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We present an Fe–Cr interatomic potential to model high-Cr ferritic alloys.
The potential is fitted to thermodynamic and point-defect properties
obtained from density functional theory (DFT) calculations and experi-
ments. The developed potential is also benchmarked against other
potentials available in literature. It shows particularly good agreement
with the DFT obtained mixing enthalpy of the random alloy, the formation
energy of intermetallics and experimental excess vibrational entropy and
phase diagram. In addition, DFT calculated point-defect properties,
both interstitial and substitutional, are well reproduced, as is the screw
dislocation core structure. As a first validation of the potential, we study
the precipitation hardening of Fe–Cr alloys via static simulations of the
interaction between Cr precipitates and screw dislocations. It is concluded
that the description of the dislocation core modification near a precipitate
might have a significant influence on the interaction mechanisms observed
in dynamic simulations.

Keywords: interatomic potential; atomistic modelling; iron chromium
alloys; thermodynamics; dislocations

1. Introduction

High-chromium ferritic–martensitic steels (�9–12 at% Cr) are the materials of
choice for high temperature applications in aggressive environments (e.g. corrosion
and/or irradiation). As a consequence, they are the commonly proposed structural
materials for advanced nuclear reactors. This choice is supported by their superior
thermal, corrosion and radiation resistance compared to austenitic steels. A first
approximation to describe such steels in a modelling framework is the Fe–Cr binary
alloy.

The addition of chromium to iron significantly influences the response to
irradiation. It has been shown that the swelling in Fe–Cr is about one order of
magnitude lower than in pure Fe for the same dose [1–5]. A remarkable effect of Cr
is also reported in the shift of the ductile-to-brittle transition temperature (DBTT)
in irradiated ferritic–martensitic steels. This shift is found to reach a minimum
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around 9 at% Cr [6,7], in a range of irradiation temperatures from 300 to 410�C
and for doses from 7 to 36 dpa. This result is, in fact, an important reason for
choosing Cr concentrations around 9 at% in most steels proposed for nuclear
applications [7].

Even in the absence of irradiation, the Fe–Cr system exhibits a number of
peculiarities. Density functional theory (DFT) calculations have shown that the
mixing enthalpy exhibits a change of sign [8–14], which is negative below a critical
concentration of �10 at% Cr and positive above it. A negative mixing enthalpy
indicates solubility and a tendency to partial ordering, while a positive value
indicates that Cr atoms cluster into a separate Cr-rich phase (�0 phase). These results
are compatible with experimental observations that show an inversion of sign of the
short-range order (SRO) parameter from negative to positive, with the zero crossing
occurring at about 10 at% Cr [15–17]. However, this behaviour is not reflected in the
standard Fe–Cr equilibrium phase diagram [18], whose revision was therefore
recently proposed [19] by shifting the concentration of the Fe-rich phase boundary of
the meta-stable (when ignoring the sigma phase) miscibility gap to a larger Cr value
(�8 at% Cr), even at low temperature.

To better understand the behaviour of Fe–Cr alloys under irradiation, a
description at the atomic level is necessary. To address problems of technological
interest (e.g. plastic flow behaviour and evolution of the nano- and microstructure);
however, description at large time and space scales are necessary. Both small and
large-scale atomistic simulations essentially depend on the interatomic potentials
employed, which must strike a balance between the conflicting needs of computa-
tional speed and reliability. Thus, an interatomic potential describing the Fe–Cr alloy
reasonably well in the temperature range of interest is needed.

The complex behaviour of Fe–Cr is related to magnetic interactions [11]. Yet, in
the literature, two interatomic potentials have been developed in an embedded atom
method (EAM) like formalism, which are capable of reproducing Fe–Cr’s heat of
mixing behaviour as a function of composition, even without explicitly introducing
magnetism. Although both formalisms succeed at describing the complexity of the
ferro-magnetic phase in an effective way, temperature-dependent effects attributed to
magnetic transitions cannot be captured within these models. These potentials are
the two-band model (2BM) potential developed by Olsson et al. [20] (henceforth
OLS) and the concentration dependent model (CDM) potential developed by Caro
et al. [21] (henceforth CAR). Both formalisms are adaptations of the EAM,
introducing local concentration dependence. Both potentials, however, suffer from
some important drawbacks regarding thermodynamic properties, point-defect
properties and the description of screw-dislocations. In this work, we develop a
2BM potential to correct those short-comings, while keeping the known useful
qualities of both potentials.

The paper is organised as follows. In Section 2, we describe the 2BM formalism
and the fitting methodology used; in Section 3, calculated properties for the pure
potentials are presented and compared with existing potentials. Sections 4 and 5
report, respectively, thermodynamic and point-defect properties of our potential,
and compare them to experiment and DFT data; also included is a comparison
against OLS (strictly, the one fitted to PAW data from [20,22]) and CAR. In
Section 6, as a first application of our potential, we study Cr precipitation hardening
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by analysing the interaction between a screw dislocation and a Cr-precipitate. Finally,

Section 7 summarises the advantages and drawbacks of the different potentials.

2. Formalism and fitting methodology

It has been shown that both the 2BM and the CDM formalisms are adequate models

to describe Fe–Cr’s complex mixing enthalpy without accounting for magnetism

explicitly [23]. Here, we choose the 2BM formalism, where the total energy is given

as in the EAM with an extra embedding term, F s:

E ¼
1

2

X
i,j ði6¼j Þ

VtitjðrijÞ þ
X
i

F d
ti
ð�di Þ þ

X
i

F s
ti
ð�si Þ: ð1Þ

The additional embedding term on the right-hand side is assumed to stem from the

s-band electrons, while the standard embedding, F d, is thought of as resulting from

the d-band electrons [20]; ti denotes the atom type (in our case Fe or Cr) on site i. The

electron densities, �d and �s, for the d- and s-band, respectively, are calculated as

��i ¼
X
j ð j 6¼iÞ

’�titjðrijÞ: ð2Þ

Here, ’d and ’s are the d- and s-density functions, respectively, which comply with
the relations

’dAA ¼ ’
d
BA ¼ ’

d
A

’dBB ¼ ’
d
AB ¼ ’

d
B

’sAA ¼ ’
s
BB ¼ 0

’sAB ¼ ’
s
BA:

8>>>>><
>>>>>:

ð3Þ

This choice is in line with [20] so that the d-density reduces to the EAM density, and

the s-density samples the local concentration [23]. In this way, the s-embedding terms

are only relevant for the alloy and do not contribute to the pure elements’ energy,
which keeps the standard EAM expression.

Thus, for the Fe–Cr system and within the 2BM, 10 functions need to be

determined: VFeFe, F
d
Fe, ’

d
Fe, VCrCr, F

d
Cr, ’

d
Cr, VFeCr, F

s
Fe, F

s
Cr and ’

s
FeCr. The first three

functions determine the Fe potential, the second three the Cr potential and the last

four the mixed Fe–Cr interactions. For pure Fe, we chose the potential developed by

Mendelev et al. [24], while the pure Cr potential and the mixed Fe–Cr interactions

were fitted as described later. As is also detailed later, the main reason to refit the

potential for pure Cr is to provide a better description of dislocation properties in

this metal. Generally, the fitting of an interatomic potential to material properties

is a problem of matching data obtained from a trial function to a given data set.

This problem can be cast into one of minimising the overall squared deviation,

so-called objective function (OF), between the calculated properties and the
associated reference data, possibly also imposing constraints. Within our method-

ology, those properties become linear in the fitting parameters, reducing the scheme
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to a quadratic programming problem [25], which is exactly solvable; more details
are given below.

2.1. Chromium potential

Prior to fitting the pair interaction V and the embedding term F, we define a
reasonable form for the electron density function ’. For this purpose, a simple
Thomas–Fermi screening function is selected, which is shifted and truncated for a
smooth cut-off between third and fourth nearest neighbour distance (on the bcc
equilibrium crystal):

’ðxÞ ¼ ’0
expð��xÞ

x
�
expð��xcutÞ

xcut

� �
fcutðxÞ, ð4Þ

with x ¼ r=r1nn0 , r the distance in Å, r1nn0 the nearest neighbour distance for the bcc
equilibrium crystal (with lattice parameter a0¼ 2.878 Å), xcut ¼ 1:65 r1nn0 the cut-off
distance, ’0¼ 0.0676504617 a normalisation factor and �¼ 5. The cut-off function
fcut is defined as

fcutðxÞ ¼

1, x � 1

1�
ðx� 1Þ3

ðxcut � 1Þ3
, 15 x � xcut

0, xcut 5 x

8>>>><
>>>>:

: ð5Þ

The pair interaction V is parameterised by the cubic spline expansion:

VðrÞ ¼
XN
k¼1

akðrk � rÞ3�ðrk � rÞ, ð6Þ

where N denotes the number of knots, ak are the fitting parameters and � the
Heaviside unit step function. As explained below, the embedding term F is only
available in numerical format.

The essential material properties considered in the fit for pure Cr (anti-
ferromagnetic phase unless stated otherwise) are the correct stability of different
crystallographic structures, the cohesive energy Ecoh, the equilibrium lattice constant
a0, the elastic constants (for cubic lattice structures) C11, C12, C44 [26] (paramagnetic
phase, see Section 3), and the vacancy formation energy, EV

f . In addition to these,
also included in the fit is the formation energy of self-interstitial configurations
(dumbbells oriented along the h100i, h110i and h111i directions), the vacancy
migration energy, EV

m, the {110} h111i gamma surface cut, �, and the 1/2 h111i screw-
dislocation core structure. In particular, the gamma surface cut (�10 points) was
fitted through the OF, only using the effective pair potential (i.e. neglecting higher
order many-body contributions) [27]. The lattice parameter (zero pressure condi-
tion), unrelaxed vacancy formation energy, EV

f , and the three elastic constants were
fitted through equality constraints. The bcc lattice stability against fcc (Ecoh(bcc)–
Ecoh(fcc)4 0) and the Duesbery and Vitek condition for a compact 1/2 h111i screw
dislocation core (�(b/3)� 2�(b/6)4 0 [28], with b the length of the burgers vector)
were fitted through inequality constraints.
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Given the effective pair potential, the embedding function is computed by

subtraction from Rose’s equation [29], which describes the energy per atom E(ã)

for the lattice under uniform expansion or contraction. The expression as a function

of the nearest neighbour distance, r1nn, is given as

Eð ~aÞ ¼ �Ecohð1þ ~aÞ expð� ~aÞ: ð7Þ

Here, ~a ¼ �ðr1nn=r1nn0 � 1Þ and �2 ¼ 9�B=Ecoh, where � is the atomic volume and B

is the bulk modulus. This embedding function, however, is not the one entering the

potential. To ensure a smooth behaviour and, particularly, to constrain the function

curvature to remain positive throughout and decreasing at high density, the former

embedding is re-fitted on a discrete number of points (�100) taken as reference data.

The fit is performed in a minimum square sense and by a cubic spline expansion (also

fulfilling F 0(0)¼ 0). It is the latter expansion that constitutes the embedding function.

The price paid for a smooth behaviour is a violation of Rose’s equation; however, in

the applications of interest the lattice will never be subjected to the large, uniform

contractions and dilations that are probed by Rose’s equation. Finally, the last

fitting step consisted in accommodating manually (i.e. by trial and error) the short

distance region to fit the DFT obtained values for self-interstitial formation energies.

2.2. Alloy potential

Given the EAM potentials for the pure elements and prior to fitting VFeCr, F
s
Fe and

F s
Cr, we define a reasonable form for the s-electron density function ’sFeCr. In line

with [20], the square of a 4s-type Slater function is chosen:

’sFeCrðrÞ ¼ Kr6 expð�2�rÞ gcutðrÞ: ð8Þ

Here, K¼ 20.34075425 is a normalisation constant, �¼ 2.5001 and gcut is a cut-off

function to provide a smooth cut-off between fifth and sixth nearest neighbour

distance:

gcutðrÞ ¼

1, r � ric

1

2
1� sin

�

2

ðr� rmÞ

d

� �� �
, ric 5 r � rfc

0, r fc 5 r

8>>>><
>>>>:

, ð9Þ

with r ic¼ 5.1 Å the inner cut-off, r fc ¼ 5.3 Å the outer cut-off, rm ¼ ðr
i
c þ r fc Þ=2 and

d ¼ ðr fc � r icÞ=2. The mixed pair interaction VFeCr is parameterised by a cubic spline

expansion as in Equation (6), while the s-embedding functions Fs are parameterised

by an extended second moment expression similar to [20,30]:

Fsð�Þ ¼ A1
ffiffiffi
�
p
þ A2�

2, ð10Þ

with A1 and A2 fitting parameters. The square root proved to be essential in

reproducing the correct trends in Cr–Cr and Cr–vacancy interactions. In fact, former

attempts using spline expansions, as in [23], were met with failure. In this work,
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we normalised the (maximum) s-density in such a way that unity corresponds to a
single Cr hosted in the Fe matrix.

The mixed pair interaction, as well as both s-embedding functions, were fitted
simultaneously to all properties of interest. The mixing enthalpy was fitted in the
whole concentration range (�50 points) using a variance expansion as described
in [23], while, at each concentration, a zero pressure condition was imposed to obtain
a lattice parameter as close as possible to the linear interpolation between the
equilibrium lattice parameters of the pure elements. In addition, the Cr–Cr and
Cr–vacancy interaction energies up to second nearest neighbour were fitted, as well
as the Cr–vacancy migration energy in Fe, using DFT reference values as guides [12].
All the mentioned properties were fitted using appropriate weights to obtain
reasonable values. In addition to the expansion coefficients of the s-embedding
functions and the mixed pair potential, there remains one degree of freedom
that expresses the relative weight between the d-densities of Fe and Cr, �Fe/�Cr.
By manually changing this fraction and consequently solving the quadratic
programming problem, we fitted the excess vibrational entropy, computed in the
harmonic approximation [31], to a value as close as possible to the experimental one,
without losing the above properties and without stabilising unphysical intermetallic
compounds. Finally, the potential was manually adjusted in the short distance region
to reproduce the DFT-obtained binding energy of the mixed h110i Fe–Cr dumbbell.
A description of the full Fe-Cr potential is given in Appendix 1.

3. Properties of the iron and chromium potentials

From the EAM-type potentials available in the literature to describe pure Fe that
are capable of reproducing the h110i self-interstitial configuration as the most stable,
we considered those from [24,32,33], finally selecting ‘‘potential 2’’ developed by
Mendelev et al. [24], which has been widely used and tested. In [34], it has been
demonstrated that the potentials from [24] and [32] succeed best in reproducing the
properties of iron that are of interest for radiation-damage studies. However, of all,
our choice is the only one for which a clear proof exists of being able to consistently
describe stable glide of a screw dislocation in a {110} plane [35].

Among the potentials for Cr, we considered those from [36] and [20]. The latter,
henceforth O05, was used in combination with the Fe potential by Ackland et al. [32]
to produce the OLS and CAR potentials. The basic properties of our potential are
summarised and compared to O05 and DFT data in Table 1. There,
B¼ (C11þ 2C12)/3 is the bulk modulus, C 0 ¼ (C11�C12)/2 is the tetragonal shear
and C44 is the shear modulus [26]. Clearly, the experimental elastic properties are well
reproduced by both potentials. Note, however, that, at zero Kelvin, Cr is anti-
ferromagnetic and has a negative Cauchy pressure [37], which cannot be reproduced
within a standard central force framework [38–40]. Above its Néel temperature
(�310K), however, Cr is paramagnetic with a positive Cauchy pressure [41]. Since
we focus on technological applications above room temperatures, our potential was
fitted to the elastic constants of paramagnetic Cr, linearly extrapolated down to zero
Kelvin (the values given in Table 1, see e.g. [36]). Furthermore, our potential
also closely fits a0, E

V
f , Ecoh and EV

m, obtaining improved values for the latter two.
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The relative stability between the different self interstitial configurations is not
equally well reproduced as by O05, but the important trends given by DFT are
reproduced, i.e. the h110i and h111i configurations are almost degenerate and more
stable than the h100i configuration. Finally, our potential is closer to DFT data
regarding the energy difference between the body-centred cubic (bcc) and face-
centred cubic (fcc) phase, thus providing enhanced stability of the bcc phase at high
temperature. In summary, from the values presented in Table 1, we can conclude that
the basic properties of Cr are equally well reproduced by both potentials.

The O05 potential, however, does not reproduce the correct structure for a 1/2
h111i screw-dislocation core, which is the main reason to refit the Cr potential. This
is depicted in Figure 1 via differential displacement maps [42]. Clearly O05 shows
a three-fold symmetry core, the opposite of the compact one, as predicted by
DFT [43] and our potential.

4. Thermodynamic properties

Prior to presenting the phase diagrams resulting from the different potentials, we
compare and discuss statically calculated properties that influence the Fe–Cr phase
diagram. In Figure 2, the mixing enthalpy calculated with the three potentials is
compared to DFT data [8,12,44]. For the mixing enthalpy resulting from the
potentials, 50 compositions in the complete concentration range were sampled.
For each composition, the solutes were randomly distributed in cubic bcc crystals
containing 2000 atoms and relaxed at zero pressure using a conjugate gradient
method. Although different DFT techniques give different values for the mixing
enthalpy, the DFT curves show the same behaviour, i.e. a change of sign in the

Table 1. Summary of the basic properties of both Cr potentials.

Experiment or DFT This study O05

a0 (Å) 2.878a/2.834b 2.866 2.878
B (GPa) 208c 215 208
C 0 (GPa) 152c 155 152
C44 (GPa) 105c 108 105
Ecoh (eV) 4.10 4.10 3.84

EV
f (eV) 2.0� 0.2d/2.59b 2.52 2.56

EV
m (eV) 0.95e 0.94 0.99

Efcc
coh � Ebcc

coh (eV) �0.4f �0.16 �0.03

Eh110if � Eh111if (eV) �0.02b �0.07 �0.02

Eh110if � Eh100if (eV) �1.12b �0.58 �1.23

Notes: aExperimental [63].
bDFT [20].
cExperimental [41].
dExperimental [64].
eExperimental [65].
fDFT [66].
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mixing enthalpy, being negative below �5 at% Cr and positive above. Both 2BM
potentials were fitted to DFT data [12,44] obtained from special quasi-random
structures (SQSs) [45] while CAR was fitted to DFT data [8] obtained from a
coherent potential approximation (CPA) [46]. The mixing enthalpy curves from
our potential and CAR reproduce the DFT mixing enthalpy very well, both
qualitatively and quantitatively. Below �25 at% Cr, this is also true for OLS; the
complete curve, however, takes a symmetric shape, in contrast to the asymmetric
DFT shape. As a consequence, the mixing enthalpy takes negative values at the
Cr-rich side too, leading to short-range order and high Fe solubility in the Cr-rich
phase. These observations contradict DFT data and have never been reported
in experimental studies.

Figure 1. Comparison of the screw component of differential displacement maps obtained
with our potential (a) and the O05 potential (b).
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Figure 2. Comparison of the mixing enthalpies obtained from the potentials with DFT data
[8,12,44].
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The formation energy of intermetallic compounds is another issue to be
considered. In Figure 3, the formation energy of 57 intermetallic compounds
(as described in [11,47]) calculated by the three potentials and DFT are compared.
In both cases, the configurations were relaxed at zero pressure using a conjugate
gradient method. Below 10 at% Cr, DFT predicts stable intermetallic compounds,
consistent with the negative mixing enthalpy for the disordered alloy. Above 10 at%
Cr, the formation energy of the intermetallic compounds becomes positive and
remains so throughout the composition range.

In the Fe-rich region (510 at% Cr), the most stable compounds predicted by
DFT are also the most stable ones predicted by all three potentials (see Figure 3),
with most importantly the lowest compound at 6.67 at% Cr. This compound is
described by a unit cell with axes oriented along the ½210�, ½�120� and ½001� directions
with dimensions

ffiffiffi
5
p

a0	
ffiffiffi
5
p

a0	 3a0. It contains 30 atoms, of which 2 Cr are
separated by 7 nn distance (

ffiffiffiffiffi
19
p

=2a0) along ½133�. It should be noted that this
compound is consistent with the ordered phase observed in the Monte Carlo
simulations by Pareige et al. [48] using OLS. Among the three, both 2BM potentials
also give good quantitative agreement in that concentration range. At higher Cr
composition (410 at%), OLS generally overstabilises the compounds thereby even
giving negative values at 50 and 93.33 at% Cr. The latter is consistent with the low
(compared to DFT) and negative mixing enthalpy of the disordered alloy at
equiatomic and Cr-rich compositions, respectively. Such negative values in turn
may lead to unphysical configurations in the course of, for example, Monte Carlo
simulations, and thus constitute a drawback of the potential. The other two
potentials do not suffer from the latter problems, although ours still somewhat
overstabilises the compounds.

Experiments have shown the excess vibrational entropy to be non-negligible for
the Fe–Cr system [49–51]; also, it was predicted to have a significant influence on the
location of the solubility limit [44]. We calculated the excess vibrational entropy with
all three potentials for disordered alloys, based on the harmonic approximation [31]
in the D point applied to cells containing 1024 atoms, prepared as purely random
samples.
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Figure 3. Comparison of the formation energy obtained by the different potentials with the
corresponding DFT values [11,47,48] for various intermetallic compounds.
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In Figure 4, excess vibrational entropies for all three potentials are compared
with experimental values for the ferro-magnetic phase [49,51]. The experimental
curves suggest a non-negligible contribution to the total excess entropy, amounting
to 30–40% of the configurational entropy for the disordered alloy. As shown in the
figure, none of the potentials gives a close fit to the experimental values. From
the three, however, both 2BM potentials agree best, with ours and OLS closest to the
data from [49] and [51], respectively. In the former case, the experimental data
is underestimated by a factor of about 1.5; in the latter, it is overestimated (below
�75 at% Cr) by about the same factor. The CAR potential, on the other hand,
underestimates S vib

xc by about a factor 3 and gives negative contributions below
�12 at% Cr, which contradicts experiments (see also [44,52]).

The phase diagrams based on all three potentials are compared to a recently
proposed parameterisation based on the CALPHAD methodology [53] in Figure 5.
The CALPHAD miscibility gap is calculated from an experimentally based [53,54]
Gibbs free energy parameterisation. To indicate the ferro to paramagnetic phase
transition, the CALPHAD calculated Curie temperature is also added. The phase
boundaries for our potential and OLS are obtained from isobaric Monte Carlo
simulations in the semi-grand canonical ensemble [55]. In the figure, the data points
are interpolated by smooth curves to guide the eye. These curves are based on the
data points and the fact that full solubility was verified to occur starting from 1200
and 800K for our potential and OLS, respectively. The phase boundaries for CAR
were obtained from free energy calculations using a thermodynamic integration
technique (see [52] for more details). Thus in all cases vibrational and configurational
entropy were accounted for.

When focussed on the Fe-rich side, we observe large Cr solubility at low
temperature, due to the negative heat of mixing. As shown in Figure 5, this
behaviour is well reproduced by all potentials, with a particularly close agreement
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Figure 4. Comparison of the excess vibrational entropy obtained from the different potentials
with the experimental values from [49,51].
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for ours. At about 750K, the Fe-rich solubility limit increases until full solubility is
observed above the critical temperature �900K within the CALPHAD calculation.
The curve resulting from OLS underestimates this critical temperature by �200K,
while our potential overestimates it by roughly the same amount. The critical
temperature resulting from CAR, on the other hand, lies above the melting
temperature. Note that the difference in critical temperature between OLS and ours
closely follows the different trends observed in the excess vibrational entropy. Good
agreement of the critical temperature obtained with potentials and CALPHAD
should not be expected since magnetic interactions are not explicitly included in the
former. Below �25 at%, however, direct comparison with the CALPHAD phase
diagram is justified since in this concentration range the CALPHAD phase boundary
is well below the Curie temperature. For higher Cr concentrations, however, care
should be taken as the magnetic transition might significantly affect the solubility;
thus close agreement between experiment and potential prediction might not be a
concern for potentials that effectively describe the ferro-magnetic phase.

On the Cr-rich side, the Fe solubility approaches zero with decreasing tem-
perature, which is well reproduced by both our potential and CAR. The OLS
potential, on the other hand, predicts high Fe-solubility as an unphysical artefact
of the negative heat of mixing at the Cr-rich side.

5. Point-defect properties

The formation, migration and binding energies reported in the current section
were calculated in cubic bcc boxes containing 2000 atoms at constant volume

0 20 40 60 80 100
300

450

600

750

900

1050

1200

T
Curie

 BON
 OLS
 CAR
 Calphad

T
 (

K
)

Cr Fraction (at %)

Figure 5. Comparison of the phase diagrams resulting from the different potentials against
a CALPHAD-based calculation. The curves for OLS and our potential were taken from [55],
while, for CAR and CALPHAD, they were taken from [52] and [53], respectively.
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(a0¼ 2.8553 Å) up to a precision of 1meV. For the formation and binding energies,
the boxes were relaxed using a conjugate gradient method and the migration energies
were estimated using the nudged elastic band method [56].

In Figure 6, the Cr–Cr and Cr–vacancy interaction energy (EI) in bulk Fe,
calculated using the three potentials and DFT [12], is presented. The DFT data
show Cr–Cr repulsion in bulk Fe that decreases fast with increasing distance.
This behaviour is mainly responsible for the experimentally observed SRO and is
acceptably well reproduced by all potentials. Both 2BM potentials, however,
underestimate the difference in repulsion between first and second nearest neighbour
Cr pairs; an effect that is well reproduced by CAR. Concerning the Cr–vacancy
interaction, according to both DFT calculations [12] and experiments [57], it is
essentially negligible. As shown in Figure 6, this feature is also qualitatively
reproduced by all potentials, which predict weak repulsion between Cr and vacancy.
It is important, however, that the interaction energy between 1 nn and 2 nn
Cr–vacancy pairs increases, as reproduced by all potentials. This is a prerequisite
to obtain the correct order between forward and backward Cr–vacancy exchanges
for several chemical environments in the Fe matrix, as discussed further.

In Figure 7, the average (of forward and backward) vacancy migration barriers
for different local Cr configurations calculated with the three potentials are
compared to the corresponding DFT values [58]. The DFT results show that the
barriers are largest for both Cr and Fe exchanges when there are three Cr and three
Fe atoms occupying the six nearest neighbour positions around the saddle-point.
This effect is only reproduced by our potential, although OLS and CAR also
give reasonable trends. Note, however, that in the case of CAR potential, the value
for Cr migration in bulk Fe is significantly overestimated. As a consequence,
Cr migration barriers calculated with CAR are somewhat higher as compared to
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Figure 6. Comparison between DFT [12] and all three potentials of the interaction energy
between Cr–Cr and Cr–vacancy pairs in bulk Fe.
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the corresponding DFT values. For the Fe jumps, on the other hand, the migration
barriers are largely underestimated when locally enriched by three or more Cr atoms.
For completeness, a table summarising the precise configurations and values
of both forward and backward jumps on which Figure 7 is based is given in
Appendix 2.
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Figure 8. Formation energies of different interstitial configurations in bulk Fe and Cr,
calculated using DFT [12] and the three different potentials.
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In Figure 8, we show the formation energy of interstitial defects in bulk Fe,
taking the h110i mixed dumbbell as reference; values predicted by DFT [12] and the
three potentials are compared. From the DFT data [12], it follows that the h110i
mixed dumbbell configuration in bulk Fe has the lowest formation energy. However,
the inclusion of Cr in the defect diminishes the difference in formation energy
between the h111i and h110i configurations.

In the case of pure Fe, all potentials follow the DFT trend reasonably well, with
a proper reproduction of the relative differences between the formation energies
of the h100i, h110i and h111i configurations being the most important feature. With
the introduction of Cr, the data from our potential still captures the shape of the
DFT curves reasonably well, while the data from OLS give almost degenerate values
for all configurations. The CAR potential, on the other hand, fails to reproduce the
h110i mixed dumbbell as the lowest energy configuration.

Next, we compare the binding energy of Cr interstitials in bulk Fe obtained from
the three potentials with the corresponding DFT values [12]. Such a comparison is
presented in Figure 9. As expected from the above results, the CAR potential shows
poor agreement with DFT data. Given that both 2BM potentials were only fitted to
the binding energy between a single Cr and the h110i dumbbell, they show reasonable
agreement with DFT. In particular, our potential is the only one that correctly
reproduces the sign for all reported binding energies.

6. Dislocation–precipitate interaction

Here, we address the problem of dislocations in Fe and Cr and of the interaction of
a 1/2h111i screw dislocation with Cr precipitates in the Fe matrix, as obtained
from static simulations. The dislocation core energy and radius, shear modulus,
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Figure 9. Comparison between DFT [12] and the three potentials of the binding energy of Cr
interstitial configurations.
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Poisson ratio and Peierls stress for a 1/2h111i screw and a 1/2h111i{110} edge
dislocation in the pure metals are summarised in Table 2. Details regarding the
calculations can be found in [59], where the interaction of an edge dislocation with Cr
precipitates was characterised. From Table 2, it appears that the two Fe potentials
provide very similar results, whereas the Cr potentials exhibit at least two essential
differences. The shear modulus calculated with our potential is �30% smaller, while
the Poisson ratio is two times larger than according to OLS. The characteristics
of the core of both edge and screw dislocations are similar with both potentials.
Finally, we note that the two Cr potentials predict approximately the same Peierls
stress (	P) for the screw dislocation, which is higher than 	P in Fe by 35 and 55%
according to OLS and our potentials, respectively.

The interaction of a screw dislocation with Cr precipitates was studied in a bcc
simulation box with dimensions 20	 12	 28 nm3 with axes oriented along the ½�1�12�,
½1�10� and ½111� directions. Periodic boundary conditions were applied in the ½111�
direction and a straight screw dislocation with left-handed thread and Burgers vector
b¼ 1=2½111� was created. A Cr precipitate was inserted at a defined distance from the
dislocation line and placed so that its centre coincides with the ð1�10Þ glide plane
of the screw dislocation. Then the relaxation was performed to calculate the total
energy of the crystal as a function of the distance between the precipitate centre and
dislocation line. The precipitate–dislocation interaction energy EI was estimated
as EI¼ (EDþP

þEFe)� (ED
�EP), following [60] (positive values indicate repulsive

interaction). Here, EDþP, ED and EP are the total energy of the crystal containing the
dislocation interacting with the precipitate, dislocation only and precipitate only,
respectively. EFe is the total energy of the Fe crystal with the same geometry and
boundary conditions as the crystals used to calculate the above mentioned energies.
All crystals were relaxed to reach a convergence of at least 5meV in the total energy.

As mentioned in Section 3, the two Cr potentials predict different core structures
for the screw dislocation in pure Cr. Therefore, it is of interest to investigate whether
or not the non-degenerate-to-degenerate core structure modification occurs at the

Table 2. Properties of Fe and Cr as obtained from the potentials.

Property

Iron Chromium

OLS This study OLS This study

Lattice unit a0 (nm) 0.28553 0.28553 0.2878 0.2866
Core radius r0 (b) 3 3 3 3
Core energy EC screw (eV/nm) 4.24 4.27 6.27 6.23
Core energy EC edge (eV/nm) 6.97 7.01 9.71 9.6
Shear modulus* 
 (GPa) 73 73 130 89
Poisson** ratio v 0.49 0.49 0.21 0.4
Peierls stress for 1/2h111i screw

dislocation for the glide in a
(110) plane (GPa)

1.4 1.3 1.95 2.02

Notes: *The shear modulus was estimated by straining a crystal on a {110} plane in a h111i
direction, as was done in [67].
**The Poisson ratio was determined following the method used in [68] for pure Fe.
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precipitate–matrix interface and inside the precipitate. It should be noted that such
a modification was found to occur with OLS in our previous study [61]. To address
this issue, the core structure of different dislocation segments, selected according
to the scheme presented in Table 3, was constructed using the differential dis-
placement (DD) method [42] from the atomic positions obtained after relaxation.
The corresponding DD maps are also presented in Table 3. Firstly, we observe that
the core structure of the segment located near the centre of the precipitate was found

Table 3. Differential displacement maps drawn in the (111) zone for a screw dislocation
interacting with a 2-nm precipitate. The thick dashed line shows the edge of the precipitate and
a double arrow shows the directions of the preferential split of the dislocation core. The centre
of the dislocation core is shown by the symbol x.
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to be the same as in pure Cr for the corresponding potentials, i.e. the three-fold split
core for OLS and isotropic for our potential (Figure 1). The core of the segment
penetrating the precipitate normal to its surface (#1 of Table 3) has a two-fold
structure with pronounced split over the precipitate surface, similar for both
potentials. However, a difference in the core structure was found for the segments
penetrating the precipitate at a tangent to its surface (#2 and #3 in Table 3 as the
limiting case). With our potential no isotropic or three-fold structure modification
occurs, contrary to OLS. Additional calculations, not reported here, proved that,
with OLS, the isotropic-to-degenerate core transformation occurs not only inside the
precipitate but also everywhere near the precipitate–matrix interface. The latter
implies that, in MD simulations, such core transformation may manifest itself as
emission of kink pairs in the {112} plane, thus causing cross-slip movement instead
of stable glide (see [43] for details).

The interaction energy of the dislocation with precipitates of different sizes as
a function of distance between precipitate centre and dislocation line is presented
in Figure 10. Qualitatively, the curves look similar for both potentials, showing a
maximum in the centre of the precipitate and a fast decrease beyond the precipitate
radius. Quantitatively, however, the maximum interaction energy estimated with
OLS is about twice as high considering precipitates of the same size. The derivative
of the interaction energy with respect to the distance gives an estimate for the
interaction force, from which the maximum force (and hence stress) necessary for
the dislocation to shear a precipitate can be calculated. Irrespective of the precipitate
size and applied potential, the maximum interaction force occurs at �65% from the
precipitate centre.

The difference in magnitude of the interaction energy between the two potentials
can be attributed to the difference in the shear modulus of pure Cr (see Table 2). For
a more correct treatment, however, contributions from the chemical energy (due to
additional Fe–Cr interface) and dislocation core energy (which differs in Fe and Cr)
should not be neglected. Therefore, we have performed additional calculations
allowing the total interaction energy to be decomposed into the contributions
coming from the shear modulus misfit, chemical and relaxation (related to the strain
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Figure 10. Precipitate dislocation interaction energy as function of the distance for our
(left) and the OLS potential (right). The position of maximal force between precipitate and
dislocation is indicated by FMAX.
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created around the precipitate) excess energy. The chemical component, ES, was
calculated statically, by shearing a precipitate in the ð1�10Þ plane at its centre by
the distance b, in a number of steps, each equal to 2RP/b, followed by relaxation.
In this way, we mimic the shearing of the precipitate due to the advance of the
screw dislocation. The shear modulus misfit component, E
, was calculated by
taking the volume integral of the dislocation strain energy between the particle
centred at (hx, hy, 0) and a dislocation line parallel to the z-axis, following the
expression [62]:

E
 ¼

P � 
M


M

Z
P

� 
DZð�, �Þ 
 eMð�, �Þ 
 d� 
 d�: ð11Þ

Here, the subscripts M and P indicate, respectively, matrix and precipitate,
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and � ¼ arctanðy=xÞ are the standard polar coordinates, eð�, �Þ ¼


 b2=8�2�2 is the strain energy density and DZ is expressed as

DZð�, �Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

P � ð� cos � � hxÞ
2
� ð� sin � � hyÞ

2
q

: ð12Þ

In turn, the excess relaxation energy was calculated as Exc¼EI� (ESþEm).
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Figure 11. Different contributions to the interaction energy (top row) and interaction force
(bottom row) for our (left) and the OLS potential (right), for a 4-nm Cr precipitate. The
position of the precipitate edge and maximal force between precipitate and dislocation are
indicated by RP and FMAX, respectively.
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As a representative example, the three above determined components and their
derivatives, calculated for a screw dislocation interacting with a 4-nm precipitate, are
shown in Figure 11. The smallest contribution comes from the chemical component,
whose curve is magnified 10 times for better observation while the contribution from
the shear modulus misfit clearly dominates. As expected, its absolute contribution is
the highest for OLS. Interestingly, the third term, i.e. the relaxation excess energy,
appears to be approximately the same and negative for both potentials. In absolute
terms, however, Exc is higher for OLS.

7. Summary and concluding remarks

Based on the phase diagram, all potentials are capable of reproducing short-range
order and �0 precipitation. Our potential, however, seems to be the best compromise
for thermodynamic modelling. It gives an asymmetric mixing enthalpy, does not
stabilise unobserved intermetallic compounds (unlike OLS), provides (though
underestimated) a significant amount of excess vibrational entropy (unlike CAR)
and a reasonable agreement with the experimental miscibility gap, given that
magnetic interactions are not explicitly included in the formalism.

Based on the description of substitutional defect interactions and the phase
diagram, both OLS and our potential a priori seem to be the most appropriate choice
to simulate thermal annealing in Fe–Cr alloys. Besides a proper reproduction of the
thermodynamic limit, a reasonable reproduction of vacancy migration barriers,
Cr–Cr and Cr–vacancy interactions assure that the correct kinetic path is followed
using the correct mechanisms. All potentials provide a reasonable description of the
Cr–Cr and Cr–vacancy interactions, but only the 2BM potentials provide reasonable
values for vacancy migration barriers, with ours following the DFT trends the closest
among the two.

Based on the description of interstitial and substitutional defect interactions and
the phase diagram, both 2BM potentials a priori seem to be the most appropriate
choice to simulate thermal annealing of Fe–Cr alloys under irradiation. Besides a
proper description of thermal annealing, a correct stabilisation of interstitial
complexes is needed to assure that the correct micro-structure is obtained under
irradiation. Both 2BM potentials provide reasonable interstitial stabilities (ours in
particular), while CAR poorly reproduces interstitial properties.

Based on the description of the 1/2 h111i screw dislocation core structure (in bulk
Fe and Cr) and its stable glide in a {110} plane in bulk Fe, our potential a priori
seems to be the most suitable choice for the simulation of precipitate–screw
dislocation interaction. From the three potentials, ours is the only one reproducing
the compact 1/2 h111i screw dislocation core structure in bulk Cr. In addition, our
static simulations have revealed an isotropic-to-degenerate core transition in every
position near the precipitate with OLS that is not seen with our potential. Such a
core modification may lead to different interaction mechanisms in dynamic
simulations, such as cross slip.

In summary, we have shown that the developed Fe–Cr potential reached the goal
of removing the main shortcomings of previously existing ones, while conserving
their ‘‘good’’ properties. It should be noted, however, that it is not stiffened to the
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screened Coulomb interaction and is, therefore, not suitable to simulate collision
cascades in its present form.
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Appendix 1. Tabulation of the potential functions

Tabulations containing up to 5000 points are available online as supplementary material
related to this paper or at: http://www.ctcms.nist.gov/potentials/ or upon request to the
authors. Note that a tabulation of the s-embedding functions is not provided due to the
singular slope in the origin, so that care should be exercised if used in tabular form.
The parameters for the s-embedding functions are A1¼�0.217009784, A2¼ 0.388002579 and
A1¼ –0.00977557632, A2¼ 0.374570104 for Fe and Cr, respectively.

Appendix 2. Vacancy migration barriers

In this Appendix, the migration barriers for Fe–Vacancy and Cr–Vacancy exchange for
different local chemical environments are provided. The latter are built by adding Cr atoms
at the six nearest neighbour positions around the migration saddle point. The details are as
reported in Table 4 next.

Table 4. Vacancy migration barrier (eV) for different local Cr configurations, with the first
and second value denoting the forward and backward jump, respectively. In the figure, black
circles are Fe, white circles are Cr, grey is the migrating atom, and the square represents the
vacancy.

Configuration DFT This study OLS CAR

ECr
m 0.57/0.57 0.57/0.57 0.56/0.56 0.90/0.90

EFe
m 0.64/0.64 0.63/0.63 0.64/0.64 0.63/0.63

ECr
m 0.72/0.54 0.63/0.57 0.61/0.53 0.97/0.87

EFe
m 0.66/0.60 0.65/0.63 0.67/0.63 0.64/0.62

ECr
m 0.79/0.52 0.66/0.58 0.62/0.51 1.00/0.85

EFe
m 0.73/0.57 0.67/0.63 0.68/0.61 0.65/0.61

(Continued )
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Table 4. Continued.

Configuration DFT This study OLS CAR

ECr
m 1.09/0.69 0.68/0.58 0.59/0.49 0.99/0.82

EFe
m 0.84/0.55 0.69/0.63 0.67/0.60 0.65/0.59

ECr
m 0.88/0.55 0.67/0.61 0.56/0.51 0.86/0.77

EFe
m 0.78/0.58 0.68/0.64 0.66/0.62 0.57/0.55

ECr
m 0.74/0.56 0.66/0.62 0.54/0.52 0.76/0.72

EFe
m 0.70/0.61 0.67/0.65 0.65/0.64 0.50/0.50

ECr
m 0.56/0.56 0.64/0.64 0.52/0.52 0.67/0.67

EFe
m 0.64/0.64 0.66/0.66 0.64/0.64 0.47/0.47
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