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a b s t r a c t

An atomistic kinetic Monte Carlo (AKMC) method has been applied to study the stability and mobility of
copper–vacancy clusters in Fe. This information, which cannot be obtained directly from experimental
measurements, is needed to parameterise models describing the nanostructure evolution under irradia-
tion of Fe alloys (e.g. model alloys for reactor pressure vessel steels). The physical reliability of the AKMC
method has been improved by employing artificial intelligence techniques for the regression of the acti-
vation energies required by the model as input. These energies are calculated allowing for the effects of
local chemistry and relaxation, using an interatomic potential fitted to reproduce them as accurately as
possible and the nudged-elastic-band method. The model validation was based on comparison with
available ab initio calculations for verification of the used cohesive model, as well as with other models
and theories.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The formation of copper-rich precipitates under irradiation is
accepted to be among the main causes of hardening and embrittle-
ment of reactor pressure vessel (RPV) steels during operation,
because they act as obstacles to the motion of the dislocations
[1]. Positron annihilation studies on FeCu model alloys show that
these precipitates are likely to contain a considerable amount of
vacancies and to be formed as a result of the diffusion of mobile
complexes containing both Cu atoms and vacancies [2–4] (hence-
forth Cu–vacancy clusters). Consistently, Cu–vacancy clusters are
predicted to be relatively stable by ab initio calculations [5],
supporting the idea that these clusters should be able to migrate
as a whole. This contention has been also qualitatively proven by
performing high temperature molecular dynamics studies [6].
Thus, models describing Cu precipitation under irradiation should
explicitly include a mechanism of formation based on the diffusion
of Cu–vacancy clusters.

Kinetic Monte Carlo (KMC) models based on the residence time
algorithm [7,8] are suitable to simulate precipitation and also seg-
regation processes [9,10], in acceptable trade-off between accuracy
and computing time [11]. Two main classes of KMC models have

been used to describe Cu precipitation under thermal ageing and
irradiation: ‘‘atomistic’’ KMC (AKMC) models [12–20] and ‘‘object’’
KMC (OKMC) models [14,21]. In OKMC simulations point-defects,
point-defect clusters and mixed clusters are treated without
including the detail of their atomic-level configuration and the
technique is suitable to simulate irradiation processes in a fairly
realistic way, up to a timeframe of years. However, an OKMC model
requires as an input the knowledge of all the parameters defining
the mobility and stability of the objects included in it. Notably, in
order to introduce the mechanism of formation of Cu precipitates
via migration of small Cu–vacancy clusters, the diffusion coeffi-
cients of these clusters must be known in advance. These are not
quantities that can be experimentally measured, though. Obtaining
them from ab initio calculations, although a priori possible by cal-
culating all migration energies for all relevant migration paths, is
a very heavy task, which can only be applied in a few simple cases.
Molecular dynamics simulations with interatomic potentials could
in principle be a solution, but are in practice not applicable, be-
cause of the relatively slow migration of vacancies. Either very high
temperatures must be simulated (e.g. [6]), thereby making the tra-
jectory of the clusters too short to be statistically significant with a
view to deriving their diffusion coefficient from standard tech-
niques [22], or unaffordably long simulations would be required.
In contrast, AKMC models spontaneously treat the diffusion of
clusters containing solute atoms and point-defects in terms of
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migration jumps of single point-defects on an atomic lattice. In
these models each timestep corresponds to a point-defect jump,
so the calculation becomes computationally affordable, allowing
a precise determination of trajectories and extraction of diffusivity
data, with very good statistics. Given the migration energies and
the diffusion mechanism, the model automatically explores all
possible migration paths. Thus, the AKMC method is the most suit-
able to estimate the diffusion coefficients of Cu–vacancy clusters,
thereby allowing the parameters for OKMC simulations to be
produced. The main shortcoming resides in the fact that entropic
effects on the migration barriers are not taken into account,
although other entropic contributions, such as configurational
entropy, are inherently included in the model.

The application of the AKMC algorithm requires the a priori
knowledge of the migration energies of, in this case, a vacancy,
as a function of the local atomic environment (LAE), which varies
because Cu atoms and other vacancies are in each case differently
distributed around it. These energies are customarily estimated
using heuristic approaches, such as linear relationships with the
total energy variation between before and after the jump
[12–14,17,18,20], or broken bond methods limited to bonds with
the first and second nearest neighbour shell [9,10,15–16,19].
However, these approaches are insufficient to describe reliably
the complexity of the dependence of the activation energies for a
vacancy jump on the LAE, as shown for example in [23].

In [24] the problem was solved by pre-calculating, with a suit-
able interatomic potential [25,26], all the energy barriers corre-
sponding to all possible LAEs encountered during migration by
the vacancies in the Cu–vacancy cluster (limited, however, to the
3rd nearest neighbour shell) and by storing them in tables. This
is indeed doable if the LAEs are limited to a sufficiently small
amount of atoms and, in general, if the total number of LAEs re-
mains reasonably small. In such a case, the production of the tables
requires a long, though still affordable, amount of computing time,
but then fast search algorithms can find rapidly the proper value in
the tables during the AKMC simulations.

In this work, we want to improve the reliability of the same
type of calculations performed in [24], by taking into account the
effect on the migration energy of a LAE more extended than the
3rd nearest neighbour (3nn) shell. We also want to study larger
clusters, for which the tabulation of all possible barriers for all pos-
sible LAEs is unfeasible. In order to do this, we resort to the method
developed in [23,27], in which a properly trained artificial neural
network (ANN) is used to calculate, on-demand and on-the-fly,
during the AKMC simulation, the migration energies as functions
of the LAEs.

The paper is organised as follows. In Section 2 we summarise
the fundamentals of our artificial neural network-based AKMC
simulation. In Section 3 we present our results for a number of
Cu–vacancy clusters. In the first place, we provide the statically-
calculated formation and binding energies, as these are the quanti-
ties traditionally used in OKMC simulations to estimate stability
parameters [21]. The calculations are performed using the same
interatomic potential as employed for the energy barrier calcula-
tions and the results are compared with ab initio calculations, in or-
der to assess the reliability of the potential. Then we apply the
previously-sketched AKMC method to study mobility and stability
of small clusters (up to six elements) versus temperature. When-
ever possible, we compare our results with previous ones, obtained
in [24]. Subsequently, we present some results on the diffusivity of
large copper clusters, containing up to 150 atoms and only one va-
cancy, and compare the diffusion coefficients obtained with those
estimated with other methods. Finally, in Section 4 we analyse
and discuss the reliability of the use of the ANN to replace a tabu-
lation of rigorously calculated migration energy values, as well as,
more generally, the reliability of the results obtained.

2. Computational model

2.1. The AKMC algorithm and the problem of the evaluation of energy
barriers

According to standard transition state theory, the frequency of a
thermally activated event, such as a vacancy jump j in an alloy, can
be expressed as:

Cj ¼ m expð�Ej=kBTÞ ð1Þ
where m is an attempt frequency, that can be considered constant in
first approximation (on the order of the Debye frequency; here
m = 6 � 1012 s�1), kB is Boltzmann’s constant, T the absolute temper-
ature and Ej the LAE-dependent activation energy of the jump (de-
noted here as energy barrier, or migration energy). These
frequencies are used in an AKMC framework to assign a probability
to all possible vacancy migration events: the 1nn migration of
vacancies, one at a time. The simulation time is incremented follow-
ing the mean residence time algorithm [7,8].

Given a suitable interatomic potential (e.g. [25,26] for the Fe–Cu
alloy), the energy barriers can be rigorously calculated, for any LAE,
using the nudged-elastic-band (NEB) method [28]. Atomic-level
techniques of this type take implicitly into consideration the influ-
ence of the nature of the surrounding atoms on the vacancy jump
barrier, as well as strain field effects. However, the use of a NEB cal-
culation at each AKMC timestep to evaluate all Cj from Eq. (1)
would require a prohibitively long CPU time. As anticipated in the
introduction, when the total number of LAEs to be considered is re-
duced, the production of tables of energy barriers for all possible
cases, to be fed to the AKMC code, is possible (e.g. [24]). However,
if the clusters to be studied are not-so-small, the size of the table
to be constructed grows very fast. In these cases, the only alterna-
tive to tabulating is to find patterns in the dependence of the energy
barriers on the LAE and use a model instead of tables. For this pur-
pose, we resorted to an artificial intelligence method [27].

2.2. Artificial neural network as regression tool for energy barrier
calculation

ANNs are considered as universal approximation tools, capable
of learning from experience and to find non-evident dependencies
between data. In this work, they are used as a very fast and pow-
erful numerical regression method that can reproduce the complex
relation existing between the vacancy migration energy and the
LAE. We use ANN of the feed-forward multilayer perceptron type,
with one hidden layer, using linear combination functions and sig-
moidal non-linear activation functions [27].

The development of an ANN requires first the production of
examples, i.e. a table of LAEs and corresponding migration energies
calculated with the NEB method. This table must be divided into
two non-overlapping sets: a training set and a validation set. The
ANN is trained to reproduce the former and validated on the latter,
by definition made of examples never seen before by the ANN, i.e.
not included in the training set. Given these sets, a complete
description of the methodology that is followed in order to design
the ANN can be found in [27].

Fig. 1 shows the accuracy reached by the ANN after training,
when up to seven Cu atoms and seven vacancies are included in
the LAE (FeCuVac system). The LAE encompasses the 5th shell of
nearest neighbours around the migrating vacancy and its destina-
tion (5nn approximation). The mean relative error is in this case
5.67%, and the correlation factor R2 is 0.95. The mean bias,P

(O � d)/N, is 0.0024 eV and the mean error,
P

|O � d|/N, is
0.033 eV (O is the ANN output, d the desired target, and N the
number of points). The correlation is globally good, although not
perfect, because ANN predictions and NEB calculated barriers do
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not always compare one-to-one. As discussed in Section 4, the
quality of the performance of this ANN was a posteriori observed
to vary significantly from cluster to cluster, so that in principle,
via proper retraining, its improvement is possible. Nevertheless,
in Section 4 it is also shown that, probably due to the absence of
significant biases in the error committed by the ANN, the results
are globally acceptable when compared with results obtained
directly from tabulations.

In the case of the FeCu system (no extra vacancies in the LAE),
two separate ANNs were developed, namely, one for cases when

the vacancy exchanges its position with a Cu atom, and another
one for exchanges with Fe atoms. The LAE included up to the 8th
nearest neighbour shell (8nn approximation). Fig. 2 shows that in
this case the ANN accuracy is extremely good for both Cu and Fe
migrating atoms. The mean relative error in the migrating Cu case
is 1.13% and 1.10% in the migrating Fe case. The correlation factor
R2 and the mean bias are in both cases 0.99 and 0.001 eV, respec-
tively. The mean error is 0.0051 eV for the migrating Cu case and
0.007 eV for the migrating Fe case.

The ANNs of Figs. 1 and 2 were used to assess Ej in Eq. (1) at
each timestep in the AKMC simulations performed to study the dif-
fusivity of, respectively, small Cu–vacancy clusters (FeCuVac sys-
tem) and Cu clusters containing only one vacancy (FeCu system).
The methodology used to extract information from the simulations
for the estimation of the diffusion coefficients is described together
with the results in the next section.

3. Results

3.1. Formation and binding energies of small clusters

The nanostructural features of main interest for the present
investigation are the small Cu–vacancy clusters. As a first charac-
terisation of their stability, static calculations of the relevant
formation and binding energies have been performed, using the
Fe–Cu interatomic potential developed in [25,26]. The latter has
been fitted taking care for a correct description of both the thermo-
dynamic properties of the FeCu system (phase diagram, solubility
limit especially) and the interaction between Cu atoms and vacan-
cies in Fe. In particular, migration energies of vacancies in presence
of Cu atoms were fitted following indications from available ab ini-
tio calculations, which suggested that Cu atoms would be dragged
by vacancies, as a consequence of the formation of Cu–vacancy
pairs migrating together as a whole, as observed also in molecular
dynamics simulations [6]. The binding energies between Cu atoms
and vacancies were fitted targeting the values that were found to
provide the best agreement between experiments and AKMC sim-
ulations in [17,29]. Here we calculate the formation and binding
energies obtained with this Fe–Cu potential and compare them
with ab initio calculations. The latter were performed with the den-
sity functional theory (DFT) code (VASP) [30], within the General-
ised Gradient Approximation (GGA) of Perdew and Wang, PW91
[31] and using fully non-local ultra-soft pseudo-potentials (USPP)
of the Vanderbilt type [32] to describe electron–ion interaction.
The pseudo-potentials were taken from the code library. The
supercell approach with periodic boundary conditions was used
to simulate point-defects as well as pure phases. Brillouin zone
sampling was performed using the Monkhorst and Pack scheme
[33]. The plane wave cut-off energy was 240 eV in order to get
converged results. 54 atom supercells with 125 k-points as well
as 128 atoms with 27 k-points were used to check the convergence
of the calculations with supercell size. Only 128 atom results are
reported, which are known from previous experience to be already
size-converged (i.e. calculations with more atoms would provide
the same results).

Formation energies of vacancy clusters, copper clusters and
copper–vacancy clusters, respectively, are obtained using the fol-
lowing formulae:

Ef ðNV Þ ¼ ðN0 � NV Þ � ½EcðNV inbcc FeÞ � Ecðbcc FeÞ�
Ef ðNCuÞ ¼ N0 � EcðNCuinbcc FeÞ � ½ðN0 � NCuÞ � Ecðbcc FeÞ

þ NCu � Ecðfcc CuÞ�
Ef ðNV þ NCuÞ ¼ ðN0 � NV Þ � EcðNV þ NCuinbcc FeÞ

� ½ðN0 � NCu � NV Þ � Ecðbcc FeÞ þ NCu � Ecðfcc CuÞ�
ð2Þ

Fig. 1. Predictive capability of the ANN developed for the FeCuVac system (seven
Cu atoms and seven vacancies max.), with the LAE extended to 5nn shell, as
compared with NEB calculated values from the validation set.

Fig. 2. Predictive capability of the ANN developed for the FeCu system, with LAE
extended up to 8nn shell: upper panel, case of a migrating Cu atom; lower panel,
case of migrating Fe atom.
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Here, N0 is the total amount of atomic lattice sites in the box, NV

is the number of vacancies in the cluster, and NCu is the number of
copper atoms in the cluster; Ec(NV in bcc Fe) is the relaxed energy

per atom of a bcc Fe matrix containing a cluster of NV vacancies in
its lowest energy configuration, Ec(NCu in bcc Fe) is the same energy
for a system containing a cluster of NCu copper atoms, and
Ec(NV + NCu in bcc Fe) is again the same energy containing a cluster
of NV vacancies and NCu copper atoms; finally, Ec(bcc Fe) is the
cohesive energy of pure bcc Fe and Ec(fcc Cu) is the cohesive energy
of pure fcc Cu. It should be noted that the formation energies in Eq.
(2) are independent of the choice of N0, provided that the energies
per atom of the defective system used in such equation to calculate
them correspond to the value of N0 used in the same equation.

Once the formation energies are known, the binding energy of a
vacancy (V) to a cluster of certain size can be obtained according to
the following expression:

EbðVÞ ¼ Ef ðclusterÞ þ Ef ðVÞ � Ef ðcluster þ VÞ ð3Þ

where Ef(cluster) is the formation energy of the cluster, Ef(V) is the
formation energy of the vacancy alone, and Ef(cluster + V) is the for-
mation energy of the cluster plus the vacancy.

The results from the interatomic potential and from ab initio
calculations, for a number of cluster configurations, are given in
Tables 1 and 2. In particular, Table 1 shows the formation and
binding energies for the Cu–vacancy, Cu–Cu and vacancy–vacancy
pairs. Table 2 lists the same quantities for a number of clusters
(results obtained with the interatomic potential for more clusters,
up to six elements, are reported in [34]). It can be seen that the po-
tential generally underestimates the strength of the Cu–vacancy
binding, as compared to DFT data. At the same time, DFT binding
energy values for Cu–vacancy pairs could not be used as they were
in [17,20,29] in order to provide acceptable results in AKMC

Table 1
Formation (Ef) and binding (Eb) energies of vacancy–vacancy, Cu–Cu and Cu–vacancy
pairs at different mutual distances: interatomic potential (IAP) and ab initio (DFT-
USPP) calculations using 128 atom supercells.

Ef (eV) Eb (eV)

IAP DFT-USPP IAP DFT-USPP

V 1.71 2.00 – –
V–V (1nn) 3.30 3.84 0.13 0.16
V–V (2nn) 3.19 3.70 0.24 0.30
V–V (3nn) 3.45 �0.02 �0.02
V–V (4nn) 3.39 0.03 0.09
Cu 0.43 0.55 – –
Cu–Cu (1nn) 0.79 0.94 0.08 0.16
Cu–Cu (2nn) 0.79 1.05 0.08 0.05
Cu–Cu (3nn) 0.87 �0 �0
Cu–Cu (4nn) 0.87 �0
Cu–V (1nn) 2.05 2.39 0.10 0.16
Cu–V (2nn) 2.06 2.34 0.09 0.21
Cu–V (3nn) 2.15 �0

Table 2
Formation and binding energies (eV) for some small Cu–vacancy clusters, as
calculated with the interatomic potential and using ab initio methods. The enclosed
element is the one for whose removal the binding energy is evaluated.

Ef (eV) Eb (eV)

IAP IAP DFT-USPP

1 

4.62 0.28 0.52

2 

5.78 0.57 0.70

  3 

6.09 0.24 0.31

4 

2.31 0.19 0.36

5 

2.40 0.10 0.22

6 

2.40 0.10 0.18

7 

2.31 0.18 0.35

8 

2.37 0.21 0.42

9 

2.39 0.19 0.33

  10 

2.69 0.08 0.19

11 

2.49 0.28 0.46
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Fig. 3. Jump frequencies of Cu–vacancy clusters with six elements (above) and of
vacancy clusters (below).
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simulations of Cu precipitation in Fe. The potential provides pair
binding energies very close to those chosen for the AKMC model
we refer to. Thus, the overall performance of the potential can be
judged acceptable, although probably biased on the side of under-
estimating the strength of the Cu–vacancy interaction in Fe. This
possible bias will have to be taken into account when discussing
the results.

3.2. Mobility and stability of small clusters

The mobility and stability of small clusters were investigated
using the AKMC model driven by the ANN, described in Section
2. The clusters studied were complexes formed by Cu atoms (Cu)
and vacancies (V) up to six elements, namely CuV, CuV2, Cu2V,
Cu2V2, CuV3, Cu3V, CuV4, Cu2V3, Cu3V2, Cu4V, CuV5, Cu2V4, Cu3V3,
Cu4V2 and Cu5V, as well as vacancy clusters of up to six elements:
V2, V3, V4, V5 and V6. The clusters were created in their expected
lowest energy configuration at the centre of a box containing an
otherwise pure bcc Fe matrix and the system was let to evolve
according to the AKMC scheme. The energy barriers were provided
in all cases by the FeCuVac ANN, except for the Cu5V cluster, for
which the FeCu ANNs were used instead. The simulation box con-
tained 20 � 20 � 20 cubic cells, i.e. 16,000 atoms. Following the
methodology applied in [24], the mobility was studied at different
temperatures, between 400 K and 700 K, by tracing the successive
positions of the centre-of-mass of the cluster (arbitrarily and con-
veniently assigning the same mass to Cu and V). The latter was
considered to be a cluster so long as all elements forming it re-
mained at a mutual distance shorter than the 2nn distance: as soon
as this condition was not fulfilled any more, the simulation was
stopped and the cluster lifetime in the specific simulation was
recorded. For each temperature and cluster, 100–300 simulations
were performed, in order to have enough statistics (see Fig. 3).

3.2.1. Jump frequencies
From the analysis of the successive positions and the corre-

sponding time, in each series of simulations for a given cluster at
temperature T, the jump frequency could be deduced, using the
equation:

mðTÞ ¼ 1

Nsim

XNsim

i¼1

ni
jumps

si
life

ðTÞ ð4Þ

Here, ni
jumps is the number of jumps equal to, or larger than, 1nn

distance, performed by the centre-of-mass during the lifetime of
the cluster, si

life. The migration energies of the clusters were ob-
tained using classical Arrhenius exponential functions to interpo-
late the data-points obtained for the different temperatures:

mðTÞ ¼ m0 expð�Em
m=kBTÞ ð5Þ

The resulting m0 and Em
m for all studied clusters are given in Table

3. For complexes of up to four elements, our results could be com-
pared with those obtained in [24], where energy barriers were cal-
culated with the same interatomic potential as here, but limited to
LAEs extended only to the 3nn distance. For visual illustration, the
corresponding Arrhenius plots for six element Cu–vacancy clusters
and for all vacancy clusters studied are given in Fig. 3 (all plots for
all Cu–vacancy clusters can be found in [34]). In Table 3 we provide
also the actual average jump distance for each cluster, in units of
lattice parameters. In all cases this distance is longer than the
1nn distance and is as large as the 2nn distance for the CuV cluster.

3.2.2. Diffusion coefficients
The diffusion coefficient can be estimated similarly to the jump

frequency using the following equation [24]:

DðTÞ ¼ 1

Nsim

XNsim

i¼1

R2
i

6si
life

ðTÞ ð6Þ

where R2
i is the square of the total displacement of defect i during

its lifetime. This scheme is similar to the one originally applied by
Guinan et al. for the study of the diffusivity of self-interstitials
[35] and amply discussed in [22]. The sampled time, however, is
here in each case dictated by the cluster lifetime and is therefore
not the same for each run. Eq. (6) corresponds in fact to an adapta-
tion of the general Einstein equation [22,36]:

DðTÞ ¼ hR
2iðTÞ
6Dt

ð7Þ

where hR2i is the mean square displacement within the time inter-
val Dt of a population of random walkers. However, as discussed in
[22], the accuracy of the estimated diffusivity with adaptations of
Eq. (7) is sensitive to the choice of the time interval length. To ana-
lyse in each case (each cluster and temperature) the dependence of
the diffusion coefficient and its variance versus isochronal se-
quences, all trajectories that were independently simulated were

Table 3
Attempt frequency (in units of 1013 s�1), migration energy (eV) and 1nn average
distance for cluster centre-of-mass jumps (in units of lattice parameter, a0), for all
small clusters studied, as obtained from the jump frequency study. For prefactor and
migration energies the error bar is also given.

N Complex m0 Em
m Dist

2 V2 1.14 ±0.18 2.12⁄ 0.62 ±0.005 0.62⁄ 0.92
3 V3 0.14 ±0.01 0.2⁄ 0.43 ±0.001 0.49⁄ 0.92
4 V4 0.89 ±0.05 2.7⁄ 0.62 ±0.003 0.72⁄ 0.92
5 V5 1.25 ±0.08 4.4⁄ 0.72 ±0.003 0.88⁄ 0.90
6 V6 3.43 ±0.04 62.8⁄ 0.94 ±0.005 1.11⁄ 0.89
2 CuV 0.61 ±0.26 0.95⁄ 0.67 ±0.019 0.65⁄ 1.00
3 CuV2 0.68 ±0.13 1.55⁄ 0.65 ±0.008 0.68⁄ 0.94
3 Cu2V 0.36 ±0.05 1.19⁄ 0.65 ±0.007 0.68⁄ 0.94
4 CuV3 0.52 ±0.10 0.17⁄ 0.64 ±0.008 0.55⁄ 0.92
4 Cu2V2 0.65 ±0.05 72.9⁄ 0.69 ±0.003 0.86⁄ 0.92
4 Cu3V 0.41 ±0.01 8.53⁄ 0.71 ±0.012 0.78⁄ 0.92
5 CuV4 0.601 ±0.09 0.71 ±0.007 0.90
5 Cu2V3 0.181 ±0.04 0.65 ±0.011 0.90
5 Cu3V2 0.103 ±0.03 0.68 ±0.012 0.90
5 Cu4V 0.007 ±0.01 0.67 ±0.018 0.90
6 CuV5 0.502 ±0.06 0.75 ±0.005 0.89
6 Cu2V4 0.367 ±0.04 0.73 ±0.005 0.89
6 Cu3V3 0.078 ±0.01 0.66 ±0.008 0.90
6 Cu4V2 0.023 ±0.01 0.66 ±0.015 0.89
6 Cu5V 0.011 ±0.01 0.72 ±0.022 0.90

Data denoted by � correspond to calculations from [24] and are added for
comparison.
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Fig. 4. Example of convergence of the diffusion coefficient as a function of the
length of the time interval Dt chosen when applying Eq. (7) (T = 700 K, cluster
Cu4V).
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eventually chained to one another. The long trajectory thereby ob-
tained was then decomposed into time segments of (approxi-
mately) equal length, Dt. The average of the square distances
covered by the defect within each interval of length Dt was used

to estimate the mean square displacement, which corresponds to
the (almost) exact application of the method originally proposed
in [35]. By varying Dt in a significantly large interval (possible after
chaining trajectories), the converged asymptotical value of the dif-
fusion coefficient is found, as described in what follows.

One example of plot of D(Dt) for T = 740 K and its variance (er-
ror bar) is shown in Fig. 4, for the Cu4V cluster. It can be seen that
indeed they depend on the choice of Dt. Short time intervals pro-
vide larger statistics, but also larger errors bars, because correla-
tion effects are not correctly sampled. For longer time intervals a
convergence to an (almost) Dt-independent D value is observed,
due to a more correct sampling of correlation effects in each inter-
val. However, by choosing too long time intervals, the error bars in-
crease again, because the number of intervals over which the
average is taken decreases. Hence, the D value cannot be simply
obtained as the asymptot for large Dt. Instead, it must be a
trade-off between correctness of the sampling and accuracy. For
each cluster and temperature, therefore, the diffusion coefficient
was estimated as the average between the maximum and the min-
imum value in the convergence zone. The uncertainty in the calcu-
lation of the diffusion coefficient was accordingly estimated as the
difference between this average and the largest value in this zone.

Finally, in order to estimate the migration energy and the diffu-
sivity prefactor for each cluster, the data-points for different tem-
peratures were interpolated using the Arrhenius expression:

DðTÞ ¼ D0 expð�ED
m=kBTÞ ð8Þ

The resulting D0 and ED
m for all studied clusters are provided in

Table 4. For complexes up to four elements, the results obtained
in [24] are added for comparison. For visual illustration, the corre-
sponding Arrhenius plots for six element Cu–vacancy clusters and
for all vacancy clusters studied are given in Fig. 5 (all plots for all
Cu–vacancy clusters can be found in [34]).

3.2.3. Correlation factors and cluster lifetimes
The migration energy obtained from the diffusion coefficient,

ED
m, may differ from the homologous value obtained from the jump

frequency, Em
m, because in the former case correlation effects are

naturally allowed for, but not in the latter. These effects are related
to jumps or series of jumps that, while accounted for in the deter-
mination of the jump frequency via Eq. (4), do not contribute to the
diffusion coefficient (e.g. back and forth jumps, or loops in the tra-
jectory). In general, the relationship between diffusion coefficient
and jump frequency for three-dimensionally migrating species
can be expressed as:

DðTÞ ¼ fcðTÞ
mjðTÞD2

6
ð9Þ

where D is the jump distance (between 1nn and 2nn distance in the
present case) and fc is the correlation factor, that carries the above-
mentioned effects. This factor can be temperature dependent. In the
case of all clusters studied in this work, at any rate, and for all tem-
peratures, the correlation factors are always close to unity [34].
Consistently, the migration energies obtained with the two interpo-
lations are extremely similar.

The dissociation energy, Edis, and the lifetime prefactor, s0, were
estimated from the temperature dependence of the average life-
time, using the equation:

slifeðTÞ ¼ s0 expðEdis=kBTÞ ð10Þ

The results for all clusters studied are provided in Table 5. For
visual illustration, the corresponding Arrhenius plots for six ele-
ment Cu–vacancy clusters and for all vacancy clusters studied are
given in Fig. 6 (all plots for all Cu–vacancy clusters can be found in
[34]).

Table 4
Diffusivity prefactor (in units of 10�8 m2/s) and migration energy (eV) for all small
clusters studied, including uncertainties, as obtained from the diffusion coefficient
study.

N Complex D0 ED
m

2 V2 22.60 ±6.24 29.8⁄ 0.63 ±0.012 0.63⁄
3 V3 0.21 ±0.07 1.11⁄ 0.44 ±0.015 0.46⁄
4 V4 9.77 ±2.51 27⁄ 0.62 ±0.011 0.71⁄
5 V5 9.76 ±1.80 45.5⁄ 0.71 ±0.009 0.88⁄
6 V6 46.30 ±5.16 21.6⁄ 0.95 ±0.005 1.06⁄
2 CuV 2.78 ±0.73 4.67⁄ 0.64 ±0.012 0.63⁄
3 CuV2 8.59 ±4.74 9.76⁄ 0.69 ±0.025 0.67⁄
3 Cu2V 5.20 ±1.77 6.7⁄ 0.72 ±0.015 0.66⁄
4 CuV3 2.59 ±0.85 1.78⁄ 0.65 ±0.015 0.56⁄
4 Cu2V2 2.05 ±0.66 2200⁄ 0.68 ±0.014 0.89⁄
4 Cu3V 1.89 ±0.96 65.8⁄ 0.74 ±0.023 0.77⁄
5 CuV4 1.44 ±0.78 0.67 ±0.024
5 Cu2V3 0.69 ±0.36 0.63 ±0.024
5 Cu3V2 0.49 ±0.20 0.66 ±0.018
5 Cu4V 0.75 ±0.42 0.75 ±0.025
6 CuV5 2.08 ±0.82 0.72 ±0.018
6 Cu2V4 0.98 ±0.49 0.68 ±0.022
6 Cu3V3 0.36 ±0.20 0.64 ±0.024
6 Cu4V2 1.09 ±0.38 0.72 ±0.015
6 Cu5V 0.71 ±0.45 0.79 ±0.028

Data denoted by � correspond to calculations from [24] and are added for
comparison.
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Fig. 5. Diffusion coefficients of Cu–vacancy clusters with six elements (above) and
of vacancy clusters (below).
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3.3. Mobility of large Cu clusters

Large clusters of 15, 25, 65 and 150 Cu atoms and only one
vacancy were created in a 30 � 30 � 30 cell simulation box, with

a pure bcc Fe matrix. The FeCu-8nn ANNs were used for the calcu-
lation of the energy barriers. The mobility was studied by tracing
the successive positions of the centre-of-mass of the cluster at
three temperatures: 400 K, 500 K and 600 K. The diffusion coeffi-
cients were studied in the same way as for small clusters (Section
3.2.2). The results are given in Fig. 7, where the diffusion coefficient
versus the number of Cu atoms in the cluster is shown for the three
different temperatures studied. Results by Soisson and Fu obtained
from similar studies conducted with a different AKMC model [19],
and according to a mean-field Binder–Stauffer model [37–39], are
shown for comparison on the same graph, after renormalisation.
The latter was necessary because the raw diffusion coefficients ob-
tained in the present study differed by several orders of magnitude
from those obtained in [19]. One reason is that the diffusivity pre-
factor values bear a relationship with the chosen constant attempt
frequency in Eq. (1): mFe = 5 � 1015 s�1 and mCu = 2 � 1015 s�1 in
[19], while here mFe = mCu = 6 � 1012 s�1. Moreover, in [19] time
had been rescaled following the equation:

t ¼ tMC
CMC

V ðFeÞ
Ceq

V ðFeÞ
ð11Þ

where CMC
V ðFeÞ is the vacancy concentration at the simulation box

and Ceq
V ðFeÞ is the vacancy concentration at equilibrium, exponen-

tially proportional to the vacancy formation energy. We empirically
determined that, by using 0.84 eV as ‘‘effective’’ vacancy formation
energy, by applying Eq. (11) we could get values of the same order
of magnitude as in [19], and therefore directly comparable, at least
in terms of trends.

Qualitatively, the AKMC results from [19] exhibit the peculiarity
that the mobility increases with size, instead of decreasing, as
would seem more intuitive and logical, and as consistent with
the mean-field Binder–Stauffer model [37]. According to our AKMC
model the mobility of the Cu precipitates decreases with size, fol-
lowing closely the classical Binder–Stauffer trend. This different
behaviour can most likely be rationalised in terms of difference be-
tween the vacancy formation energy in bcc Cu and bcc Fe. This dif-
ference is much more pronounced in the AKMC model from [19]
than in our model (Ef

V ðCuÞ = 0.82 eV and Ef
V ðFeÞ = 2.20 eV in [19],

while in our case Ef
V ðCuÞ=1.26 eV and Ef

V ðFeÞ=1.71 eV, [26]). This
makes it possible that in Soisson and Fu’s model the vacancy
spends a significantly larger fraction of time inside the precipitate:
the larger the precipitate, the longer. So, the possibility that the
cluster migrates via surface or sub-surface hopping of the vacancy
is higher than in our model.

Table 5
Lifetime prefactor (in units of 10�14 s) and dissociation energy (eV) for all small
clusters studied, specifying error bars, too.

N Complex s0 Edis

2 V2 0.99 ±0.12 0.75⁄ 0.81 ±0.007 0.81⁄
3 V3 1.48 ±0.19 0.98⁄ 0.82 ±0.006 0.91⁄
4 V4 0.39 ±0.07 0.3⁄ 0.97 ±0.008 1.08⁄
5 V5 0.36 ±0.08 0.9⁄ 1.10 ±0.010 1.2⁄
6 V6 0.17 ±0.07 0.04⁄ 1.30 ±0.019 1.45⁄
2 CuV 8.26 ±0.12 8.3⁄ 0.69 ±0.007 0.71⁄
3 CuV2 0.70 ±0.23 2.45⁄ 0.83 ±0.015 0.81⁄
3 Cu2V 6.53 ±0.16 432⁄ 0.72 ±0.011 0.70⁄
4 CuV3 5.18 ±0.78 2.14⁄ 0.80 ±0.007 0.88⁄
4 Cu2V2 1.10 ±0.16 0.65⁄ 0.88 ±0.006 0.96⁄
4 Cu3V 3.16 ±0.91 68.6⁄ 0.83 ±0.013 0.81⁄
5 CuV4 2.65 ±1.24 0.90 ±0.021
5 Cu2V3 4.37 ±0.95 0.84 ±0.009
5 Cu3V2 1.76 ±0.50 0.90 ±0.012
5 Cu4V 3.45 ±0.92 0.88 ±0.011
6 CuV5 3.21 ±1.43 0.96 ±0.020
6 Cu2V4 3.34 ±0.97 0.92 ±0.013
6 Cu3V3 5.86 ±2.02 0.86 ±0.015
6 Cu4V2 3.02 ±0.57 0.90 ±0.006
6 Cu5V 0.38 ±0.11 0.98 ±0.013

Data denoted by � correspond to calculations from [24] and are added for
comparison.
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Fig. 6. Lifetime of Cu–vacancy clusters with six elements (above) and of vacancy
clusters (below).
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Finally, the results shown in Fig. 7 were also obtained introduc-
ing the solubility limit of Cu atoms in the matrix. The diffusion
coefficients obtained were essentially the same, except for the
smaller clusters (15 and 25 atoms) at high temperature: in this
case the introduction of Cu in the matrix reduced the mobility by
about one order of magnitude.

4. Discussion

In this section, the reliability of the above results is discussed
from two viewpoints: firstly, we analyse the capability of the arti-
ficial neural network to transfer the physical information that
stems out of the interatomic potential to the AKMC model without
significant loss; secondly, we shortly discuss the accuracy and the
limitation of the interatomic potential, necessarily taking ab initio
data as a reference.

4.1. Comparison between diffusivity results from ANN and tabulated
barriers

Figs. 8 compare the dissociation energies obtained in the pres-
ent work and in [24], for clusters of vacancies (upper panel) and
mixed (lower panel). It can be seen that, despite the somewhat dif-
ferent methodology used in the two cases, the two sets of results
are acceptably correlated. This suggests that, given an interatomic
potential, the results are relatively robust versus the details of the
way in which the energy barriers are actually estimated in the
AKMC simulation.

Next, the capability of the ANN (FeCuVac-5nn ANN) to repro-
duce the migration energies corresponding to the configurations
encountered by the different clusters during the simulation was
further tested, in the following way. A number of LAEs among
those encountered were randomly extracted and the correspond-
ing energy barrier rigorously calculated, using the NEB method.
The values thereby obtained were then compared, for each cluster,
with the prediction made by the ANN. The results of this compar-
ison for all clusters are reported in [34]. Here a couple of examples
of comparisons are given in Fig. 9 (upper panel), while the worst
case of all is illustrated by Fig. 10. Clearly, the performance of the
ANN is not the same for all clusters. This study suggests that the
origin of the possible unreliability of a given ANN does not stem
from the presence of a large number of defects in the LAC. Instead,
it must be considered strictly as a solvable mathematical problem,
related with the kind of examples (initially randomly chosen) on
which the ANN is trained. Most likely, for the clusters whose en-
ergy barriers are less accurately predicted, the training set con-
tained very few (too few) examples. The reliability of the ANN
could therefore be no doubt further improved by retraining with
a better selection of examples.

In order to quantify even better up to what extent errors com-
mitted by the ANN affect the prediction of the diffusion coefficient,
the latter was calculated both using the ANN and the complete tab-
ulation of NEB energy barriers, in the case of CuV2 and CuV3 (these
clusters are small enough to allow the energy barriers for all pos-
sible 5nn LAEs to be calculated by NEB and tabulated; they repre-
sent average cases in terms of ANN accuracy). The results are
shown in the lower panel of Fig. 9. It can be seen that the ANN error
has only a negligible influence on the final result. It is thus con-
cluded that, with the possible exception of extreme cases (such
as Cu3V3, Fig. 10), the use of the ANN is essentially equivalent to
the use of tabulations of NEB calculated barriers.

4.2. Limits of the obtained values

The previous section proves that the ‘filter’ introduced by the
ANN between the properties of the interatomic potential used for
energy barrier calculations and the AKMC model is generally ‘per-
meable’ and that using the ANN is equivalent to calculating by NEB
all migration energies on-the-fly, though at a greatly reduced com-
putational cost. There are, however, two caveats.

The first one is that in our AKMC model a constant attempt fre-
quency is assumed (m = 6 � 1012 s�1). In principle, this quantity is
LAE-dependent, too. Given an interatomic potential the attempt
frequency can be rigorously calculated for a given LAE, applying
Vineyard’s equation [40] and examples of calculations could be
also used to train a separate ANN, specialised on attempt frequen-
cies. The main reason to avoid this additional procedure is that
small changes in the values of the migration energies, by entering
an exponential function, will certainly have a much stronger im-
pact than equally small changes in the attempt frequency (so long
as these are not systematic). On the other hand, clearly the values
for the jump frequencies and diffusion coefficients obtained in this
work are scaled by the choice of the value of m.

The second caveat concerns the reliability of the interatomic po-
tential versus the only set of data we can use for validation, i.e. ab
initio data, given that experimental data on binding and migration
energies of Cu–vacancy clusters cannot exist. The migration ener-
gies are well reproduced by the potential when compared to the
ab initio data available at the time of the fitting [26]. In particular,
the potential we used has been demonstrated to be suitable to de-
scribe the dragging of Cu atoms by migrating vacancies, contrary to
other potentials [26]. However, also ab initio data are affected by
uncertainties. Most notably, the reference ab initio values of bind-
ing energies used to fit the potential were different from the most

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

6

5

4

32

E di
s - 

AN
N

, 5
nn

Edis - Tabulation, 3nn, from [23]

Vacancy clusters
(sizes indicated beside the data points)

0.6 0.7 0.8 0.9 1.0
0.6

0.7

0.8

0.9

1.0

E di
s -

 A
N

N
, 5

nn

Edis - Tabulation, 3nn, from [23]

   Cu-vacancy clusters
 2
 3
 4

Fig. 8. Correlation between dissociation energies for vacancy clusters (above) and
Cu–vacancy clusters (below) obtained with similar, yet different, methods, here (Em
– ANN results) and in [24] (Em – Tabulation).

M.I. Pascuet et al. / Journal of Nuclear Materials 412 (2011) 106–115 113



Author's personal copy

recent ones reported here. As anticipated, the comparison made in
Tables 1 and 2 suggests that the Cu–vacancy binding energies are
systematically underestimated by the potential. (At the same time,
it should be remembered that lower binding energy values than
DFT ones were needed to properly model Cu precipitation in Fe
with an AKMC model, as shown in [17,20,29].) If the potential
underestimates the Cu–vacancy binding energies, of all quantities
calculated here, the dissociation energy and the lifetime of the
clusters are the most affected and are, therefore, probably underes-
timated by our results. Thus, in reality these clusters might be

more strongly bound and survive for exponentially larger times be-
fore dissolving. We are any way confident that at least the trends
should remain largely acceptable.

5. Concluding remarks

We have shown here how it is possible to rely on atomistic ki-
netic Monte Carlo tools, exploiting advanced computational tech-
niques such as artificial neural networks for the prediction of
vacancy migration energies as functions of the local atomic envi-
ronment, to provide an assessment of the stability and mobility
of mixed copper–vacancy clusters in iron. These quantities are in
practice inaccessible to experiments or to molecular dynamics
simulations and can alternatively be obtained only by heavy ab ini-
tio calculations, for a limited number of cases. The reason for
studying these clusters is that they are expected to play a key role
in the process of copper precipitation in iron alloys under irradia-
tion. The mobility and stability parameters deduced in this work
can so now be used to parameterize models, such as object kinetic
Monte Carlo, describing the nanostructure evolution of these alloys
under irradiation.

The reliability of the artificial neural network to predict the
migration energy of a vacancy as a function of the local atomic
environment was generally good and in some cases excellent. It
has been seen that relatively poor performances are not due to
inherent problems of the method, but only to the lack of proper
examples on which the neural network is trained. The main limita-
tion of the method is that, clearly, it cannot do better than the po-
tential used to produce the examples that are provided and the

Fig. 9. Upper panel: Correlation between the migration energies predicted by the ANN and those calculated by NEB, for the two clusters CuV2 and CuV3 (mean errors: 1.77%
for CuV2, 2.81% for CuV3). Lower panel: corresponding diffusion coefficient calculated from the complete tabulation of all possible migration energies and from the ANN.

Fig. 10. Correlation between the migration energies predicted by the ANN and
those calculated by NEB, in the case of the Cu3V3 cluster (worst case): mean
error = 11.79%, Pearson’s correlation index = 0.78.
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number of examples that are required is fairly large. So, at the mo-
ment, it does not seem possible to train the neural network directly
on ab initio results, although in principle this is a possible route to
follow.
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