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Abstract. A new methodology based on information theory is used to explore the evolution of the surface
air temperature climate network over the Tropical Pacific region. Topological changes over the period 1948–
2009 are investigated using windows of one year duration. Alternating states of lower/higher efficiency in
information transfer are consistently captured during the opposing phases of ENSO (i.e., El Niño and La
Niña years). This cyclic information transfer’s behavior reflects a higher climatic stability for La Niña
years which is in good agreement with current observations. In addition, after the 1976/77 climate shift, a
change towards more frequent conditions of decreased information transfer efficiency is detected.

1 Introduction1

El Niño/Southern Oscillation (ENSO), an occasional and2

quasiperiodic shift in winds and ocean currents centered3

in the Tropical Pacific region, is linked to anomalous4

global climate patterns responsible for producing world-5

wide socioeconomi c impacts. La Niña effects on global6

weather variability are approximately opposite to those of7

El Niño [1], and the atmospheric response to strong La8

Niña events tends to be weaker than that of the strong El9

Niño events [2]. In this work, we investigate the changes10

in the structure of the Tropical Pacific climate network11

using a novel approach based on complex network theory12

in order to gain new insights into the dynamical changes13

associated to the El Niño/Southern Oscillation.14

During the last decade, the development and use of15

complex networks theory has led to major advances in16

the analysis of the behavior of dynamical systems in nu-17

merous areas of science [3] and references therein. Ap-18

plications of complex networks to climate are recent and19

based on the premise that climate dynamics can be repre-20

sented as a network of interacting units, with information21

(matter and energy) flowing between them [4,5]. When22

this information, carried by the flow of matter and en-23

ergy, is transferred between these units (nodes), a link is24

created. In practice, the climate network is constructed25

using a global climate dataset. Each grid point in the spa-26

tial grid represents a node and links are created for pair of27

a e-mail: patricia.saco@newcastle.edu.au

nodes that show significant statistically interdependence 28

(for example, significant correlation). Excellent introduc- 29

tory descriptions of the theory and construction of climate 30

networks can be found in the review papers [6,7]. 31

The analysis of climate networks has provided valu- 32

able insights into different aspects of the climate dynam- 33

ics that could not be captured using the classic methods 34

frequently used in climatology like principal component 35

or singular spectrum analysis [4–15]. These novel insights 36

include the identification of super-nodes related to tele- 37

connection patterns of the atmosphere [6], the presence of 38

“small-world” properties due to long range connections in 39

the climate network [6], and wave-like structures of high 40

energy flow related to global surface ocean currents [7]. 41

Additional work on climate networks [4] comparing re- 42

sults from two climate networks, one constructed from the 43

global surface temperature data for all El Niño years and 44

the other with the data for all La Niña years, showed 45

that the number of total network links decreases for El 46

Niño years and that this change is related to a decrease 47

in information transfer and thus on predictability of cli- 48

matic variables. Further understanding on network struc- 49

tural changes between El Niño and non-El-Niño time pe- 50

riods over various geographic regions has been recently 51

obtained by analyzing the temporal evolution of the num- 52

ber of network links [5,12], and the presence of unstable 53

or blinking links during El Niño [16]. 54

Here we use a novel integrative approach that enables 55

us to further investigate the temporal evolution of the 56
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climate network for the Tropical Pacific region. We track1

structural changes related to ENSO dynamics, and we are2

able to identify changes for individual El Niño and La3

Niña events, by computing the network topology for slid-4

ing temporal windows of one year duration over a record of5

62 years. Local and global network properties are analyzed6

by quantifying the number of links, efficiency, average clus-7

tering coefficient and average path length. A new quanti-8

fier based on Information Theory recently developed for9

the analysis of dynamic network evolution [17] is used to10

compute changes in topological randomness. We also in-11

vestigate changes in the connectivity pattern which helps12

us identify spatial differences in network characteristics13

for individual ENSO events. Unlike previous work, this14

approach allows us to analyze not only the general struc-15

tural/topological differences between El Niño and La Niña16

networks for individual events, but also to isolate more17

subtle spatial network differences among them (for exam-18

ple, for the El Niño events of 1997 and 2002 that had19

unusual impacts on Australian rainfall [18]).20

2 Methodology21

The climate network was constructed using monthly22

averaged surface air temperature (SAT) data over the23

Tropical Pacific region (120E◦–70W ◦, 20N◦–20S◦) for the24

period 1948–2009. This type of network structure (ie.,25

constructed using SAT data) has also been used in pre-26

vious studies to enable capturing the dynamics of the27

heat exchange at the interface between ocean and atmo-28

sphere [10,19]. The dataset used corresponds to the re-29

analysis data distributed by the National Center for En-30

vironmental Prediction/National Center for Atmospheric31

Research (NCEP/NCAR), which is organized on a grid32

with resolution of 2.5×2.5 (lat-lon) [20]. Consequently, the33

resulting grid for the Tropical Pacific region has a total of34

1156 nodes (17× 68 nodes). The evolution of the network35

topology, from 1948 to 2009, was followed by considering36

62 annual non-overlapping windows corresponding to the37

January to December monthly values. The network topol-38

ogy for each window was constructed by computing the39

Spearman’s rank correlation coefficient, at lag zero, be-40

tween the SAT time series of all possible pairs of nodes.41

Links were created for pairs of nodes with an absolute42

value of correlation over a prescribed threshold. We an-43

alyzed network structures obtained from the SAT time44

series, as well as those obtained from the anomaly SAT45

series in which seasonality was removed using standard46

procedures.47

The identification of suitable thresholds is important48

as it can potentially change the network topology [7,21].49

The selection of this appropriate threshold depends not50

only on the network characteristics (i.e, data used to gen-51

erate the network) but also on the size of the network52

considered. For this particular case, the region considered53

is small and highly connected. We therefore conducted54

a sensitivity analysis to determine the impact of choos-55

ing different threshold values in a wide range from 0.6 to56

0.9. Table 1 shows the increase in the average number of57

Table 1. Average number of edges for varying values of thresh-
old. The third column corresponds to the ratio of the average
number of edges to the number of edges of a complete graph
with the same number of nodes.

Threshold Average number Average edges/Edges
Value of edges complete graph
0.9 68811.91 0.1031
0.8 166579.73 0.2495
0.7 253433.35 0.3796
0.6 332850.40 0.4986

edges for the networks generated with decreasing thresh- 58

old values. We found that the dynamics of the network 59

(as identified by the various quantifiers described below) 60

does not change significantly for values between 0.9 to 0.7. 61

However the higher threshold value, 0.9, was best at iden- 62

tifying minor temporal changes in network topology and 63

differences between El Niño and La Niña events and was 64

therefore selected for the analysis described below. 65

Changes in the annual network topologies were an- 66

alyzed by computing the standard quantifiers currently 67

used in complex network analysis, that is, clustering co- 68

efficient, average path length, and network efficiency. The 69

clustering coefficient indicates the number of links over 70

all possible connections between neighbours of a given 71

node. The average network clustering coefficient was com- 72

puted for each annual network. The clustering coefficient 73

obtained for a real network is usually compared to that of 74

regular networks (characterized by the having same num- 75

ber of links for all nodes). Another useful quantifier used 76

here is the average path length, which is calculated as 77

the shortest distance (minimum number of links) between 78

two nodes, averaged over all pairs of linked nodes in the 79

network. 80

Network properties were also analyzed using the con- 81

cept of efficient informational exchange through the net- 82

work. By assuming that information transfer is easier be- 83

tween nodes connected by short paths, efficiency is defined 84

as the inverse of the characteristic path length [22]. This 85

quantifier was normalized by dividing by the maximum 86

possible value, which is the efficiency corresponding to a 87

fully connected graph. Unlike average path length that has 88

an undetermined (infinite) value for disconnected nodes, 89

the efficiency can be determined and has a value of zero 90

in those nodes. 91

Finally, we also used a new quantifier, the square root 92

of the Jensen Shannon divergence (J 1/2) that, unlike the 93

standard quantifiers currently used for network analysis, 94

is independent of the number of links in the network [17]. 95

It therefore allows for an improved comparison of network 96

topologies with varying number of links, as the ones con- 97

sidered here. Another advantage of the J 1/2 quantifier 98

is that it is a metric that satisfies the triangle inequal- 99

ity [23,24]. It can be therefore used to compare various 100

network topologies by measuring differences among the 101

probability distribution functions (PDFs) of nodes links, 102

also called node degree distribution. J is defined as, 103

J [P, Pref] = S[(P + Pref)/2] − S[P ]/2 − S[Pref]/2 (1)
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Fig. 1. (Color online) Evolution of network topology as captured by: (a) number of links, (b) average normalized clustering
coefficient, (c) average path lenght, and (d) efficiency. Strong recorded ENSO events are indicated as SNO for El Niño and SNA
for La Niña.

where P is the PDF of the node degree distribution, Pref1

corresponds to a reference PDF, and S is the Shannon2

entropy, calculated as S = −∑
pi log(pi). Here we use3

the uniform distributionas Pref, which corresponds to the4

asymptotic case of a random network topology structure,5

for which all nodes would have a random number of links.6

Therefore J 1/2 provided, for each of the 62 windows, a7

measure of dissimilarity (or distance) to the asymptotic8

random structure. Higher values indicate that the topol-9

ogy is more distant to the reference structure and closer10

to a regular structure in which all nodes have the same11

number of links. A more detailed description of of this12

quantifier is available in reference [17], which includes an13

example of its application to a simpler network structure.14

3 Results15

3.1 Complex network evolution analysis16

We investigated the temporal evolution of the network17

topology, and found that the ENSO signature was more18

clearly captured in the results obtained from the analysis19

of the original SAT data than in those obtained from SAT20

anomalies. We therefore present below the results from21

the networks obtained for the original SAT data.22

Figure 1 shows the temporal evolution of the climate23

network topology as captured by the standard complex24

network quantifiers: number of links (a), average cluster-25

ing coefficient (b), average path length (c), and efficiency26

(d). This figure also shows years corresponding to strong27

El Niño and La Niña events, identified using the Oceanic28

Niño Index (ONI). ONI is the standard index that NOAA 29

uses for identifying El Niño (warm) and La Niña (cool) 30

events in the tropical Pacific. It is obtained from the three- 31

month running mean of the reconstructed sea surface tem- 32

perature (SST) anomalies in the Niño 3.4 region [25]. Val- 33

ues of ONI are available through the National Oceanic and 34

Atmospheric Administration (NOAA) climate prediction 35

center (http://www.cpc.noaa.gov). 36

As seen from Figure 1, throughout the study period 37

the dynamic climate network has large average clustering 38

coefficient and small average path length values; these net- 39

work properties are consistent with those of small world 40

networks frequently found in real-world systems [7]. This 41

figure also shows that temporal variations in all these 42

measures reflect a cyclic behavior consistent with that of 43

ENSO. There is a clear tendency for networks obtained for 44

all the strong La Niña years to display lower average clus- 45

tering coefficients, higher average path lengths and lower 46

number of links than the networks corresponding to strong 47

El Niño years. As expected for networks with fewer links 48

and higher average path length, the efficiency for El Niño 49

years is lower than that of La Niña years (Fig. 1d). 50

Figure 2 shows the temporal variability of J 1/2, also 51

consistent with the ENSO cyclic behavior. In this fig- 52

ure, we also include years corresponding to both strong 53

and moderate El Niño and La Niña events identified us- 54

ing ONI. As mentioned before, the metric properties of 55

the J 1/2 quantifier and its independence from the to- 56

tal number of links makes it particularly suitable for 57

comparing the characteristics of the evolving network 58

topology analyzed in this study, where the number of 59

links changes with time. Though the degree distribution 60

http://www.cpc.noaa.gov
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Fig. 2. (Color online) Evolution of the square root of the
Jensen-Shannon divergence, J 1/2(P, Pe), for the Tropical Pa-
cific region. Strong and moderate ENSO events are indicated
as SNO and NO for El Niño and SNA and NA for La Niña re-
spectively. The vertical dashed line indicates the 76/77 climate
shift and the red lines show trends in J 1/2(P, Pe) computed
for all El Niño events before and after the shift.

maintains approximately the same distance to the refer-1

ence uniform distribution Pe throughout the study period,2

the J 1/2 values corresponding to all moderate and strong3

La Niña and El Niño years are respectively below and4

above the average value of J 1/2 (horizontal dashed line).5

This means that the structure for El Niño years is closer6

to that of regular networks, and therefore less efficient in7

transferring information. These results are consistent with8

previous findings by Tsonis and Swanson [19] that show9

that the number of links decreases for El Niño events, and10

as a result both the flow of information and predictability11

decrease.12

It is important to note that the efficiency of the climate13

network can be interpreted in terms of the potential effects14

of local fluctuations, which tend to have a destabilizing15

effect in its source region. These fluctuations, which are16

equivalent to information in network analysis, are trans-17

ferred through the network. If this transfer is efficient then18

the possibility of prolonged local fluctuations (as for exam-19

ple local extremes) is reduced, providing more stability to20

the system [4]. Consequently, more regular structures, as21

those corresponding to El Niño years, could be associated22

to strong local events that are not efficiently transferred23

or dampened by the network structure.24

Another interesting observation, evident from the dy-25

namical analysis of the network structure and captured by26

the evolution of J 1/2 displayed in Figure 2, is a change27

in dynamics occurring approximately after the 1976/197728

time period. This change in the dynamics of the network29

structure coincides with the 76/77 climate shift exten-30

sively discussed in the literature [26,27]. As noted in the31

literature, the intensity and frequency of El Niño events32

increased after the climate shift. Our analysis detects that33

this climate shift gives rise, on average, to a more regular34

climate network as shown by the more frequent values of35

J 1/2 above the horizontal line after 76/77. The red lines in36

Figure 2 show the linear trends fitted to the values of J 1/2
37

for El Niño events before and after 1976. These trends38

highlight that peak values of J 1/2 for El Niño events are39

not only more frequent but also higher for the post-shift 40

period. Therefore, the network after the climate shift ex- 41

hibits conditions of less efficient information transfer that 42

could be associated to a less stable climate with more fre- 43

quent and intense local extreme events. 44

3.2 Evolution of the network connectivity pattern 45

The dynamic evolution of the network structure was also 46

investigated by inspecting the temporal changes in the 47

network connectivity pattern. In large dynamic networks, 48

the most connected nodes (nodes with higher degree or 49

number of links) tend to change over time [28]. We found 50

that temporal changes in the most connected nodes for the 51

Tropical Pacific climate network are consistent with the 52

cyclic nature of ENSO. As seen from Figures 3 and 4, we 53

found a consistent connectivity pattern for all the strong 54

El Niño events, which is clearly distinct from the also con- 55

sistent pattern found for the strong La Niña years. While 56

both networks connectivity patterns display similar highly 57

connected regions in the upper portion of the window, the 58

features in the central and lower portions are distinctly 59

different. It can be observed that in all strong La Niña 60

events there is a large region with high connectivity that 61

extends from the South American Peruvian coast spread- 62

ing over the whole lower southeastern quadrant of the win- 63

dow and beyond. This large area of high connectivity is 64

not present for the strong El Niño events, which instead 65

show a smaller area with high connectivity close to the 66

Northeastern Australian coast that extends to the east, 67

and is mostly located south of the 10S◦ latitudinal circle. 68

Figures 3 and 4 corroborate our previous discussion on 69

network efficiency by showing that highly connected ar- 70

eas for El Niño are smaller in size than those for La Niña 71

networks, and therefore a higher capacity for information 72

transfer in La Niña events. 73

We also found that the connectivity patterns for all 74

moderate El Niño (1986, 1987, 1994, and 2002) and La 75

Niña (1954, 1964, 1970, 1998, 1999, and 2007) events are 76

very similar to those of the strong events shown in Fig- 77

ures 3 and 4, that is, a smaller area with high connectivity 78

close to the Northeastern Australian coast that extends to 79

the east for El Niño years, and the larger connectivity area 80

extending over the entire lower SE quadrant for La Niña. 81

As an example of El Niño, Figure 5 displays the connectiv- 82

ity pattern for the moderate 2002 event which, in addition, 83

has one of the highest J 1/2 values. This event has been 84

extensively analyzed in the literature because it produced 85

extremely severe drought conditions in Australia, usually 86

associated to the stronger events. Moreover, the conditions 87

for this event are frequently compared to those of the 1997 88

event, which had an unusually weak impact in Australia 89

despite being the strongest EL Niño on record according 90

to various ENSO indices [18]. Hackert et al. [29] compare 91

the development of both events by considering their initial 92

conditions and the atmospheric forcing. They found that 93

initial conditions played a larger role on the 2002 event 94

than in the 1997 event, in which forcings played a more 95

dominant role. In terms of network connectivity structure, 96
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Fig. 3. (Color online) Connectivity patterns corresponding to strong El Niño years: (a) 1957, (b) 1965, (c) 1972, (d) 1982,
(e) 1991, (f) 1997, (g) 2009.

we find that the 2002 event shows more similarity to all the1

other strong events than the pattern for the 1997 event.2

This last one displays lower connectivity in the Peruvian3

South American coast.4

Finally we examined the SAT network characteristics5

for the weak ENSO events. We found that, similarly to6

the strong and moderate events, most weak El Niño years7

(1951, 1963, 1968, 1969, 1977, 2004, 2006) display values8

of J 1/2 (Fig. 2) above average, with the only exception of9

the 1976 event whose value is below average. Though for10

half of the years the spatial patterns are very similar to11

those of the strong and moderate el Niño years, the oth- 12

ers (1969, 1976, 1977, 2004) show some small departures 13

mainly in the form of larger clusters of high connectivity. 14

One of these events, that shares remarkable similarity in 15

network connectivity to the strong events and displays a 16

very high J 1/2 value is the 2006 event (Fig. 6). In fact, 17

this particular El Niño was studied by McPhaden [30] who 18

reported a detailed analysis of the climate conditions for 19

this event, concluding that it had an unusual development 20

that was weakened by external influences. Furthermore, he 21

suggested that the co-occurrence of El Niño and the Indian 22
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Fig. 4. (Color online) Connectivity patterns corresponding to strong La Niña years: (a) 1965, (b) 1973, (c) 1975, (d) 1986.

Fig. 5. (Color online) Connectivity pattern for the 2002 El
Niño event.

Ocean dipole/zonal mode events created conditions for the1

demise of this El Niño. Nevertheless, this event still had2

strong impacts in several regions of the world, like drought3

in Australia and Indonesia, and a reduction in the inten-4

sity and number of hurricanes in the Atlantic.5

The weak La Niña events do not show the same con-6

sistency. The network characteristics depart from those7

of the moderate and strong La Niña years as shown by8

J 1/2 (Fig. 2). Unlike the strong and moderate events, the9

value of J 1/2 for the weak 1950, 1956, 1971, 1974, 1995,10

and 2000 events is above average. Only the 1962, 1967,and11

1984 events, have a value of J 1/2 below average. The pat-12

terns in this case tend to depart from those of the strong13

La Niña years, with smaller high correlations clusters in14

Fig. 6. (Color online) Connectivity pattern for the 2006 El
Niño event.

the lower SE quadrant (particularly for the events with 15

higher J 1/2 values). 16

4 Conclusions 17

We presented a novel and integrative approach that en- 18

abled us to investigate the temporal evolution of the SAT 19

climate network for the Tropical Pacific region by com- 20

puting the dynamic network topology for temporal win- 21

dows of one year duration over the 1948–2009 record. This 22

methodology enables the analysis of dynamic networks 23

and therefore can be useful for other climate applications. 24

Using this approach, we found that the dynamic net- 25

work topology clearly displays a cyclic behavior consistent 26
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with that of ENSO, with topologies for the strong and1

moderate El Niño networks closer to a regular network2

structure and therefore less efficient than those of the3

strong and moderate La Niña events. The existence of4

larger highly connected areas on the patterns of La5

Niña networks also demonstrates their higher information6

transfer efficiency.7

This behaviour is consistent with the observation re-8

ported by McPhaden [2] who pointed out that the strong9

La Niña events tend to have a weaker atmospheric re-10

sponse than that of the strong El Niño events. This differ-11

ence is attributed to the fact that the decrease in tropical12

rainfall induced by colder conditions on the tropical Pacific13

Ocean temperatures (which produces atmospheric heating14

and the associated teleconnection patterns) is constrained15

by a lower limit of zero. This constraint could be responsi-16

ble for the increase in highly correlated nodes for La Niña17

events that gives rise to the larger highly connected areas18

in the La Niña patterns. However as also pointed out in19

reference [2], the rainfall increase for the strong El Niño20

events is not subjected to an upper constraint and there-21

fore neither is the resulting atmospheric heating.22

Though the previous results for the strong and moder-23

ate El Niño years are also generally valid for the weak El24

Niño networks, the results for the weak La Niña networks25

are not as consistent. Most of the weak La Niña events do26

not display the same widespread connectivity areas that27

characterize the strong and moderate La Niña events.28

The study also detected a change in the dynamics of29

the network structure, that coincides with the 76/77 cli-30

mate shift. The networks after the climate shift exhibit31

conditions of lower information transfer efficiency, which32

are more frequent and intense than those previous to the33

shift and can be associated to a less stable climate.34
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