM is using

unified distance matrix, U, which represents the map as a

regular grid of neurons (each element corresponds to a

neuron). When generating the matrix U, a matrix of dis-

tances between reference vectors of neurons contiguous in

the two-dimensional map is calculated. Then, a type of

graphic representation is chosen, using colors or shades of

gray, so that the colors (or tones) are selected so that the

shorter the distance between two neurons as darker the

color between them.

3 Proposed diagnostic strategy

The objective of automatic fault diagnosis is to detect and

diagnose different type of faults without the need of an

expert operator. In the case of electric motor drives, it is of

particular importance the precise identification of the fault

origin, that is if the fault is originated in the motor itself or

if the problem comes from the driven load.

Different types of faults produce, in general, different

characteristic components in the frequency spectrum of the

motor currents and other electrical variables. Those com-

ponents are usually employed to detect and identify the

drive faults.

In some cases, the characteristic fault frequencies are

separated in the frequency spectrum making the design of

the diagnostic strategy simpler, without the need of a great

data pre-processing. This can be the case of mechanical

load unbalances and motor-load shaft misalignment, prin-

cipally when reduction stage exists between the motor and

the load. In such case, data obtained from one motor phase

current can be used to perform the diagnosis. However,

when the characteristic frequencies are very close, or even

the same, the use of only the phase-current spectrum

components is not enough. This is the case of broken rotor

bar faults and low-frequency load oscillations [11, 14, 15].

Thus, for the first case, a diagnosis strategy using SOM

can be designed using only the measurement of one of the

motor’s phase current [6]. This network is called Network 1,

and it was built and trained using data generated by simu-

lation models which allow the drive to include the effects of

mechanical unbalance and shaft misalignment. The use of a

drive model allows obtaining a great amount of data from
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different operating conditions (load levels and misalignment

degrees), which can be difficult to obtain using experimental

data. This allows improving the network training. Subse-

quently, experimental data obtained from measurements

which correspond to a motor operating under normal con-

ditions, unbalanced load, and motor-load coupling angular

misalignment, were introduced in order to assess the ability

of designed SOM network to categorize actual data.

However, as demonstrated in [11] and [16], for a correct

diagnosis of broken rotor bars and low-frequency load

oscillation, frequency components of the instantaneous

active and reactive powers must be used. These ideas are

used here to build the second network (Network 2), which

is able to correctly identify between broken rotor bars and

load oscillations. In this case, experimental data obtained

from measurements performed in the laboratory were used

to build and train the network. Measurements correspond to

the cases of broken rotor bars, low-frequency load oscil-

lation, and healthy motor, under different operation con-

ditions. Validation was later done using new experimental

data, which correspond to fault severity and operation

conditions different to the used in the training stage.

4 Input data generation

4.1 Training data

Network 1: For training Network 1, input data were gen-

erated by simulation using two models. In both models, the

IM was implemented in q–d variables [17], from which

phase currents were obtained.
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Fig. 2 Stator current spectrum obtained from simulation of a motor:

a under normal conditions, b with unbalanced load, and c motor-load

misalignment. Data used for training the network: d motor without

mechanical unbalanced and aligned, e motor driving an unbalanced

load, and f misalignment between motor and load shafts
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The misalignment system (motor load) was simulated as

shown in [18]. This model allows identifying the sidebands

at twice the rotor frequency (f ± 2fr), characteristics of

misalignment phenomena. It must be noted that, besides

such components, misalignment affects the dynamic

behavior of the motor, and in consequence an increase in

the amplitude of the components which are associated to

the static and dynamic air gap eccentricity. As for the

dynamic air gap eccentricity as for the mechanical rotor

unbalance and misalignment, they both produce compo-

nents in the current spectrum at frequencies given by

f ± nfr, which makes it possible to detect these phenom-

ena. A further analysis on angular misalignment allows

identifying not only the increase of the components at

frequencies f ± 2fr, but also the sidebands at f ± fr, pro-

duced by mixed eccentricity.

On the other hand, the motor driving an unbalanced load

was simulated as shown in [11]. This causes the appearance

of a torque pulsation at a given frequency (fnd), which is

reflected in the electric motor through the speed oscilla-

tions. The speed oscillations modulate the stator currents,

so sidebands around the fundamental frequency at f ± fnd

appear in the current spectra.

Simulation results for the motor operating under normal

conditions can be seen in Fig. 2a, while those corre-

sponding to load unbalance and motor-load misalignment

in Fig. 2b, c, respectively. In the case of misalignment, a

variation of angle between 0� and 5� was first evaluated,

with an 80 % load in all cases. Finally, a 2� misalignment

case was used because it corresponds to the most signifi-

cant magnitude that can be found in industry applications,

and it does not produce a significant reduction in the life-

time of couplings o other components. For the case of load

unbalance, a slope (inclination) in the plansifter of 1� with

respect to the horizontal was considered, which is similar

to the inclination found in the industry case. In these
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Fig. 3 Data use for training the

network (spectrum of

instantaneous active and

reactive powers): a healthy

motor, b broken bars c with load

fluctuations
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figures, the frequency components in stator current spectra

for the analyzed faults can be clearly identified.

To create the input data used for training the network, a

selection of 250 points in the stator current spectrum

between 0 and 120 Hz, obtained by simulation, were initially

used. These data were normalized in order to make them

independent of the load level. The normalization of data was

performed by dividing the elements of the input vector,

corresponding to the stator current spectrum, by the largest

element of such vector.

Thus, it was possible to visualize both sidebands pro-

duced by the load unbalance, as those caused by shaft

misalignment. Then, noise was introduced in the normal-

ized interval, so as to produce a scatter in network training

data. Figure 2 shows the final data used for training the

network, corresponding to the three cases: the motor in

normal conditions (d), the motor driving an unbalanced

load, where the characteristic frequencies are close to data

90 and 110 (e), and misalignment between the motor and

the load shafts (f), where the characteristic frequencies are

close to data 1 and data 200.

Network 2: In the second case, input data were generated

by experimentally measured data, with the aim of getting

closer to the actual application case. Besides the difference

between the types of faults, the data include variation in the

magnitude of the fault and in the percentage of motor load.

The asymmetry due to broken rotor bars is reflected in

two components in the current spectrum, particularly in the

frequencies f ± 2sf. The magnitude of these sidebands

depends on the load and inertia of the motor-load system,

as well as the severity of the fault [19, 20]. In addition,

these sidebands may even appear in a healthy motor, when

the driven load is pulsating and/or oscillating, that is when

the load torque varies with the position of the motor [21].
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Fig. 4 Stator current spectrum obtained from measurement on a

motor: a under normal conditions, b motor driving an unbalanced

load, and c misalignment between motor and load shafts. Data for

validating the network: d motor under normal conditions, e motor

driving an unbalanced load, and f misalignment between motor and

load shafts
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Because of this, the data entered into the network are

obtained by a frequency analysis of the instantaneous

active and reactive power of the motor [11, 16]. This

allows to correctly separating both types of faults, by the

characteristic frequencies in the low-frequency range of the

instantaneous powers spectra. Broken rotor bars fault

mainly appears as low-frequency components at 2sf in the

instantaneous reactive power spectrum, but not in the

instantaneous active power spectrum. On the contrary, load

oscillation produces characteristics frequency components

of higher amplitude in the active power spectrum, while

they are practically negligible in the reactive power

spectrum.

To create the input data used in training Network 2, we

proceeded to form a set of 400 points concatenated: the first

200 correspond to the instantaneous active power spectrum

and the remaining 200 to the instantaneous reactive power

spectrum. Thus it was possible to visualize the range of

characteristic frequencies present in the active and reactive

powers respectively, produced by the broken bars, as well

as those caused by load fluctuations at low frequencies.

With this particular construction of the input data set, we

are able to feed the network with patterns which are dif-

ferent enough for each type of fault.

Figure 3 shows the data used for training the network. It

can be observed the following cases: Fig. 3a corresponds to

the healthy motor with 40 % load (blue line) and 80 % load

(black line); Fig. 3b to the motor with 1 broken bar (blue

line), and 2 broken bar (black line), both with 75 % load;

and Fig. 3c the motor driving an oscillating load. This load

is composed by a constant 75 % load torque plus a 3 %

amplitude, 2 Hz square wave load torque (blue line), and a
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Fig. 5 Data for validating the

network (blue line), compared

with training data (black line):

a healthy motor, b broken rotor

bars c with load oscillations

(color figure online)
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3 % amplitude, 1 Hz sinusoidally oscillating load torque

(black line). The criteria used in selection of data for

training aimed to include greater diversification of possible

cases within each set of different faults.

4.2 Validation data

Network 1: Experimental data used for validating the pro-

posal were obtained both from drives installed in the

industry and from a laboratory setup. The cases presented

here correspond to measurements made on plansifters dri-

ven by IM, both in normal conditions, as in conditions of

load unbalance, and measurement obtained in the labora-

tory for a motor-load misalignment case.

Through the analysis of experimental results, it was

possible to discriminate through the stator current spec-

trum, the characteristic frequencies for each case of failure.

The results for the motor operating under normal condi-

tions, driving an unbalanced load, and with shaft mis-

alignment can be seen in Fig. 4a, b, c, respectively. The

misalignment case corresponds to a 2� angular misalign-

ment, with 80 % load, while the case of load unbalance

corresponds to a plansifter inclination of approximately 1�
with respect to the horizontal.

For the validation of the network, the input data corre-

spond to those obtained from the experimental tests nor-

malized in the same way as data obtained from simulation,

through a selection of 250 points of the stator current

spectrum. Currents were acquired using an oscillographic

register measuring 64,000 samples at a sampling frequency

of 8 kHz, and in a time of 8 s. Figure 4 shows these data

for the three cases of study.

It should be further noted that, besides the characteristic

frequencies produced by misalignment, Fig. 4f shows some

components produced by eccentricity, both in the data 50

(25 Hz), as in the data 150 (75 Hz).

Network 2: The experimental data used for validating

the proposal were obtained from a laboratory setup, both

for broken bars, as for load fluctuations. Data were pro-

cessed the same as the training data. However, operation

conditions and fault severities different from the measured

in the training stage were used for validation.

Figure 5 shows the spectra of the validation cases (blue

line), while the training data are also shown for comparison

(black line): Fig. 5a shows data corresponding to the

healthy motor, with 60 % load (validation) and 80 % load

(training); Fig. 5b corresponds to the motor with 2 broken

bars at 50 % load (validation), and at 75 % load (training),

where it was considered 2 broken bars from a total of 40

rotor bars which has the rotor (5 %), so as not to affect the

motor operation; and Fig. 5c presents data from the motor-

load set with oscillating load at 2 Hz (validation), and 1 Hz

(training), both sinusoidal signals.

5 Implementation and visualization

The self-organizing map network was implemented by

using the SOM toolbox, from Matlab [13]. Once the input

data were processed and normalized as explained in the

previous section, they were placed in a special data struc-

ture used by SOM toolbox to group information about the

system data in one place. The argument of such structure is

the data matrix itself, which contains the name given to the

(a) (b) (d) (c) 
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Fig. 6 Simulation data: a multiple histograms, b location tags.

A Shaft misalignment; B motor operating in normal conditions; and

C motor driving an unbalanced load. Experimental data: c Multiple

histograms, d Location tags. D Shaft misalignment; E motor oper-

ating in normal conditions; and F motor driving an unbalanced load
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data system, and the names of the components (variables)

in the matrix data.

5.1 Training of the map

The SOM_MAKE function was used to train the SOM. By

default, it first determines the size of the map, then sets the

map using linear initialization, and finally performs the

training of the map.

Network 1: The data structure consists of 10 samples

from each case (a total of 30 samples) where they represent

the case of motor-load shaft misalignment, the motor

without mechanical unbalance and aligned, and the motor

driving an unbalanced load. Then, a label is associated with

each case: A, B and C respectively.

Network 2: In the second network model, the data

structure consists of 10 samples for each case (a total of

80 samples), corresponding to the motor with 1, 2 bars

and 3 broken rotor bars (the three cases with 50 % load),

the motor driving a sinusoidally oscillating load at 2 and

1 Hz, and a square wave load at 2 Hz, and finally to the

healthy motor operating at 40 and 60 % constant load

torque.

5.2 Map display

Network 1: The output layer consists of 30 neurons, which

are responsible of processing and formation of the map of

features. This map is organized in a two-dimensional map,

using a hexagonal topology, so as to obtain a better rela-

tionship between neurons.

For visualizing the results, the matrix of unified dis-

tances (or U matrix) is usually used, which shows the

distances between neighboring units, and thus visualizes

the structure of clusters of the map (typically uniform areas

of low values). Another important tool in the analysis of

data using a SOM is the histograms of success. They are

formed by taking a data structure, finding the BMU of each

sample of the map data, and increasing a counter each time

a unit of the map correspond to the BMU. So, the histo-

gram of success shows the distribution of the data structure

on the map.

In this work, multiple histograms are represented

simultaneously in the U matrix. The map created for the

studied cases, which consist of three clusters, is represented

on a regular grid of 3 9 10 neurons, so that each element

represents a neuron. The size of the neurons gives notion

Fig. 7 Training data: a multiple histograms, b location tags, A1, A2,

A3 the motor with the broken bars, B1, B2 the motor without faults,

and C1, C2, C3 the motor with pulsating load. Validation data:

a multiple histograms, b location tags, D the motor with the broken

bars, E the motor with pulsating load, and F the motor without faults

Fig. 8 Simulation and experimental data: a multiple histograms,

b location tags. A–D Shaft misalignment; B–E motor operating in

normal conditions; and C–F motor driving an unbalanced load
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about the amount of hit values and the relative goodness of

each map unit in representing the data, so that the greater

one of the same color set denotes the higher match with its

corresponding cluster.

The mode of graphical representation of the selected

map (different colors) allows differentiating the healthy

case and the two cases of faults, as shown in Fig. 6a,

through data obtained by simulation, and Fig. 6c by using

the data obtained experimentally. In both cases, the clusters

corresponding to the different cases are shown. As shown

in Fig. 6b, it is possible to discriminate three different

clusters, two of them due to the studied faults and one to

the healthy motor. Specifically, it shows the motor without

faults (cyan), the motor with load unbalance (blue) and the

case of shaft misalignment (yellow). Figure 6d shows the

results obtained by using experimental data. In this case,

the green color corresponds to the healthy motor, the red

color to the motor with mechanical load unbalance, and

finally the black color to the misalignment between shafts.

In these figures, the number in brackets shows the fre-

quency of occurrence of the data used for the training and

validating the network.

Network 2: The output layer is formed by 42 neurons,

responsible for processing and form the map of features,

organized as a two-dimensional map. The hexagonal

topology is used as in the previous network.

The map created for this network model was performed

in a regular grid of 7 9 6 neurons, so that each element

represents a neuron. Figure 7a shows the multiple histo-

grams for the data used for training, where it is possible to

discriminate three different clusters, two of them due

to faults in study, and the other to the healthy motor.

Specifically, it shows the motor without faults (blue), the

motor with the broken bars (yellow), and finally the pul-

sating load cases (cyan). Figure 7b shows the location tags,

with the corresponding number of hits. Figure 7c, d shows

the results obtained for the data used for validation, as well

as the different labels for each case.

5.3 Analysis of results

Network 1: Finally, both the training data (simulation) and

the validation data (experimental) are represented together

in Fig. 8. A clear distribution of the clusters, depending on

the type of fault, can be seen. Even when experimental data

present some components which were not considered in the

training data (e.g., the components due to eccentricity for

the misalignment case), a correct fault identification is

obtained for all the studied cases.

Network 2: In the analysis of the second network SOM

using experimental data, we could observe a clear distri-

bution of clusters according to the type of fault present.

While the validating data show some variations such as the

percentage of tested motor load, or different load oscilla-

tion, a correct identification of faults in all cases studied is

obtained. This analysis is presented in Fig. 9 for the three

cases considered.

6 Conclusions

In this paper, two schemes for fault diagnosis using unsu-

pervised neural networks of the type self-organizing map

were presented. The first model of the network was

implemented for the diagnosis of failures caused by

mechanical load imbalances on induction motors drives,

and misalignment between the motor and load shafts. Since

these faults produce symptoms (components in the current

spectrum) which are different, a single motor phase current

can be used for obtaining a correct diagnosis. However,

when faults produce similar symptoms, that is having the

same characteristic frequencies in the phase-current

Fig. 9 Training and validation

data. a Multiple histograms,

b location tags. A–D The motor

with the broken bars, B–F the

motor without faults, and C–

E the motor with pulsating load
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spectrum, as the case of broken bars and low-frequency

oscillating load, a different strategy must be used. For such

a case, a second network was implemented based on

measurements of instantaneous active and reactive power,

by properly arranging the input data of the network. This

allows to obtain a correct fault diagnosis and identification

even for this type of faults.

For the first case, network training is performed using

data obtained from the simulation of a model of MI, which

can represent the behavior of the normal operating condi-

tions, in conditions of mechanical load imbalance and shaft

misalignment. Network 2 is trained by experimental data,

obtained from tests on motors driving a load with low-

frequency torque oscillations and a motor with different

number of broken rotor bars.

Validation is performed using data different from those

used for training. For the Network 1, data were obtained

from measurements made on plansifters driven by induction

motors, both under normal conditions and in conditions of

equipment imbalance, and motors with misalignment

between the motor and load shafts. For Network 2, valida-

tion was carried out by experimental data on both normal

motor operating conditions, as in conditions low-frequency

load oscillation and broken rotor bars, at different load

levels not considered in the training stage.

The analysis of the results obtained through the imple-

mentation of both networks allowed to clearly ‘‘see’’ the

separation, or discrimination, through three well-defined

areas (clusters). The location of the labels in clusters

validated the implementation of the networks.

Thus, by applying artificial neural networks (SOM), it

was possible to correctly diagnose and identify different

types of faults in electrical machines, with a minimum

interpretation of the system under study.
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