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Alzheimer’s disease (AD) is an age-associated neurodegenerative disease characterized by the progressive loss of cognitive function,
loss of memory and insomnia, and abnormal behavioral signs and symptoms. Among the various theories that have been put
forth to explain the pathophysiology of AD, the oxidative stress induced by amyloid β-protein (Aβ) deposition has received great
attention. Studies undertaken on postmortem brain samples of AD patients have consistently shown extensive lipid, protein, and
DNA oxidation. Presence of abnormal tau protein, mitochondrial dysfunction, and protein hyperphosphorylation all have been
demonstrated in neural tissues of AD patients. Moreover, AD patients exhibit severe sleep/wake disturbances and insomnia and
these are associated with more rapid cognitive decline and memory impairment. On this basis, the successful management of AD
patients requires an ideal drug that besides antagonizing Aβ-induced neurotoxicity could also correct the disturbed sleep-wake
rhythm and improve sleep quality. Melatonin is an effective chronobiotic agent and has significant neuroprotective properties
preventing Aβ-induced neurotoxic effects in a number of animal experimental models. Since melatonin levels in AD patients are
greatly reduced, melatonin replacement has the potential value to be used as a therapeutic agent for treating AD, particularly at
the early phases of the disease and especially in those in whom the relevant melatonin receptors are intact. As sleep deprivation
has been shown to produce oxidative damage, impaired mitochondrial function, neurodegenerative inflammation, and altered
proteosomal processing with abnormal activation of enzymes, treatment of sleep disturbances may be a priority for arresting the
progression of AD. In this context the newly introduced melatonin agonist ramelteon can be of much therapeutic value because of
its highly selective action on melatonin MT1/MT2 receptors in promoting sleep.

1. Introduction

Alzheimer’s disease (AD), a major age-associated neurode-
generative disease, is characterized by progressive loss of cog-
nitive function, loss of memory, impaired synaptic function,
and a massive brain cell loss that ultimately results in prema-
ture death. Although the exact cause of the disease is under
intense investigation, the prevailing hypothesis proposes that

the deposition of amyloid β-protein- (Aβ-)containing senile
plaques and of intracellular neurofibrillary tangles major
etiological factors in AD [1]. Deposition of amyloid plaques
causes cell death by inducing mitochondrial dysfunction
and oxidative stress [2]. Aβ deposition initiates the flavo-
enzyme-dependent increase of hydrogen peroxide (H2O2)
and lipid peroxides that increase free radical generation
[3, 4]. Neural tissues of AD patients exhibit increased levels
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of end products of peroxidation such as malondialdehyde,
4-hydroxynonenal, or carbonyls. Though Aβ contributes
directly or indirectly to neuronal degeneration, its potential
to cause AD depends on individual’s susceptibility to Aβ-
mediated toxicity [5].

Mitochondrial dysfunction plays an important role in
AD and the link among impaired mitochondrial function,
tau phosphorylation, and Aβ amyloidosis is increasingly
recognized as a major phenomenon in AD physiopathology
[2, 6, 7]. Aβ accumulation and neurofibrillary tangles
composed of tau protein induce functional deficits of the
respiratory chain complexes thereby resulting in mitochon-
drial dysfunction and oxidative stress (the “Aβ cascade
hypothesis of AD”). It is interesting to note that women are
more vulnerable to AD than men, presumably because the
mitochondria are protected by estrogens against Aβ toxicity
[8].

Indeed, aging and neurodegenerative diseases are accom-
panied by abnormal levels of oxidation of proteins, lipids,
and nucleic acids [9–11]. Mechanisms such as chronic
inflammation associated with the release of cytokines and
trace element neurotoxicity have also been suggested as pos-
sible contributory factors underlying the physiopathologic
events of AD [12–14]. Membrane disruption and induction
of apoptosis by caspase enzymes have also been implicated
[15].

In addition to cognitive and memory dysfunction, sleep-
wake and other circadian rhythm dysregulation, are com-
monly seen in AD [16–19]. These circadian rhythm distur-
bances are associated with disturbed melatonin rhythmicity
and decreased circulating and brain melatonin levels [20–
22]. It is hypothesized that the decreased levels of melatonin,
in fact, could contribute to the pathophysiology of AD in
view than melatonin combines chronobiotic with effective
antioxidant, anti-inflammatory, and antifibrillogenic prop-
erties [23].

Among the factors known to suppress the production
of melatonin by the pineal gland, hypoxia deserves to be
considered [24]. Reduced production of melatonin has been
reported to occur in other ischemic conditions such as
coronary artery disease or severe congestive heart failure [25–
27]. Hypoxia may play a role in the pathogenesis of AD as it
can induce formation of Aβ [28–30]. The role of hypoxia in
potentiating AD is supported by the observation that patients
suffering from cardiorespiratory disorders, cerebral ischemia
or stroke are much more susceptible to development of
dementias including AD [31]. It is remarkable that the daily
administration of melatonin reduces the hypoxia induced Aβ
generation in the rat hippocampus [32].

With this background, the replacement of brain mela-
tonin levels has been suggested as a way arresting the progress
of AD and for correcting the circadian and sleep-wake
disturbances associated with the disease. As melatonin is
a short-lived molecule having a limited duration of action
(half life = 0.54-0–67 h [33]), analogs with a high affinity
for melatonin receptors and a longer duration of action
have been synthesized with a potential therapeutic efficacy
to treat insomnia and psychiatric disorders like depression
and bipolar affective disorder [34]. Ramelteon was the first

of these molecules approved by the U.S. Food and Drug
Administration to be used in the treatment of insomnia [35]
and its potential use in AD together with that of melatonin is
discussed in this review article.

2. Melatonin in AD

Melatonin is synthesized both in the pineal gland and in a
number of peripheral organs and tissues by a process starting
with tryptophan conversion to serotonin (reviewed in [36]).
Serotonin is then acetylated to form N-acetylserotonin
by the enzyme arylakylamine N-acetyltransferase while N-
acetylserotonin is converted into melatonin by the enzyme
hydroxyindole-O-methyl transferase [37, 38]. Once formed
melatonin is not stored within the pineal gland it diffuses
into the capillary blood and the cerebrospinal fluid (CSF)
[39, 40]. CSF melatonin values are nearly 30 times higher
than those in the blood; thus, the brain tissue has a higher
melatonin concentration than any other tissue in the body
[41].

Regional distribution of melatonin in different areas
of the brain varies and early studies have shown that
hypothalamic melatonin concentrations are nearly fifty times
higher than in plasma [42–44]. While tissue melatonin
only exhibits a moderate circadian variation, circulating
melatonin exhibits most pronounced circadian rhythm with
highest levels occurring at night and very low levels during
daytime [36].

Circulating melatonin is metabolized mainly in the liver
via hydroxylation in the C6 position by cytochrome P450

monooxygenases (CYP1A2;CYP1A1) [45]. It is thereafter
conjugated with sulphate to form 6-sulfatoxymelatonin
(aMT6S), the main metabolite of melatonin in urine. In the
brain, melatonin is metabolized to kynuramine derivatives
like N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK)
[46, 47]. In several tissues melatonin is also nonenzymatically
metabolized to cyclic 3-hydroxy melatonin [48].

Melatonin is involved in the control of various physiolog-
ical functions such as circadian rhythmicity [49, 50], sleep
regulation [51, 52], immune function [53, 54], antioxidant
defense [55, 56], control of reproduction [57–59], inhibition
of tumor growth [60, 61], and control of human mood
[62, 63]. Melatonin participates in many of these functions
by acting through G-protein membrane receptors, the MT1

and MT2 melatonin receptors [64–66]. Nuclear melatonin
receptors belonging to the RZR/ROR α receptor class have
also been described [56, 67, 68]. Melatonin also acts directly
on the cells without the intervention of any of these receptors
by binding to intracellular proteins like calmodulin [69]
or tubulin [70]. In general, the free radical scavenging
action of melatonin does not involve receptors except for
the induction of synthesis of some antioxidant enzymes
like γ-glutamylcysteine synthase that involves RZR/ROR α
receptors [71].

In view of the involvement of oxidative stress in AD,
melatonin represents an interesting neuroprotective agent as
it antagonizes oxidative stress both in a direct and in an
indirect way [55, 56, 72, 73]. In the N2a murine neurob-
lastoma cell model Pappolla et al. [74] first demonstrated
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that coincubation of Aβ with melatonin significantly reduced
several features of apoptosis like cellular shrinkage or forma-
tion of membrane blubs. In a number of studies melatonin
prevented the death of neuroblastoma cells exposed to Aβ
[5, 75, 76].

Several animal models of AD have been used to study
the possible antoxidative and antiapoptotic actions of mela-
tonin in arresting neuronal lesions. Okadaic acid induces
physiological and biochemical changes similar to those seen
in AD. Increased levels of 4-hydroxynonenal in cultured
neuronal cells have been found following administration of
okadaic acid [77]. After the administration of antioxidants
like melatonin or vitamin C, the effects of okadaic acid
on NIE 115 neuronal cells were prevented effectively [78].
Melatonin was more effective than vitamin C, since it not
only prevented the free radical-induced damage with greater
efficiency but also increased the activity of the antioxidant
enzymes glutathione-S transferase and glutathione reductase
[78].

Several studies indicate that the apoptosis of astrocytes
contribute to the pathogenesis of AD (sees [79]). Astrocytes
exhibit tau phosphorylation and activation of stress kinases
as seen in AD pathology. They also produce apolipoprotein
E4 (apoE4) that aggravates Aβ neurodegenerative effects
[80, 81]. During interaction with Aβ, astrocytes lose control
over NO production leading to the neurotoxic peroxynitrate
formation. By treating the C6 astroglioma cells with mela-
tonin, the increase in NO production induced by Aβ was
effectively prevented [82].

3. Molecular Mechanisms of Melatonin’s
Anti-Amyloid Actions

Melatonin not only reduced apoptosis but also exerts its
antiamyloid actions through additional mechanisms. One of
them is by preventing Aβ-induced mitochondrial damage
and disruption of respiration. Melatonin administration
prevented Aβ action on mitochondrial DNA proteins and
level of lipid peroxidation [75]. In this aspect it is interesting
to note that melatonin’s metabolite AFMK also offered
protection from Aβ-induced mitochondrial oxidative stress
[83] although a higher concentration was needed.

Melatonin inhibits the formation of amyloid fibrils as
demonstrated by different techniques [84, 85]. The structural
analog of melatonin indole-3-propionic acid not only shares
the radical scavenging activity of melatonin [86] but also
exhibits similar or even higher antifibrillogenic activity [87].

Several lipoproteins can modulate fibrillogenesis [88].
Melatonin was shown to reverse the profibrillogenic activity
of apoE4 and to antagonize the neurotoxic combinations
of Aβ and apoE4 or apoE3 [83]. ApoE4 is also produced
by astrocytes and aggravates Aβ effects showing thereby
the mutual interaction of Aβ protein and apo-E4 in the
astrocyte-neuron interactions [81]. The antifibrillogenic
effects of melatonin and its metabolites were observed not
only in vitro but also in vivo in transgenic mouse models
[84, 89, 90]. Protection from Aβ toxicity was observed,
especially at the mitochondrial level.

As mentioned above, chronic intermittent hypoxia has
been shown to induce Aβ protein generation by upregulating
the APP processing enzymes BACE and PSEN-1 [28–30].
The daily administration of melatonin (10 mg/kg) prior to a
short-term hypoxia prevented the generation of Aβ protein
but it did not reduce the increase of HIF-1 transcription
factor induced by hypoxia [32]. Hence it was suggested that
melatonin’s neuroprotective effect against amyloid-β-peptide
was due to its direct free radical scavenging properties actions
[32].

Another manifestation of AD studied in experimental
models is the expression of protein hyperphosphorylation
and cytoskeletal disorganization. Calyculin A, an inhibitor of
protein phosphatases (PP), was used in neuroblastoma N2
cells to examine this point. Calyculin A resulted in activation
of glycogen synthase kinase 3 (GSK-3), a redox-controlled
enzyme involved in various regulatory mechanisms of the
cell, and the consequent hyperphosphorylation of tau [91].
Melatonin administration decreased oxidative stress and
tau hyperphosphorylation and reversed GSK-3 activation
showing thereby that it not only acts as an antioxidant but
also interferes with the phosphorylation system, particularly
stress kinases [91].

The inhibition of PP-2A and PP-1 brought about by
calyculin A caused hyperphosphorylation of tau and of
neurofilaments, synaptophysin loss, and spatial memory
retention impairment, an effect counteracted by the adminis-
tration of melatonin i.p. for 9 days before calyculin injection
[92]. Melatonin also partially reversed the phosphorylation
of the catalytic subunit of PP-2A at tyrosine 307 (Y307)
crucial site regulating the activity of PP-2A, and reduced
malondialdehyde levels induced by calyculin A [92]. Mela-
tonin also attenuated tau hyperphosphorylation induced by
wortmannin [93, 94] and isoproterenol [95].

Tyrosine kinase (trk) receptors, important elements of
the phosphorylation system, as well as neurotrophins, are
affected by Aβ and other oxidotoxins and melatonin normal-
ized in neuroblastoma cells trk and neurotrophin expression
[96]. Recent studies using organotypic hippocampal studies
confirmed that the presence of melatonin (25–100 μM)
prevented the cell damage induced by exposure to Aβ
reducing the activation of GSK-3β, the phosphorylation of
tau protein, and the Aβ-induced increases of TNF-α and
IL-6 levels [97]. The chronobiological aspects of melatonin-
Aβ interaction are underlined by a study describing the
protective effect of melatonin against the circadian changes
produced by Aβ25–35 microinjection into the suprachiasmatic
nuclei (SCN) of golden hamsters [98].

4. Potential Therapeutic Value of
Melatonin in AD

A number of studies in AD patients have indicated that
there is a profound disturbance in sleep/wake cycle associated
with the progression of the disease. Cross-sectional studies
reveal that sleep disturbances are associated with memory
and cognitive impairment. [16–19]. A severe disruption of
the circadian timing system occurs in AD as indicated by
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alterations in numerous overt rhythms like body tempera-
ture, glucocorticoids, and/or plasma melatonin [22, 99, 100].
The internal desynchronization of rhythms is significant in
AD patients [101, 102].

“Sundowning” is a chronobiological phenomenon
observed in AD patients in conjunction with sleep-wake
disturbances, including symptoms like disorganized
thinking, reduced ability to maintain attention to external
stimuli, agitation, wandering, and perceptual and emotional
disturbances, all appearing in late afternoon or early evening
[99, 103, 104]. Chronotherapeutic interventions such
as exposure to bright light and/or timed administration
of melatonin in selected circadian phases alleviated
sundowning symptoms like wandering, agitation and
delirium and also improved sleep-wake patterns of AD
patients [105].

A number of studies have revealed that melatonin levels
are lower in AD patients as compared to age-matched
control subjects [20–22, 106]. The decreased CSF melatonin
levels of AD patients were attributed to decreased mela-
tonin production. CSF melatonin levels decreased even in
preclinical stages (Braak stages-1) when patients did not
manifest cognitive impairment [107] suggesting thereby that
reduction in CSF melatonin may be an early marker (and
cause) for incoming AD. The decrease of melatonin levels
in AD was attributed to a defective retinohypothalamic tract
or SCN-pineal connections [108]. The impaired melatonin
production at night correlates significantly with the severity
of mental impairment of demented patients [109]. As AD
patients have profound deficiency of endogenous melatonin,
replacement of levels of melatonin in the brain could be a
therapeutic strategy for arresting the progress of the disease.
Melatonin’s neuroprotective and vasoprotective properties
would help in enhancing cerebral blood flow and would help
to improve the clinical condition of AD patients [23].

Sleep disturbances exacerbate memory and cognitive
impairment [110]. Therefore, optimization in management
of sleep disturbances is of paramount importance in treating
AD patients. In an initial study on 14 AD patients with 6–
9 mg of melatonin given for 2-3 year period it was noted
that melatonin improved sleep quality [111]. Sundowning,
diagnosed clinically, was no longer detectable in 12 out
of 14 patients. Reduction in cognitive impairment and
amnesia was also noted. This should be contrasted with the
significant deterioration of the clinical conditions expected
from patients after 1–3 year of evolution of AD [111, 112].

Several studies support the efficacy of melatonin in
treating sleep and chronobiologic disorders in AD patients
(Table 1). The administration of melatonin (6 mg/day) for 4
weeks to AD patients reduced nighttime activity as compared
to placebo [113]. An improvement of sleep and alleviation
of sundowning were reported in 11 AD patients treated
with melatonin (3 mg/day at bedtime) and evaluated by
using actigraphy [114]. Improvement in behavioral signs was
reported with use of 6–9 mg/day of melatonin for 4 months
in AD patients with sleep disturbances [115].

In a double blind study conducted on AD patients
it was noted that 3 mg/day of melatonin significantly
prolonged actigraphically evaluated sleep time, decreased

activity in night, and improved cognitive functions [119]. In
a multicenter, randomized, placebo-controlled clinical trial
of a sample of 157 AD patients with sleep disturbances,
melatonin or placebo was administered for a period of 2
months [120]. In actigraphic studies a trend to increased
nocturnal total sleep time and decreased wake after sleep
onset was noted in the melatonin-treated group. On subjec-
tive measures by caregiver ratings significant improvement
in sleep quality was noted with 2.5 mg sustained release
melatonin relative to placebo [120].

Negative results with the use of melatonin in fully
developed AD were also published. For example, in a study
in which melatonin (8.5 mg fast release and 1.5 mg sustained
release) was administered at 10.00 PM for 10 consecutive
nights to patients with AD, no significant difference was
noticed with placebo on sleep, circadian rhythms and,
agitation [124]. Although the lack of beneficial effect of
melatonin in this study on sleep could be attributed to the
short period of time examined, it must be noted that large
interindividual differences between patients suffering from a
neurodegenerative disease are not uncommon. It should be
also taken into account that melatonin, though having some
sedating and sleep latency-reducing properties, does not
primarily act as a sleeping pill, but mainly as a chronobiotic.

Since the circadian oscillator system is obviously affected
in AD patients showing severe sleep disturbances, the efficacy
of melatonin should be expected to depend on disease
progression. In a recent paper one of us summarized the pub-
lished data concerning melatonin treatment of AD patients
[125] (Table 1). Eight reports (5 open-label studies, 2 case
reports) (N = 89 patients) supported a possible efficacy
of melatonin: sleep quality improved and in patients with
AD sundowning was reduced and cognitive decay showed
less progression. In 6 double blind, randomized placebo-
controlled trials (N = 210) sleep was objectively measured
by wrist actigraphy and additionally neuropsychological
assessment and sleep quality were subjectively evaluated.
Sleep quality increased and sundowning decreased signif-
icantly and cognitive performance improved in 4 studies
(N = 143) whereas there was absence of effects in 2
studies (N = 67) [125]. Therefore, the question whether
melatonin has a causal value in preventing or treating
AD, affecting disease progression of the neuropathology
and the driving mechanisms, remains unanswered. Double-
blind multicenter studies are needed to further explore and
investigate the potential and usefulness of melatonin as an
antidementia drug. Its apparent usefulness in symptomatic
treatment, concerning sleep, sundowning, and so forth, even
in a progressed state, further underlines the need for such
decisive studies.

It has been shown that with degeneration of the SCN, the
master body clock, there is a decrease in the expression of
MT1 receptors so that strength of melatonin as a synchro-
nizing agent is reduced [126]. Moreover the input of neural
pathways involved in entrainment (synchronization) of the
central clock may become dysfunctional or less sensitive
during aging and even more so in AD [127]. In a large
multicentre trial only a nonsignificant trend to improvement
in the circadian rhythm disturbance of AD is when treatment
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Table 1: Clinical studies on melatonin efficacy in AD.

Design
Subjects
(M, F)

Treatment
Study’s

duration
Measured Results Reference

Open-label
study

10 (6, 4)
demented
patients

3 mg melatonin
p.o./daily at bed
time

3 weeks
Daily logs of sleep and
wake quality completed by
caretakers

Seven out of ten dementia patients
having sleep disorders treated with
melatonin showed a significant
decrease in sundowning and
reduced variability of sleep onset
time

[116]

Open-label
study

14 (8, 14)
AD patients

9 mg melatonin
p.o./daily at bed
time

22 to 35
months

Daily logs of sleep and
wake quality completed by
caretakers.
Neuropsychological
assessment.

At the time of assessment, a
significant improvement of sleep
quality was found. Sundowning was
not longer detectable in 12 patients
and persisted, although attenuated
in 2 patients. Clinically, the patients
exhibited lack of progression of the
cognitive and behavioral signs of
the disease during the time they
received melatonin.

[111]

Case report

Monozygotic
twins with
AD of 8
years
duration

One of the patients
was treated with
melatonin 9 mg
p.o./daily at bed
time.

36
months

Neuropsychological
assessment.
Neuroimaging.

Sleep and cognitive function
severely impaired in the twin not
receiving melatonin as compared to
the melatonin-treated twin.

[112]

Open-label,
placebo-
controlled
trial

14 AD
patients

6 mg melatonin
p.o./daily at bed
time or placebo

4 weeks
Daily logs of sleep and
wake quality completed by
caretakers. Actigraphy

The 7 AD patients receiving
melatonin showed a significantly
reduced percentage of nighttime
activity compared to a placebo
group

[113]

Open-label
study

11 (3, 8) AD
patients

3 mg melatonin
p.o./daily at bed
time

3 weeks
Daily logs of sleep and
wake quality completed by
the nurses.

Analysis revealed a significant
decrease in agitated behaviors in all
three shifts and a significant
decrease in daytime sleepiness.

[117]

Open-label
study

45 (19, 26)
AD patients

6–9 mg melatonin
p.o./daily at bed
time

4 months

Daily logs of sleep and
wake quality completed by
caretakers.
Neuropsychological
assessment.

Melatonin improved sleep and
suppressed sundowning, an effect
seen regardless of the concomitant
medication employed to treat
cognitive or behavioral signs of AD.

[115]

Randomized
double blind
placebo
controlled
cross over
study

25 AD
patients

6 mg of slow
release melatonin
p.o. or placebo at
bed time

7 weeks Actigraphy
Melatonin had no effect on median
total time asleep, number of
awakenings, or sleep efficiency.

[118]

Double-
blind,
placebo-
controlled
study

20 (3, 17)
AD patients

Placebo or 3 mg
melatonin
p.o./daily at bed
time

4 weeks
Actigraphy.
Neuropsychological
assessment.

Melatonin significantly prolonged
the sleep time and decreased activity
in the night. Cognitive function was
improved by melatonin.

[119]

Randomized,
placebo-
controlled
clinical trial

157 (70, 87)
AD patients

2.5 mg slow-release
melatonin, or
10 mg melatonin
or placebo at bed
time

2 months
Actigraphy. Caregiver
ratings of sleep quality

Nonsignificant trends for increased
nocturnal total sleep time and
decreased wake after sleep onset
were observed in the melatonin
groups relative to placebo. On
subjective measures, caregiver
ratings of sleep quality showed
improvement in the 2.5 mg
sustained-release melatonin group
relative to placebo.

[120]
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Table 1: Continued.

Design
Subjects
(M, F)

Treatment
Study’s

duration
Measured Results Reference

Open-label
study

7 (4, 3) AD
patients

3 mg melatonin
p.o./daily at bed
time

3 weeks
Actigraphy.
Neuropsychological
assessment.

Complete remission of daynight
rhythm disturbances or
sundowning was seen in 4 patients,
with partial remission in other 2.

[114]

Randomized,
placebo-
controlled
study

17 AD
patients

3 mg melatonin
p.o./daily at bed
time (7 patients).
Placebo (10
patients)

2 weeks
Actigraphy.
Neuropsychological
assessment.

In melatonin-treated group,
actigraphic nocturnal activity and
agitation showed significant
reductions compared to baseline.

[121]

Randomized,
placebo-
controlled
study

50 AD
patients

Morning light
exposure (2,500
lux, 1 h) and 5 mg
melatonin (n = 16)
or placebo
(n = 17) in the
evening. Control
subjects (n = 17)
received usual
indoor light
(150–200 lux).

10 weeks

Night time sleep variables,
day sleep time, day activity,
day : night sleep ratio, and
rest-activity parameters
were determined using
actigraphy.

Light treatment alone did not
improve night time sleep, daytime
wake, or rest-activity rhythm. Light
treatment plus melatonin increased
daytime wake time and activity
levels and strengthened the
rest-activity rhythm.

[122]

Case report

68-year-old
man with
AD who
developed
rapid eye
movement
(REM) sleep
behavior
disorder

5–10 mg melatonin
p.o./daily at bed
time.

20
months

Polysomnography
Melatonin was effective to suppress
REM sleep behavior disorder

[123]

Randomized,
placebo-
controlled
study

41 (13, 28)
AD patients

Melatonin (8.5 mg
immediate release
and 1.5 mg
sustained release)
(N = 24) or
placebo (N = 17)
administered at
10 : 00 P.M.

10 days Actigraphy.

There were no significant effects of
melatonin, compared with placebo,
on sleep, circadian rhythms, or
agitation.

[124]

was done using melatonin [120]. Because MT1 receptor
expression in the SCN is decreased it is certainly possible
that melatonin will be ineffective as a synchronizing agent
although it is possible that a higher dose of melatonin or a
more potent melatonin agonist such as ramelteon may be
useful. Another strategy could be exposure to bright light
[128] (see below).

5. Melatonin as a Therapeutic Agent for
Mild Cognitive Impairment

As outlined, melatonin acts at different levels relevant to
the development and manifestation of AD. The antioxidant,
mitochondrial, and antiamyloidogenic effects may be seen
as a possibility of interfering with the onset of the disease.
Therefore, early beginning of treatment may be decisive
[129].

Mild cognitive impairment (MCI) is an etiologically het-
erogeneous syndrome characterized by cognitive impairment
shown by objective measures adjusted for age and education
in advance of dementia [130]. Approximately 12% of MCI
converts to AD or other dementia disorders every year. Since
MCI may represent prodromal A,D it should be adequately
diagnosed and treated. Indeed, the degenerative process in
AD brain starts 20–30 years before the clinical onset of the
disease [130]. During this phase, plaques and tangles loads
increase and at a certain threshold the first symptom appears.
As already mentioned, CSF melatonin levels decrease even
in preclinical stages when the patients do not manifest any
cognitive impairment (at Braak stages I-II), suggesting that
the reduction in CSF melatonin may be an early trigger and
marker for AD. Therefore, MCI could be an appropriate
moment for initiating any melatonin treatment aiming to
affect progression of the disease. Studies on melatonin effect
on MCI are summarized in Table 2.
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Table 2: Clinical studies on melatonin efficacy in MCI.

Design Subjects (M, F) Treatment
Study’s

duration
Measured Results Reference(s)

Double-blind,
placebo-
controlled, crossover
study

10 (4, 6)
patients with
mild cognitive
impairment
(MCI)

6 mg melatonin
p.o./daily at bed
time

10 days
Actigraphy.
Neuropsychological
assessment.

Enhanced the rest-activity
rhythm and improved sleep
quality (reduced sleep onset
latency and in the number of
transitions from sleep to
wakefulness Total sleep time
unaffected. The ability to
remember previously learned
items improved along with a
significant reduction in
depressed mood.

[131]

Double-blind,
placebo-controlled
pilot study

26 individuals
with age-related
MCI

1 mg melatonin
p.o. or placebo
at bed time

4 weeks

Sleep questionnaire
and a battery of
cognitive tests at
baseline and at 4 weeks

Melatonin administration
improved reported morning
“restedness” and sleep latency
after nocturnal awakening and
also improved scores on the
California Verbal Learning
Test-interference subtest.

[132]

Open-label,
retrospective study

50 (13, 37) MCI
outpatients

25 had received
daily 3–9 mg of
a fast-release
melatonin
preparation p.o.
at bedtime.
Melatonin was
given in
addition to the
standard
medication

9–18
months

Daily logs of sleep and
wake quality. Initial
and final
neuropsychological
assessment.

Patients treated with
melatonin showed
significantly better
performance in
neuropsychological
assessment. Abnormally high.
Beck Depression Inventory
scores decreased in
melatonin-treated patients,
concomitantly with an
improvement in wakefulness
and sleep quality.

[133]

Randomized, double
blind,
placebo-controlled
study

354 individuals
with age-related
cognitive decay

prolonged
release
melatonin
(Circadin, 2 mg)
or placebo, 2 h
before bedtime

3 weeks

Leeds Sleep Evaluation
and Pittsburgh Sleep
Questionnaires,
Clinical Global
Improvement scale
score and quality of
life.

PR-melatonin resulted in
significant and clinically
meaningful improvements in
sleep quality, morning
alertness, sleep onset latency,
and quality of life

[134]

Long-term,
double-blind,
placebo-controlled,
2× 2 factorial
randomized study

189 (19, 170)
individuals with
age-related
cognitive decay

Long-term daily
treatment with
whole-day
bright (1000
lux) or dim (300
lux) light.
Evening
melatonin
(2.5 mg) or
placebo
administration

1 to 3.5
years

Standardized scales for
cognitive and
noncognitive
symptoms, limitations
of activities of daily
living, and adverse
effects assessed every 6
months.

Light attenuated cognitive
deterioration and also
ameliorated depressive
symptoms. Melatonin
shortened sleep onset latency
and increased sleep duration
but adversely affected scores
for depression. The combined
treatment of bright light plus
melatonin showed the best
effects.

[105]

Prospective,
randomized,
double-blind,
placebo-controlled,
study

22 (15, 7)
individuals with
age-related
cognitive decay

Participants
received 2
months of
melatonin (5 mg
o.o./day) and 2
months of
placebo

2 months

Sleep disorders were
evaluated with the
Northside Hospital
Sleep Medicine
Institute (NHSMI) test.
Behavioral disorders
were evaluated with the
Yesavage Geriatric
Depression Scale and
Goldberg Anxiety
Scale.

Melatonin treatment
significantly improved sleep
quality scores. Depression also
improved significantly after
melatonin administration.

[135]
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The first report on melatonin treatment of 10 MCI
patients (6 mg/day for 10 days) indicated that besides
enhancing the rest-activity rhythm and improved sleep
quality the ability to remember previously learned items
improved along with a significant reduction in depressed
mood [131]. In another double-blind, placebo-controlled
pilot study performed in 26 individuals with age-related
MCI, the administration of 1 mg melatonin or placebo at
bed time for 4 weeks resulted in improvement of sleep and
of scores on the California Verbal Learning Test-interference
subtest [132].

In a retrospective study of a group of 25 MCI patients
who received melatonin (3–9 mg per day) for 9 to 18 months
in comparison to a similar group of 25 MCI patients who
did not receive it [133], patients treated with melatonin
showed significantly better performance in a number of
neuropsychological tests. Abnormally high Beck Depression
Inventory scores decreased in melatonin treated patients,
concomitantly with an improvement in wakefulness and
sleep quality. The results suggested that melatonin could be a
useful add-on drug for treating MCI in a clinic environment
[133]. A follow up of that study has now been completed on
a group of 35 MCI patients receiving melatonin for 9 to 24
months with essentially similar results [125].

A randomized controlled trial on the effect of bright
light and melatonin on cognitive and noncognitive function
in elderly residents of group care facilities was published
[105]. The authors concluded that light has a benefit in
improving some cognitive and noncognitive symptoms of
MCI which was amplified by the conjoint administration of
melatonin. In other two similar studies, one of them using
the prolonged release preparation of melatonin (Circadin)
recently approved by the European Medicines Agency,
melatonin resulted in significant and clinically meaningful
improvements of sleep quality, morning alertness, sleep
onset latency and quality of life in old patients with mild
cognitive impairment [134, 135]. In these studies melatonin
treatment also improved mood. The evaluation of the
published data concerning melatonin treatment of MCI
that include 5 double blind, randomized placebo-controlled
trials, and 1 open-label retrospective study (N = 651)
all agreess in indicating that treatment with daily evening
melatonin improves sleep quality and cognitive performance
in MCI [125] (Table 2).

6. Use of Melatonin Agonist, Ramelteon in AD

As AD is associated with disturbed sleep/wake rhythms
and circadian rhythm disturbances, a melatonin agonist
with higher affinity to melatonin MT1 and MT2 receptors
with a longer duration would theoretically be beneficial in
tackling sleep-wake and circadian rhythm disturbances. In
this aspect, ramelteon, which is the first melatonin receptor
agonist approved by FDA with activity on MT1 and MT2

receptors, should be considered [136, 137].
The chemical structure of ramelteon is: (S)-N-[2-

(1,6,7,8-tetrahydro-2Hindeno[5,4-b]furan-8-yl)ethyl] pro-
pionamide. This melatonin receptor agonist has a chem-
ical formula C16H21NO2 with a molecular weight 259.34.

Receptor binding studies indicated that ramelteon has high
selectivity for MT1 and MT2 receptors, with little affinity
for quinone reductase 2 binding [138]. The selectivity of
ramelteon for MT1 has been found >1000-fold over that
of MT2 receptors. It is well known that melatonin exerts
its hypnotic effects through the activation of the MT1 and
MT2 melatonin receptors [139]. Although both MT1 and
MT2 receptors are involved in the regulation of sleep, the
selectivity of MT1 receptors by ramelteon suggests that it
targets sleep onset more specifically than melatonin [140].
Ramelteon has been found to have no affinity for benzo-
diazepine (BZP), dopamine, opiate, or serotonin receptor
binding sites [138]. Hence ramelteon has advantages over
other hypnotic drugs in not causing rebound insomnia,
withdrawal symptoms, or dependence which is common
with the activation of BZP, opiate, or dopamine receptors.

On oral administration, ramelteon is rapidly absorbed
with a Tmax of less than 1 hour [141]. The absolute
bioavailability of the oral formulation of ramelteon is less
than 2% (range 0.5% to 12%) [141]. It is metabolized mainly
in the liver via oxidation to hydroxyl and carbonyl groups
and then conjugated with glucuronide. CYP1A2 is the major
hepatic enzyme involved in ramelteon metabolism. Four
principal metabolites ramelteon, that is, M-I, M-II, M-III,
and M-IV, have been identified [141]. Among these, M-II
has been found to occur in much higher concentration with
systemic concentration being 20- to 100- fold greater than
ramelteon.

Ramelteon is rapidly excreted and its elimination is
significantly higher in elderly than in younger adults [142].
The influence of age and gender on the pharmacokinetics
and pharmacodynamics of ramelteon has been evaluated in
healthy volunteers following the administration of a single
dose of 16 mg of ramelteon. When compared to young
volunteers, ramelteon clearance was significantly reduced in
elderly volunteers and its half life significantly increased. No
significant effect of gender was observed [142]. The contri-
bution of ramelteon’s metabolites on the net pharmacologic
activity was also evaluated. Among the four metabolites
produced, the activity of M-II was to be about 30-fold lower
than that of ramelteon, but its exposure exceeds exposure to
ramelteon by a factor 30. It was thus suggested that M-II may
contribute to net clinical activity of ramelteon [142].

The subjective efficacy of ramelteon was evaluated in
clinical trials consisting of 829 elderly outpatients with
chronic insomnia; 701 patients (128 patients discontinued)
were treated for a period of 5-weeks with 4 mg and 8 mg
ramelteon [143]. Patients in both ramelteon groups reported
significant reductions in sleep onset latency (SOL) and
increases in total sleep time (TST). Continuation of this
study on 100 elderly patients established the efficacy of
ramelteon in improving TST and decreasing SOL [144].
A number of studies have now established the efficacy of
ramelteon in treating patients with chronic insomnia [145–
147].

Concerning the safety and adverse effects with ramelteon,
in a double blind placebo controlled study of rebound
insomnia (sleep latency after treatment discontinuation)
Roth and co-workers [143] evaluated each of the 7 nights
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Figure 1: Melatonergic agonists in AD. The multiple effects of melatonin discussed in the text and the different degree of overlap
(interrelations and mutual influences) are indicated by the respective intersections in the scheme.

of placebo run-out period. It was noted that during each of
the 7 nights, patients in both ramelteon treatment groups
(4 mg/day and 8 mg/day) maintained a similar or greater
reduction in sleep latency from baseline as compared to those
receiving placebo [143]. Withdrawal effects, as assessed by
a BZP withdrawal symptom questionnaire, did not differ
from the placebo group [143]. In another recent study it
was noted that ramelteon did not affect alertness or the
ability to concentrate, indicating no next-morning residual
effects [148]. The incidence of adverse effects in ramelteon-
treated patients in a 5 week study was found to be similar to
that of placebo-treated patients. The adverse effects included
mild gastrointestinal disturbances and nervous system effects
such as dizziness, headache, somnolence, depression, fatigue,
myalgia, and exacerbated eye pain [143].

Ramelteon not only has the potential in improving the
sleep quality of AD and other neurodegenerative patients
but can also offer neuroprotection as well in AD [149]. As
ramelteon is a melatonin agonist with more potency and
longer duration of action, it could act more efficiently than
melatonin in its actions against neurotoxic effects involved in
the pathogenesis of AD.

To what extent ramelteon reproduces the nonre-
ceptor mediated effects of melatonin is not known.
Ramelteon displays no relevant antioxidant capacity in
the ABTS radical cation assay, as compared to luzin-
dole or melatonin [150]. However, MT1/MT2 receptor-
mediated effects on the upregulation of several antioxidant
enzymes by physiological concentration of melatonin [151]
such as glutathione peroxidase, glutathione reductase, γ-
glutamylcysteine synthase, glucose-6-phosphate dehydroge-
nase, hemoperoxidase/catalase, Cu,Zn- and Mn-superoxide
dismutases (reviewed in [152–155] can well give the basis
for the use of ramelteon in AD. Since there are extensive
data indicating a loss of melatonin receptors in AD patients,
including the cerebral cortex and pineal gland (MT1 and
MT2 receptors) [156], the hippocampus [157] and retina

[158] (MT2 receptors) and the cerebrovascular system [159],
and SCN [126, 128] (MT1 receptors), the chances of
alleviating symptoms such as sundowning and disturbed
sleep by giving the MT1/MT2 receptor agonist may vanish
in late AD patients.

In addition, it has been suggested that melatonin and its
receptors participate in neurodevelopment and regulation of
neurotrophic factors [160]. In vitro studies have shown that
melatonin promotes the viability and neuronal differentia-
tion of neural stem cells and increases the production brain-
derived neurotrophic factor (BDNF) by acting through MT1

receptors [161]. In mouse cerebellar granule cells in culture
ramelteon increased the neural content of BDNF [162].
Therefore, if ramelteon treatment is capable of regulating
brain BDNF levels, it could be used as a possible therapeutic
agent in neurodegenerative diseases like AD for treating
symptoms other than sleep disturbances.

7. Concluding Remarks

As AD disease involves a complex physiopathology, it has
been suggested that monotherapy targeting early single steps
in this complex cascade process may not be of much help
[149]. Pleiotrophic drugs that can act independently by
different routes including antioxidant, antiinflammatory,
and antiamyloid effects would be much beneficial in the
treatment of AD and other neurodegenerative disorders.
Available evidence indicates suppression of GSK-3β over-
activity; neuroinflammation and mitochondrial impairment
are some of the combined strategies required in AD.

Melatonin is a pleiotropic molecule with antioxidant,
antiinflammatory and antinitridergic properties [56, 154,
163]. It has also a role in sleep induction, and this is
important in view that sleep deprivation is one of the
cardinal features seen in AD and other neurodegenera-
tive diseases. Sleep deprivation is associated with GSK-
3β activation [164], altered proteosomal processing [165],
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oxidative damage [166], impaired mitochondrial integrity
and function [167], and neurodegenerative inflammation
[168]. Therefore, improvement of insomnia in neurode-
generative conditions and particularly in AD is a good
practical approach for arresting the progression of the disease
(Figure 1).

Melatonin and particularly ramelteon can be greatly
beneficial in preventing the insomnia-induced damage of
neuronal cells and can be of therapeutic value in treating
AD. Owing to its potent effect on MT1 and MT2 recep-
tors, ramelteon activates sleep onset by influencing the
hypothalamic “sleep switch” downstream from the SCN
more efficiently than melatonin itself [35]. Multicenter,
placebo-controlled clinical trials using ramelteon are needed
to prove the efficacy of this drug in arresting the progression
or prevention of AD or remission in the early stages of AD
such as MCI.
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