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An off-lattice automaton for modeling pedestrian dynamics is presented. Pedestrians are represented by disks
with variable radius that evolve following predefined rules. The key feature of our approach is that although
positions and velocities are continuous, forces do not need to be calculated. This has the advantage that it
allows using a larger time step than in force-based models. The room evacuation problem and circular racetrack
simulations quantitatively reproduce the available experimental data, both for the specific flow rate and for the
fundamental diagram of pedestrian traffic with an outstanding performance. In this last case, the variation of two
free parameters (rmin and rmax) of the model accounts for the great variety of experimental fundamental diagrams
reported in the literature. Moreover, this variety can be interpreted in terms of these model parameters.
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I. INTRODUCTION

The movement of people and crowds is an important field
of research that has gained interest due to the increasing need
to design safer and more comfortable pedestrian facilities.
Traditionally, crowd movements were studied by engineers
with sizing purposes when designing buildings and transport
systems for people [1–3]. Since the 1990s this subject has
been studied with the aid of computer simulations, and
several models have been presented. A general classification
of pedestrian models can be found in [4], and they can
be classified into rule based and force based, discrete and
continuous, etc.

In rule-based models the state of the system evolves
following predefined rules, which are applied on individual
agents. Usually, this kind of model considers a discretization
of space into a grid, as is the case of cellular automata (CA)
models. Some emblematic CA models are the floor field [5]
and lattice gas [6] models. On the other hand, in force-based
models pedestrians are considered as particles that interact by
means of forces, and so the state of the system is governed
by Newton’s equation. In general, the space and state of the
particles are considered continuous in this kind of model.
Examples of force-based models are the social force model
[7,8] and the centrifugal force model [9,10].

Each approach has benefits and shortcomings. For example,
discrete-space CA model simulations are faster, but they
present inconsistencies when computing distance (and thus ve-
locities), as clearly stated in [11]. On the contrary, force-based
model simulations are more expensive but allow describing
trajectories and velocities correctly. Besides, realistic forces
and pressure can be estimated.

We present here a model summarizing the best of the
two previously described approaches: the contractile particle
model (CPM). The CPM is a continuous-space automaton
inspired by models of self-propelled pointlike particles like
those described in [12–14]. Antecedents of this hybrid ap-
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proach are, for example, the mobile lattice gas model [11]
and the work of Thompson et al. [15,16]. In the first one,
the spatial lattice is dynamic, the transitions are discrete, and
forces are used to calculate transitions probabilities. In the
second one, pedestrians are described by three attached circles
(an approximation to the human shape at the shoulders level)
moving in a continuous space with velocities depending on the
minimum interpersonal distance.

In the contractile particle model presented here, particles are
allowed to move in the continuous space. The radii are dynamic
variables that are recalculated depending on the distance to the
neighbors. Also, the desired speed of each particle is calculated
as a function of its radius. From the simulations, we compute
the observables that will be compared to the experimental data
reported in the literature.

The main macroscopic observables that characterize pedes-
trian dynamics are the fundamental diagram (which indicates
the relationship between local density and average speed)
and the specific flow rate (number of persons crossing an
opening per unit of time and width). Regarding the funda-
mental diagram, a variety of experimental data have been
reported in the literature [1,17–27] considering experiments
and field observations in different situations and cultures.
There are differences between these fundamental diagrams;
nevertheless, all of them show a monotonically decreasing
velocity as the density increases. Most legal regulations accept
that the specific flow rate exhibited by a system of evacuating
people in normal conditions remains constant, if the door
width changes. Some regulations adopt a specific flow rate
of 1.33 peds/(m s) (where “peds” stands for pedestrians)
[28,29]. However, experimental results from the literature
report different values for this magnitude ranging from 1.25
to 2 peds/(m s) [2,3,28–33] depending on the particular setup
conditions, age, and culture of the population.

This work is organized as follows: In Sec. II the contractile
particle model is presented. Section III shows simulation
results of appropriate systems in order to compare them with
the available empirical data in normal conditions, considering
the fundamental diagram and the specific flow rate. It will be
shown here that changes in the free parameters give enough
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FIG. 1. (Color online) Illustration of the contractile particle
model. Particles on the left are not in contact. They have no zero
desired velocities (vd ). Dashed circles represent the minimum and
maximum radii. Particles on the right are in contact; therefore the
escape velocities are present; also their radii are collapsed to the
minimum.

flexibility to the model to allow adjusting the output to the
different fundamental diagrams reported. In Sec. IV we present
a parameter sensitivity analysis, which allows interpreting the
fundamental diagram in terms of the microscopic parameters
of the model. Finally, in Sec. V the conclusions are presented.

II. THE MODEL

The proposed contractile particle model has characteristics
of both a continuous-space and a rule-based model. This allows
describing trajectories and distance better than typical CA
models [11] and besides, it allows improving the computing
time compared with force-based models. This improvement
is possible because forces are not calculated, there is no
integration of the equations of motion, and consequently, the
time step of the algorithm can be greater.

The basic components of the contractile particle model are
the following: For each particle pi ,

(1) The radius (ri) is dynamically adjusted between ri
min and

ri
max.
(2) It has a desired velocity (vi

d ) pointing at the desired
target location and its magnitude (vi

d ) represents the desired
walking speed.

(3) The magnitude of the desired velocity is a function of
the particle radius (ri).

(4) If a particle (pi) enters into contact with a boundary, an
obstacle, or another particle, an escape velocity (vi

e) having a
fixed magnitude (ve) appears with direction and sense opposite
to the interaction.

Figure 1 illustrates the geometry of these concepts.
The relation between the radius (ri) and desired speed is

such that vd (rmin) = 0, and vd (rmax) = vd max. We choose a
functional form given by

vi
d = vd max

[
(ri − rmin)

(rmax − rmin)

]β

, (1)

where vd max is the desired speed at which a pedestrian would
walk if she/he were unconstrained by any obstacle, i.e.,

walking free in an open space. If the exponent β = 1, then it is
a linear relationship. For β �= 1 the relationship has different
curvature, either above the linear (β < 1) or below the linear
(β > 1).

The time evolution is given in discrete time steps of

�t = rmin

2 max(vd max,ve)
. (2)

In each iteration the positions of particles are updated by the
equation

xi(t) = xi(t − �t) + vi(t)�t (3)

with

vi =
{

vi
d if pi is free of contact,

vi
e otherwise,

(4)

where the desired velocity is

vi
d = vi

dei
target , (5)

and the versor ei
target points toward some desired target location.

The targets must be placed externally for each particular
system to be simulated. As in other pedestrian models (such
as in the social force model), the CPM does not provide a
method for placing the targets automatically; this could be
done by higher level algorithms that consider multiple factors
such as way finding, decision making, efficient avoidance,
etc.

The escape velocity can be written as

vi
e = ve

(
∑

j eij )

| ∑j eij | , (6)

where eij is the direction and sense of the escape velocity of
particle pi from every other particle or boundary in contact
(j ):

eij = (xi − xj )

|xi − xj | . (7)

In the case of interaction with a wall, xj indicates the nearest
point on the wall to the center of particle pi .

The rule for the variation of the radii is as follows: When a
particle is not in contact with any other particle or boundary,
its radius increases in each time step according to

�r = rmax(
τ
�t

) , (8)

where the constant τ characterizes the time taken for a
particle to reach its maximum radius and thus its maxi-
mum velocity. We choose τ = 0.5 s in accordance to the
value used in the desired force in the social force model
[8,34].

The radius increases until it reaches the maximum radius
or the particle suffers a collision. In this last case, the particle
tries to reduce the overlapping by diminishing its radius
instantaneously to the minimum radius.

The following pseudocode describes the time evolution
algorithm:

– Initialize boundaries and pedestrian positions and radii.
– iterate over time in steps of �t
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– iteration 1 over all particles
Find contacts and calculate ve.
– end iteration 1
– iteration 2 over all particles
Adjust radii following “the rule for the variation of the

radii” [see text below Eq. (7)].
– end iteration 2
– iteration 3 over all particles
– Compute the direction and sense of the vd considering

current positions and target locations.
– Compute the magnitude of vd depending on the radius

following Eq. (1).
– end iteration 3
– iteration 4 over all particles

v(t) = vd + ve =
{

vi
d if ri > rmin

vi
e if ri = rmin

x(t) = x(t − �t) + v(t)�t

– end iteration 4
– end iteration over time
We must note that the variable radius is, in principle, a

property of the model not directly related to any physical
length. The variable radius is an effective radius considering
several properties of the real system:

(a) Pedestrians are not circles, they have a shoulder width
greater than the anteroposterior length. Therefore, depending
on the orientation and packing of the pedestrians within the
crowd the effective radius can be different.

(b) In this sense, rmin is related to the equivalent radius so
that a certain maximum density can be reached by a group of
people.

(c) On the other hand, a radius near rmax is related to a
sensor which regulates the minimum interpersonal distance at
which the movement of a pedestrian begins to be affected by
the presence of another pedestrian.

The escape velocity (ve) plays the role of an exclusion
principle, preventing pedestrians from overlapping and bump-
ing into obstacles and other pedestrians. If the magnitude
ve < vd max, an overlap of length (vd max�t) cannot disappear in
the next time step because the distance (ve�t) is smaller; then
interacting particles would have vd = 0 for at least two time
steps. Smaller values of ve will take more and more time steps
(hence more time) to separate particles and, consequently, to
start moving again with velocity v = vd . In the limit when
ve = 0, pedestrians entering into contact would not move
anymore.

Therefore, the parameter ve can be interpreted as inversely
related to a friction parameter which reduces the mobility of
a system of particles by producing a sticking effect on them.
For ve > vd max, it will be shown in Sec. IV that the model
behavior remains constant.

So, we choose for the model a fixed value of the escape
speed

ve = vd max. (9)

The parameter vd max is directly related to observed speeds of
free pedestrians in different situations, and it can be easily
adjusted in the model to reproduce the speed at nearly zero
density in any particular system. Therefore, the free parameters
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FIG. 2. (Color online) Simulated circular racetrack utilized to
measure the fundamental diagram of pedestrian traffic. The arrows
indicate the direction and sense of the desired velocities (ei

target).

of the model are rmin, rmax, and β, which can be tuned in order
to reproduce empirical data.

An additional advantage of the proposed model is that it
could also be adapted for simulating more general gravity-
driven granular flows, given that the friction of particles can
be adjusted by changing the parameter ve.

III. SIMULATIONS AND RESULTS

We implement the proposed model to simulate two different
scenarios: the movement of pedestrians in a circular racetrack
and the egress from a room through a narrow door. The goal
is to validate the model against experimental data reported
in the bibliography. The first scenario allows calculating the
fundamental diagram of simulated pedestrians and the second
one enables the measurement of the specific flow rates.

A. Fundamental diagram

The geometry of the simulated system is a circular racetrack
with an internal radius of 2 m and an outer radius of 4 m as
shown in Fig. 2. Particles were initialized with uniform random
position inside the circular geometry and with the variable radii
set at ri = rmin for all i. At all times the desired velocity of
each particle is tangential to the racetrack (see Fig. 2). The
number of pedestrians (Np) in the circuit was varied to study
the dynamics for different densities. Simulations with Np = 5,
10, . . ., 35, 45, 55, 65, . . ., 355, and 365 particles were made.

For each density, one hundred realizations were performed;
each one runs for 100 s. The positions and velocities of
the particles in the system were recorded every 0.1 s,
approximately (∼2�t). The first 30 s of each simulation were
discarded to ensure the system had reached its stationary state.

The density was calculated as the total number of particles
(Np) over the total area of the racetrack (ρ = Np

12π
). The velocity

corresponding to that density was calculated by averaging over
all particles and over time. The velocity of each particle was
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FIG. 3. (Color online) Experimental fundamental diagrams and
the one obtained with the proposed model employing the “set of
parameters 1”.

calculated as the projection of the instant velocity (4) onto
the desired velocity (vd ) (i.e., the vector tangential to the
racetrack).

As stated in Sec. I, there exists a variety of reported
empirical fundamental diagrams. Thus, we are going to use
the flexibility of the model to reproduce some extreme curves.
Published experimental data were taken from the public
database at [25].

We call “set of parameters 1” the following model param-
eters:

rmin = 0.15 m,

rmax = 0.32 m,

β = 0.9,

vd max = 1.55 m/s.
Simulations using these parameters produce an output very

similar to the fundamental diagrams reported in [17] and [20]
as can be seen in Fig. 3.

Furthermore, changing to “set of parameters 2,”
rmin = 0.10 m,
rmax = 0.37 m,
β = 0.9,
vd max = 0.95 m/s,

the model is able to approximate the data reported by
Predtechenskii and Milinskii [1] for densities up to 8 peds/m2

as shown in Fig. 4.
The capacity of the proposed model for reproducing

experimental data is remarkable. There are very few examples
of this kind of comparison in the literature ([10], [34]) for any
type of model; in particular, this has not been done before for
rule-based (automata) models, as far as we know. The fact that
different sets of parameters reproduce different fundamental
diagrams allows interpreting the macroscopic differences in
terms of the corresponding microscopic parameters.

Despite its simplicity, the CPM reproduce very well exper-
imental data for low, medium, and high densities. However,
it does not achieve a perfect fit near the stopping density.
Experimental fundamental diagrams show in most cases a
change of curvature before reaching the stopping density. This
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FIG. 4. (Color online) Experimental fundamental diagrams and
the one obtained with the proposed model employing the “set of
parameters 2”.

characteristic is not suitably reproduced by the model. In the
case of the data reported in [17] a stopping density is not
reached but there is a change of behavior near 6 peds/m2 where
a transition from laminar to turbulent flow is observed; also in
this case the model does not account for this transition. Further
investigations will be done in order to improve the CPM near
the stopping density region.

B. Specific flow rate

Simulations of pedestrians leaving a 20 m × 20 m room
with one exit were conducted to examine the specific flow rate
exhibited by the contractile particle model. Particles inside the
room have their targets located within the limits of the exit
door in two possible ways. Let x be the horizontal coordinate
were the exit door lies (y = 0); xe1 and xe2 are the left and
right borders of the exit, respectively, and L is the exit width
(L = xe2 − xe1).

(a) If particle pi has its xi coordinate such that xi < (xe1 +
0.2L) OR xi > (xe1 + 0.8L), then the target is a random point
in the interval [xe1 + 0.2L, xe1 + 0.8L].

(b) Otherwise (if xi > xe1 + 0.2L AND xi < xe1 + 0.8L)
then the target is right below the particle (xi

target = xi).
In both cases the y component of the target is yi = 0. Once a
particle has reached the target at the exit, a new target is placed
outside the room.

The initial positions of particles were uniformly distributed
inside the room with their initial radii at rmin in such a way the
initial desired velocities were zero. Exit widths of L = 1.2 m,
2.7 m, and 3.2 m were considered for the room containing 200,
500, and 600 pedestrians, respectively. Increasing door width
along with increasing number of pedestrians is used because
in real systems, wider exits are required to evacuate more pop-
ulated facilities. These values were chosen in accordance with
the method of determining egress capacity stated in Chapter
7 of the NFPA 101 Life Safety Code (2000 edition), which
indicates a minimum capacity factor of 0.5 cm per person.

In Fig. 5, some features of the egress simulation are shown:
First, a snapshot of the egress process with L = 1.2 m and
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t=32  s

(a) (b)

FIG. 5. (Color online) Details of one realization of the egress
process with L = 1.2 m and “set of parameters 2”. (a) Snapshot of
the process at t = 32 s. Each particle is represented by a dot; in the
figure the size of the dot is fixed and similar to rmin. (b) Two individual
trajectories of two arbitrary particles.

set of parameters 2 is shown; second, individual trajectories
of two arbitrary particles, of the same realization, are plotted.
In the case of the snapshot it can be seen that the crowd before
the door adopts a natural shape. Looking at the individual
trajectories, it must be noted that they are realistic and that
they show some slight fluctuation, which is less than 20 cm.
This fluctuation originates with small corrections (at the
microscopic level of the time step of the algorithm) produced
by changes in the velocities due to the emergence of the escape
velocity (ve) when particles enter into contact. It is worth
remarking that in spite of the microscopic corrections given
by ve, the observed macroscopic trajectories given by the CPM
agree qualitatively with the observed pedestrian trajectories.

Now, in order to study the specific flow rate [measured
as Np/(Total Evacuation Time L)], the egress from the room
was simulated by using the two sets of parameters found in
the previous subsection and the three exit widths given above.
For each configuration thirty realizations were performed. The
mean values are plotted as a function of the exit widths (and
the number of particles) in Fig. 6. In this figure, the following
facts can be observed:

(a) The specific flow rate (Qe) is nearly independent of the
number of people, as is expected for normal conditions (this
is also true for a fixed exit width and an increasing number of
particles).

(b) For both sets of parameters, the values obtained of Qe

lie totally within the experimental range [1.25–2 peds/(m s)].

IV. PARAMETER SENSITIVITY ANALYSIS

In this section we are going to study the dependence of
the proposed model on its parameters. First, let us analyze
how variation of the microscopic parameters (rmin,rmax, and β)
affect the fundamental diagram. Then we are going to study
the specific flow rate as a function of the model parameter ve.

As stated in previous sections, the magnitude vd max can
be easily determined by the speed of free pedestrians (the
zero-density value of the fundamental diagram). Therefore,
the other free parameters will be analyzed below. For each
new parameter studied, simulations were performed following
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FIG. 6. (Color online) Specific flow rate obtained from the
simulation of the egress of a 20 m × 20 m room, with one exit.
Number of people and exit width were varied accordingly (see text).
Dashed lines indicate the experimental range. Errors lie between the
symbol size.

the same specifications of the computational experiments (and
of the racetrack system) described in Sec. III A.

In Fig. 7 it can be observed that changing only rmin produces
alterations in the high-density zone of the fundamental
diagram. Decreasing rmin gives as a result a greater stopping
density and vice versa. This parameter can be associated with
the minimal effective radius inside a packed crowd, which also
allows tuning the maximum density reached by the simulated
system. It is worth noting that for low and medium densities the
curve does not change considerably; in particular, it remains
invariant near ρ = 2 peds/m2 as this value is a crossing point
for the three curves shown.
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FIG. 7. (Color online) Influence of varying the free model
parameter rmin on the fundamental diagram.
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FIG. 8. (Color online) Effect of varying the free model parameter
rmax on the fundamental diagram.

When only the parameter rmax is changed (Fig. 8) the impact
on the high-density zone is very little; on the contrary, the
curve at the low and medium density range (0.5–5 peds/m2,
in the present case) shows a major change. Hence, varying
rmax produces a complementary effect to that produced by
changing rmin. The parameter rmax could be interpreted, at the
microscopic level, as half of the minimum distance needed by
a pedestrian to take a full-length walking step. Therefore we
can state, in terms of the model, that this characteristic distance
is responsible for the shape of the fundamental diagram at low
and medium densities.

Figure 9 shows the influence of varying the form of the
function relating the desired velocity and the radius of a
given particle. This is achieved by changing the parameter
β in Eq. (1). It can be observed a quasirigid rotation of the
fundamental diagram around the fixed point at ρ = 0 and mean
velocity equal to vd max. For the experimental data studied in
Sec. III A it was found that the same β = 0.9 allows fitting very
different empirical data suggesting that this parameter (and the
pedestrian perception it represents) could be universal across
a variety of fundamental diagrams.

Finally, we are going to study the dependence of simulation
results on the model parameter ve. As said in Sec. II, this
parameter can increase or decrease the flow of particles by
generating a sticking effect when ve tends to zero. Figure 10
shows the specific flow rate of 200 pedestrians egressing from
the room through an exit of 1.2 m and with the parameters
given by set of parameters 1. As expected, it is observed that the
specific flow rate approaches zero as ve tends to zero. Also we
can verify that Qe does not change for ve > vd max (=1.55 m/s,
in this case). This justifies the choice made in Eq. (9).

V. CONCLUSIONS

An automaton model for description of pedestrian dynamics
was presented. The representation of the space and velocities is
continuous, and transitions of state are governed by predefined
rules (so it is not necessary to calculate forces), allowing the
simulation of the evolution of the system in time steps of about

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Density (1/m2)

V
el

oc
ity

 (
m

/s
)

 

 

β = 0.5
Reference curve ("set param. 2")
β = 1.3

FIG. 9. (Color online) Impact of varying the model parameter β

on the fundamental diagram.

0.05 s. This enhances considerably the speed of computation
with respect to force-based models.

Pedestrians are described by bidimensional particles with
variable radius between rmin and rmax. These are the relevant
parameters of the model that can be adjusted in order to
reproduce the available experimental data. In particular, the
different fundamental diagrams of pedestrian traffic reported
in the literature can be very well approximated by the proposed
model, with the correct set of parameters. Furthermore, with
the same parameters, the simulated specific flow rate of a group
of people egressing through a narrow exit is in total agreement
with the empirical data.

The flexibility of the model to adjust a wide range of
fundamental diagrams by changing the two parameters rmin

and rmax allows interpreting the difference between them in
terms of these model parameters. Further investigation will be
done in order to improve the fundamental diagram generated
by the model in the stopping density zone.
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