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Fatigue crack advance induced by the application of cyclic quasistatic loads is investigated both numer-
ically and analytically using a lattice spring model. The system has a quasi-one-dimensional geometry,
and consists in two symmetrical chains that are pulled apart, thus breaking springs which connect them,
and producing the advance of a crack. Quasistatic crack advance occurs as a consequence of the plasticity
included in the springs which form the chains, and that implies a history dependent stress–strain curve
for each spring. The continuous limit of the model allows a detailed analytical treatment that gives phys-
ical insight of the propagation mechanism. This simple model captures key features that cause well
known phenomenology in fatigue crack propagation, in particular a Paris-like law of crack advance under
cyclic loading, and the overload retardation effect.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Crack propagation usually occurs in one of two qualitatively dif-
ferent forms. In dynamic fracture (Freund, 1990), propagation is
very rapid, typically with velocities that are an appreciable fraction
of the sound velocity in the material. Dynamic propagation occurs
when some threshold load is exceeded. When this occurs, it be-
comes energetically favorable for the crack to advance. Once prop-
agating, dynamical effects limit the maximum attainable crack
velocity to some fraction of the sound velocity. Velocities in the
range of 30–60% of the sound velocity are typically observed (Fine-
berg and Marder, 1999).

Even if the threshold load for dynamical propagation is not
reached, there is still the possibility of what is called sub-critical
crack growth. This kind of slow propagation can occur through dif-
ferent mechanisms. When the external load is kept constant, two
different mechanism may lead to crack growth: creep and stress
corrosion. Creep occurs at elevated temperatures, by degradation
of the material ahead of the crack tip and corrosion occurs by a
material–environment interaction close to the crack tip. Both of
them are strongly time dependent.

Another class of sub-critical crack growth, is fatigue. More pre-
cisely, cyclic fatigue, which is the main focus of this paper. It occurs
ll rights reserved.

Guozden), jagla@cab.cnea.go-
when the external load has a cyclic dependence in time. We limit
the analysis to the cases where the external load changes very
slowly in time, and so dynamical effects can be ignored altogether.
We also assume that a seed crack already exists in the system at
the beginning of the process, as we do not intend to analyze the
problem of crack nucleation. A necessary condition for an applied
cyclic stress to produce crack advance is to reach conditions in
which plastic yielding in the material occurs, at least in some
neighborhood of the crack tip. Plastic effects make stress–strain
curves of the material be history dependent. So, after a cyclic
variation of the external load, the state of the system may not be
identical to that at the beginning of the cycle. Particularly, a
finite crack advance in each cycle can occur. It is important to
emphasize that in this case the process does not require the
existence of any activation step, allowing a fully deterministic
study of the problem once the constitutive elasto-plastic behavior
of the material is known.

In general terms, for a mechanical component, a stage of cyclic
fatigue propagation can eventually lead to a regime of dynamic
propagation, at which abrupt failure occurs. Cyclic fatigue propaga-
tion may be the main concern in applications in which mechanical
components are exposed to temporally variable loads, or to repet-
itive thermal cycling.

We focus on cyclic fatigue propagation in the present paper.
Although the amount of experimental data and the phenomeno-
logical treatments of this problem are abundant (Suresh, 1998;
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Fig. 1. A sketch of our idealized system. The crack tip position x ¼ x0 separates
regions I and II. Intact inter-chain springs are shadowed. Note that h is given by
h ¼ ubk�d

2 . The part of the chains that has accumulated some plastic deformation is
shown by a thicker line (note that the region with plasticity penetrates slightly into
region I).
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Bolotin, 1999), the basic studies that are available on cyclic fatigue
crack propagation are scarce. The difficulty of the problem is the
typical one of fracture mechanics (i.e., the spanning of many orders
of magnitude between the process zone at the crack tip to the mac-
roscopic region described by the continuum dynamics) plus the
necessity of a detailed description of plasticity in the material.
For instance, in a recent work (Farkas et al., 2005), crack advance
under cyclic loading has been obtained in atomistic simulations
of a nano-crystalline material. The plasticity in this case is seen
to be related to dislocation emission from the crack tip upon load-
ing. Results of this kinds of studies are at present limited by the
availability of computing resources. An alternative approach is to
consider the system as described by the equations of continuum
media that include plastic response (Moes et al., 1999). However,
this approach necessarily breaks down sufficiently close to the
crack tip, and has to be complemented either by full atomistic sim-
ulations in a small neighborhood of the tip, or by phenomenologi-
cal prescriptions about the crack tip advance behavior.

From a conceptual point of view, it is always desirable to have
simple models that reproduce the available phenomenology with
a minimum of ingredients. Having in mind the cyclic loading fati-
gue crack advance problem, the possibility that we have been
studying corresponds to spring lattice systems with plasticity in
the springs. In fact, lattice spring models have been a very impor-
tant benchmark where many predictions of fracture mechanics
were tested, and also where effects that go beyond the reach of
analytic treatments were obtained (Slepyan, 1981; Marder and
Gross, 1995; Kessler and Levine, 1999b, 2001; Guozden and Jagla,
2006). These studies have mainly focused on propagation in lat-
tices with linear, non-linear elastic, or visco-elastic springs. In all
these cases there is a unique relation between a stationary applied
strain and the stress produced. To our knowledge there have not
been previous attempts to study cyclic fatigue crack growth using
lattice spring models with plasticity.

In the present paper we study the simplest case of a lattice of
elasto-plastic springs that may cause fatigue crack growth. This
is a quasi-one-dimensional model consisting of two identical, par-
allel elasto-plastic chains, joined by breakable springs, that are lat-
erally pulled apart by the external load, in such a way that a crack
can propagate between chains. Formally, this represents a case of
‘‘Mode III’’ propagation, as we only consider perpendicular dis-
placements to the chain direction. In absence of plasticity, this kind
of ‘‘one-dimensional’’ geometry has been studied in detail in the
context of dynamical fracture, and has proved to be useful as a sim-
ple benchmark for the more complex behavior that is observed in a
more thorough two-dimensional implementation (Langer, 1992;
Bouchbinder and Lo, 2008). We have also used this model in a pre-
vious work (Guozden and Jagla, 2006) and obtained results in the
dynamical propagation case. We now concentrate in this quasi-
one-dimensional model because in addition to the numerical
implementation, it allows a detailed, mostly analytical description
of the fatigue propagation mechanisms involved, and also because
in this case, the germ of experimental features of fatigue crack
growth is already observed. We leave for a forthcoming publication
the study of a more realistic two-dimensional geometry, which can
be made only through numerical simulation.

In the next section we describe the quasi-one-dimensional
model and the numerical technique in detail. In Section 3 we
present the main results that we have obtained. They include the
very observation of the possibility of fatigue crack advance under
cyclic conditions following a Paris-like law, and the observation
of the overload retardation effect, in which a cycle using a defor-
mation larger than the average induces an eventual retardation
in the advance of the crack. Finally in Section 4 we discuss the re-
sults of our approach in the context of other studies and present
the final conclusions.
2. Details of the model and the numerical technique

The system we model is reminiscent of a stripe geometry, under
mode III conditions imposed by rigid displacements on the lateral
sides, with a crack advancing in the middle of the stripe. In this
quasi-one-dimensional idealization (see Fig. 1) we consider only
two symmetric chains around the middle line of the system: uðxÞ
and �uðxÞ. They are respectively connected through linear springs
to the lateral strain gauge located at ±3d/2. In addition, the two
middle chains are connected by breakable springs. As soon as the
length of any of these springs exceeds some threshold value ubk,
the spring breaks irreversibly. We emphasize that these are the
only springs allowed to break in the model. The intact inter-chain
springs are shadowed in Fig. 1.

The equations of the model are those of mechanical equilibrium
for a given profile of the chain uðxÞ. To simplify, we first consider
the case in which the continuous profile uðxÞ is replaced by a dis-
crete set of values uj, where j corresponds to a horizontal coordi-
nate jD; D being the discretization parameter. The equilibrium
equation for uj reads

3
2

d� uj

� �
D� 2hujDþ Fðujþ1 � ujÞ þ Fðuj�1 � ujÞ ¼ 0: ð1Þ

The different terms represent:

(1) The coupling of uj to the upper border located at 3d=2.
(2) The coupling of uj to the mirror chain at �uðjÞ. In this term

the Heaviside function h is defined as one, unless 2uj was lar-
ger than ubk at some previous time, in which case it is taken
as zero. Note that in the initial condition we take h ¼ 0 for all
j lower than some value, to simulate a pre-existent crack.
The factor D included in terms (1) and (2) corresponds to
use a spring constant that is unitary for a unit length of
the continuous system.

(3,4) The last two terms are the intra-chain forces with the parti-
cles at the left and at the right of the site j. Plasticity is
included precisely in these terms, and not in the interchain
springs. This choice looks strange at first, since springs that
eventually break are those which experience the largest
deformation, and plastic deformation is expected to be max-
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Fig. 2. Qualitative behavior of the plastic springs. In (a) the inelastic force fp of a
spring when l first increases and then decreases is shown. In (b) the corresponding
evolution of length (l), rest length (l0 � L0=D), and fp , along this path is indicated.
Note that when the fp reaches its maximum allowed value, l0 starts to change. In (c),
the total force, including the elastic part, is indicated (we use P ¼ 0:5).
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imum for them. In spite of this, we have found that the main
characteristics of cyclic fatigue can be discussed disregard-
ing plasticity of inter chain springs. In other words, its inclu-
sion does not modify the results in a qualitative way. Since
this is the key simplification that allows a detailed analytical
treatment, we think that this advantage justifies neglecting
plasticity in vertical springs.

We now concentrate in the intra-chain forces. For its descrip-
tion, we split the force F in two parts, an elastic part f e and an
inelastic part f p where the effects of plasticity will be included.
The total force will be F ¼ ð1� PÞf e þ Pf p where the parameter P
(0 < P < 1) controls the extent of plasticity of the spring. The elas-
tic part is simply calculated as f e ¼ ðuj�1 � ujÞ=D. The spring con-
stant is rescaled with the discretization in such a way that it
would be one if D ¼ 1. To specify the inelastic part, we introduce
a ‘‘rest length’’ L0

j;jþ1 for the spring connecting sites j and j + 1. We
calculate the inelastic force as f p ¼ ðuj � ujþ1 � L0

j;jþ1Þ=D. The total
force in the spring is thus given by

F ¼ ð1� PÞðujþ1 � ujÞ þ Pðuj � ujþ1 � L0
j;jþ1Þ

h i
=D: ð2Þ

The force f p models an ideal plastic behavior. The rest length L0 is
initially set to zero to model a virgin sample. Upon small variations
of ujþ1 � uj; L0 is changed, if necessary, to avoid fp to go outside
some pre-established range ±unlD, namely, if jfpj becomes larger
than unlD; L0 is adjusted to get jfpj ¼ unlD. We will refer to cases
where values of L0 different from zero appear, as cases in which a
‘‘plastic deformation’’ is present in the system.

Through this mechanism, we can see that history dependent
forces appear in the system. In Fig. 2 we show the evolution of f p

and the total force F as the length of the spring l � ujþ1 � uj is chan-
ged in a prescribed manner. Note that although the evolution is
fully deterministic, the force is not a single valued function of l.
For instance, the spring has the same length l at points 1 and 4
but the force it exerts is different.

The numerical procedure we use to find stationary solutions to
this problem consists in starting with a pre-existent crack and no
plastic deformation (L0 � 0) in the system, and increase the value
of d in small steps. At each step the solution to the equilibrium
equations is obtained through a relaxation protocol, and after that
the value of d is increased again. Once some maximum value of d is
reached, the same procedure is repeated for decreasing d. As it was
already emphasized, the history dependent stress–strain relation
of the springs makes it possible to observe a systematic crack tip
advance upon cyclic loading conditions.

The previous description is appropriate for numerical imple-
mentation, but for an analytical treatment its is better to return
to the continuous description. This is achieved by letting the
discretization parameter D go to 0. The continuous equation for
our model is obtained as

d2u

dx2 þ
3d
2
� u

� �
þ 2huþ P

dl0

dx
¼ 0; ð3Þ

where we have defined l0 � L0=D. In this description, the system is
continuous along the chains, although it remains essentially dis-
crete in the perpendicular direction. This kind of continuous limit
along a single spatial dimension is well defined (Guozden and Jagla,
2006), contrary to the case of a full continuous limit in which the
transition from discrete to continuous is much more subtle. Given
a distribution of plasticity l0ðxÞ the previous equation can be solved.
However, upon a variation of d, this equation does not stand alone,
as it has to be complemented with the prescription that l0 adjust
itself to satisfy jdu=dxj � l0ðxÞ < unl.
3. Results

3.1. Crack advance upon monotonous load increase

In the absence of plasticity (P = 0), the system is perfectly elas-
tic, and an energy balance analysis can be applied: if the strain d is
lower than some critical value dG, there is only a static solution in
which the crack tip position is stable (assuming crack healing does
not occur), as the external load is not able to provide the necessary
energy for crack advance. Instead, for d > dG, there is in principle
enough available energy for the system to be in a run away state,
in which the crack moves forward at some finite velocity. This
corresponds to a continuous description. The discreteness of the
system introduces the additional ingredient of lattice trapping
(Thomson et al., 1971; Paskin et al., 1981; Kessler and Levine,
1999a; Bernstein and Hess, 2003), and the minimum necessary
value of d to have a run away solution becomes somewhat larger
than the value dG determined by purely energetic arguments.



Fig. 4. Upper curves: chain profiles as d increases. Lower curves: corresponding
plastic deformation l0 of the springs. The thin vertical lines indicate the crack tip
position. Note that for large values of crack tip advance, the value of l0 behind the
crack tip reaches an asymptotic value (parameters as in Fig. 3).

Fig. 5. Inelastic force on the springs, as the crack passes by. The shadowed area
corresponds to the energy used in the plastic deformation, that amounts to
Pðl0unl þ l2

0=2Þ.
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When plasticity is incorporated into the springs (P > 0), a new re-
gime occurs, intervening between the static and dynamic regimes.
In fact, at a first critical value of d that we call dI

G, the crack starts to
elongate. However this elongation is not unstable now. Instead,
there is a well defined value of the crack tip advance X as a function
of d. The crack only runs away when a second critical value dII

G is
exceeded. The numerical results that show this behavior are pre-
sented in Fig. 3. For any value of d between dI

G and dII
G the crack

tip position is stable.
The actual configurations of the system at increasing values of d

are presented in Fig. 4. There we plot the chain profile uðxÞ, and
also the corresponding values of the rest length l0ðxÞ of the springs
forming the chain. Upon crack tip advance, the portion of the chain
that is left behind remains with a finite plastic deformation (i.e.
l0 – 0 behind the crack tip). This is of the utmost importance as
it implies the necessity of some energy expenditure. In fact,
Fig. 5 shows the typical variation of the plastic force on each spring
after the crack tip passed. The area of this curve is the energy dis-
sipated in the system due to plastic deformation. This is the reason
why the crack does not immediately destabilize when d exceeds
the first threshold dI

G.
We proceed now to a detailed analytical study that gives insight

into the process of quasistatic crack advance upon load increase. In
order to obtain analytical expressions, we have to consider the con-
tinuous limit, namely, the case D! 0. First of all, we calculate dI

G

and dII
G in this limit.

The calculation of dI
G can be made as if springs were non-linear

elastic, since plasticity is not involved. In fact, upon increasing d, as
long as no spring is broken (as it happens below dI

G), all spring
lengths also increase. This means that springs explore only the
ascending part in Fig. 2a, which corresponds to a non-linear elastic
behavior. In these conditions, the threshold can be determined by
an energy balance argument, equating the available energy ahead
of the crack with the energy that is necessary to break a spring.
This gives the expression for dI

G in our geometry

3
ðdI

GÞ
2

2
¼ u2

bk

2
; ð4Þ

from which

dI
G ¼

ubkffiffiffi
3
p : ð5Þ

Note that this value does not depend on the parameter P.
As soon as the crack tip moves on, some springs reduce their

length, exploring the descending part of the curve in Fig. 2a, and
Fig. 3. Crack tip position X as a function of an increasing value of d, starting from a
virgin configuration (namely, no plastic deformation in the initial state). Parameters
are ubk=unl ¼ 4; P ¼ 0:5, and D ¼ 1=20.
plasticity becomes involved. The calculation of dII
G can still be made

through an energy balance argument, if we take into account the
additional energy spent in the process. For each individual spring
within the chain, its evolution during the whole process implies
an initial stretching, and then a reversion to a state of zero length,
as indicated in Fig. 5. The energy E0 spent in this process is propor-
tional to the shadowed area in the figure, and its value is
E0 ¼ Pðl0unl þ l2

0=2Þ. Knowing the value of l0; dII
G can be calculated

from the energy balance equation

3
ðdII

GÞ
2

2
¼ u2

bk

2
þ 2E0ðl0Þ ð6Þ

(the factor 2 in the last term comes from the fact that energy is
spent in the plasticity of springs in the two mirror chains).

The value of l0 can be calculated through the following argu-
ment: as d! dII

G every spring behind the crack tip gets a plastic
deformation l0.1 This means that this part of the chain is effectively
linear elastic. Its profile is given by

uðxÞ ¼ 3d
2
� 3d

2
� ubk

2

� �
ex; ð7Þ
1 This is true if ubk
unl
< 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12� 9P
p

. We restrict to this case throughout this work.
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where the slope of the chain at the crack tip (located at x0 ¼ 0) is
@u=@x ¼ ðubk � 3dÞ=2. Then, the plastic deformation at the crack
tip is, in norm,

jl0j ¼
3d� ubk

2
� unl: ð8Þ

Inserting this result into Eq. (6) for d! dII
G we get

dII
G

2 ¼ u2
bk

3
þ 2P

3
3dII

G � ubk

2

 !2

� u2
nl

2
4

3
5: ð9Þ

It can thus be seen that dII
G coincides with dI

G for P ¼ 0, and becomes
progressively larger when P increases, allowing a finite range
dII

G � dI
G of stable crack elongation. For the particular value P ¼ 0:5

used in previous figures the value of dII
G is

dII
G ¼ �ubk þ

2ffiffiffi
3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2u2

bk � u2
nl

q
: ð10Þ

Now we derive an equation from which the full curve XðdÞ can be
obtained. We will refer to the definitions in Fig. 1. In particular
we consider region I as that ahead of the crack tip ðx > x0Þ, and re-
gion II as that behind the crack tip (x < x0).

Region I: Here the horizontal springs deform monotonically, so
again plasticity does not take part. We only have to consider that
springs behave as piecewise linear, with two different spring con-
stants, for elongation below and above unl. This offers the possibil-
ity to obtain a solution in this region, and to evaluate the slope of
the chain at the crack tip.2 After some algebra we obtain

duI

dx

����
x¼x0

¼ �
ffiffiffi
3
p
ffiffiffiffiffiffiffiffiffiffiffiffi
1� P
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ubk � d

2

� �2

� P
3

u2
nl

s
� RðdÞ; ð11Þ

where we have renamed the expression to RðdÞ for future use.
In region II we proceed as following: As we indicated previously

in the introduction, the existence of a non-zero l0ðxÞ function can
be incorporated into the equilibrium equation of the system as
and additional force Pdl0=dx. This means that the equation describ-
ing the deformation uðxÞ in region II is

u00ðxÞ þ 3d
2
� uðxÞ

� �
þ P

dl0

dx
; ð12Þ

with boundary conditions

uð�1Þ ¼ 3d
2
; uðx0Þ ¼

ubk

2
: ð13Þ

Solving formally this equation we find the derivative of the chain at
the crack tip in terms of l0ðxÞ. We obtain

duII

dx

����
x¼x0

¼ P
Z x0

�1

dl0

dy
e�ðy�x0Þdy� 3d� ubk

2
: ð14Þ

It is interesting to emphasize the meaning of this equation, stating
that any non-homogeneous l0ðxÞ behind the crack tip contributes to
the slope of the chain at the crack tip, and its effect decays exponen-
tially with distance.

Equating the results for regions I Eq. (11) and II Eq. (14) we
obtain

P
Z x0

�1

dl0

dy
e�ðx0�yÞdy� 3d� ubk

2
¼ RðdÞ: ð15Þ

To solve this integral equation, we multiply each of the terms by ex0

and then take a derivative upon a variation in the crack tip position
x0. In doing this, we also use the fact that upon an advance of the
crack tip, the values of l0 are not modified behind the crack tip.
should go precisely as a footnote. The result is
2 Here we assume that the chain actually explores the nonlinear regime. This
happens when j ubk�d

2

ffiffiffi
3
p
j > unl .
P
dl0

dx0
ex0 � 3

2
dd
dx0

ex0 � 3d� ubk

2
ex0 ¼ dRðdÞ

dx0
þ RðdÞ

� �
ex0 : ð16Þ

The value of l0 at the crack tip in the first term l0ðx0Þ can be written
as l0ðx0Þ ¼ du=dxjx¼x0

� unl ¼ RðdÞ � unl and after replacing in Eq. (16)
we obtain

P
dRðdÞ
dx0

� 3
2

dd
dx0
� 3d� ubk

2
¼ dRðdÞ

dx0
þ RðdÞ: ð17Þ

Changing from the strain variable d to h, as defined in Fig. 1, we ar-
rive to

P
dRðhÞ
dx0

þ 3
dh
dx0
þ 3h� ubk ¼

dRðhÞ
dx0

þ RðhÞ; ð18Þ

where RðhÞ is now

RðhÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3h2 � Pu2

nl

q
ffiffiffiffiffiffiffiffiffiffiffiffi
1� P
p : ð19Þ

In addition, using Eq. (11), the derivative of R with respect to x is

dRðhÞ
dx

¼ 3
1� P

h dh
dx

RðhÞ ; ð20Þ

and combining with Eq. (18) we obtain

dh
dx0
¼

RðhÞ
h � 3

3� 3 h
RðhÞ

hþ ubk

3� 3 h
RðhÞ

: ð21Þ

We have finally obtained a differential equation linking strain (con-
tained in h ¼ ðubk � dÞ=2) and the crack tip position x0. The equation
is nonlinear, and we cannot give an analytical solution in a general
case, but many general features can be worked out. First of all it can
be checked that the right hand side of Eq. (21) vanishes linearly at
d ¼ dII

G. This indicates that the crack tip advance XðdÞ has a logarith-
mic divergence at dII

G. Second, we note that Eq. (21) will determine
the crack tip position as a function of d up to an additive constant,
i.e, the solution will be of the form

x0 ¼ FðdÞ þ A; ð22Þ

with FðdÞ a well defined function diverging logarithmically at dII
G,

and A an arbitrary constant. The value of A can be set by using
the condition that X becomes different from zero exactly at dI

G for
a virgin sample. This defines the solution unambiguously.

Expanding RðhÞ (see Eq. (11)) in powers of h, we obtain to linear
order

RðhÞ ’ �
ffiffiffiffiffiffiffiffiffiffiffiffi

3
1� P

r
h; ð23Þ

which becomes exact as (P ! 0).
Using this approximation for RðhÞ in (21) leads to the following

linear first order differential equation

dh
dx0
¼ �

ffiffiffi
3
p
þ

ffiffiffiffiffiffiffi
1

1�P

q
ffiffiffi
3
p
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� P
p

0
@

1
Ahþ ubk

3þ
ffiffiffi
3
p ffiffiffiffiffiffiffiffiffiffiffiffi

1� P
p : ð24Þ

In this approximate case, the solution is fully described by a loga-
rithmic dependence of x0 as a function of d, rising linearly from zero
at dI

G, and diverging at dII
G.

To check this behavior, a comparison of the analytical expres-
sions obtained with results of numerical simulations is presented
in Fig. 6. The numerical simulations show an important depen-
dence on the parameter D, which can be considered in terms of a
lattice trapping effect (Thomson et al., 1971; Paskin et al., 1981;
Kessler and Levine, 1999a; Bernstein and Hess, 2003). The contin-
uous limit is obtained by letting D! 0. We see that when this is



(a)

(b)

Fig. 6. (a) Analytical results for the crack tip advance X according to the linear
approximation given in Eq. (24) and results of numerical simulations at different
values of D. (b) The same results shifted according to the values of dI

G

(ubk=unl ¼ 4; P ¼ 0:5).
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taken into account the agreement between the analytical and
numerical results is very good.

In cases in which we cannot use the linear approximation (23)
for RðhÞ, Eq. (21) has to be treated numerically. For instance, the
slope of the right hand side of Eq. (21) at zero crossing determines
the pre-factor of the logarithmic divergence at dII

G. The comparison
of this pre-factor with results obtained from full numerical simula-
tions of the model are contained in Fig. 7. We observe an almost
perfect agreement when using Eq. (21), and deviations if using
the linear approximation Eq. (24).
Fig. 7. Results for the pre-factor a of the logarithmic divergence of XðdÞ at dII
G . Circles

are obtained fitting exponential functions to our numerical results with ubk=unl ¼ 4,
and P ¼ 0:5. Continuous line is obtained from the full Eq. (21), and dotted line is the
result of the linear approximation (Eq. (24)).
3.2. Cyclic crack growth and Paris curves

Crack tip advance upon monotonous increase of the applied
load, analyzed in the previous section, is the starting point for
the study of the more interesting regime of cyclic loading condi-
tions. Particularly we consider the case in which, after the initial
application of some dmax, the stretching is reduced to some dmin,
and then it is successively cycled between these two values. We
expect a finite crack propagation in each cycle of this process.
For this to happen, a crucial condition must be fulfilled: in the
unloading part of the cycle, some of the plastic deformation must
be reverted. Otherwise, if downloading is totally elastic, the next
loading half cycle will be elastic too, and crack tip advance will
not occur. Reverted plasticity allows a sustained advance in succes-
sive cycles. In fact, imagine the hypothetical situation in which all
plastic deformation induced during the first loading is reverted
upon unloading, namely the l0 of all springs reset to zero value.
This would mean that after a complete cycle, the system is back
in the original ‘‘virgin’’ state, with the only difference that crack
tip has moved forward, and the situation will be repeated cycle
after cycle.

The numerical results within our model fit in between these
two limits. They are presented in Fig. 8. Starting from a virgin sam-
ple, we first reach some value dmax in between dII

G and dI
G. This gen-

erates a first crack elongation and a plasticity wake that was
discussed in detail in the previous section. Then d is reduced to
dmin. If during this reduction of d some part of the plasticity in
the system is reverted, the system can elongate the crack further
in a second increase of d. Whether this plasticity reversion occurs
or not, depends a great deal on the value of dmin. If this value is
too high it does not occur. In the case of the present model, we
have seen that we have to take dmin negative in order to have
reverted plasticity. For this reason in Fig. 8 we use dmin ¼ �dI

G.
A brief digression is convenient at this point. The use of d values

of both signs is perfectly allowed in our mode III configuration.
However, having in mind an experimental situation in mode I con-
figuration, where d should be strictly positive, we may worry about
the necessity to include values of d of alternating signs in the pres-
ent case in order to observe fatigue crack propagation. In this re-
spect, we mention that the need of a change of sign of d is an
artifact of the quasi-one-dimensional system. In two-dimensional
(i.e., many chains) mode III simulations we have observed reverted
plasticity and cyclic fatigue crack advance for strictly positive
values of dmin.

In Fig. 8 we see that part of the plasticity is reverted during d
reduction. We stress, however, that for the current parameters
there is no crack advance during the stress reduction half period.
Then upon a new increase of d, crack elongation resumes at some
d < dmax. The form of the x0ðdÞ crack tip advance curve in successive
cycles can be described by assuming that previous cycles only
influence the advance in the present cycle by shifting the value
of d at which elongation resumes. This is understood in terms of
the analysis of the previous section: Eq. (21) is still valid to analyze
the crack tip advance in the presence of plasticity behind the crack
tip. The only difference is that now the determination of the
constant A in Eq. (22) cannot be done a priori, and the plasticity
in all the region behind the crack tip has to be taken into account.
However, once the crack tip starts to elongate, its evolution is dic-
tated by Eq. (21). We will not attempt here to explicitly calculate
the value of d at which elongation starts in each cycle, in terms
of the plasticity distribution behind the crack tip. Instead, we
restrict to a rather qualitative description.

After a few cycles, the elongation of the crack converges to a
fixed amount per cycle. The asymptotic value of advance per cycle
is seen to be lower than the advance in the first cycle, when there is
no plasticity in the system. This is consistent with the fact that



(a)

(b)

Fig. 9. (a) Stationary crack tip advance per cycle dx=dn as a function of dmax , for
different values of dmin , as indicated. The curves show an overall form qualitatively
compatible with a Paris law. In (b), we see that results for different values of dmin can
be absorbed by a vertical shift of the different curves (the vertical shift applied is
indicated).

(b)

(c)

(a)

Fig. 8. (a) Temporal evolution of crack tip position upon cyclic change of load,
starting with a virgin sample. We see that after a few cycles, the advance per cycle
stabilizes to a finite quantity. (b) Snapshots of the system during the process. Panels
are snapshots at the first dmax , the first dmin , the second dmax , and at dmax after many
cycles. The typical serrations of cyclic fatigue advance are observed in the plastic
deformation profile behind the crack tip and in the geometrical profile of the chain
itself, as panel (c) shows. Parameters used are P ¼ 0:5; D ¼ 1=20; ubk=unl ¼ 4;
dmin ¼ �dI

G and dmax ¼ 1:06dI
G .
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plasticity is only partially reverted upon unloading. Serrations in
the profile of plastic deformation are clearly visible in l0ðxÞ
(Fig. 8). They manifest also in the chain profile itself, as the last
panel of the figure allows to observe. This is reminiscent of the
same texture observed in crack surfaces generated by cyclic fatigue
(see for instance Suresh (1998), Fig. 10.4, and Hertzberg (1996),
Fig. 13.11).

By systematically running the model at different values of dmin

and dmax, Paris-like curves can be constructed, displaying the sta-
tionary advance-per-cycle as a function of load amplitude. In
Fig. 9 we present these results as a function of dmax, for four differ-
ent minimum load values dmin, in the usual Paris form, and also in a
more appropriate display to our analysis. We observe that the full
curves can be reasonably described by a logarithmic dependence
with dII

G � dmax, with only a rigid vertical shift to account for the dif-
ferent values of dmin, namely, the advance per cycle dx=dn has the
qualitative form

dx
dn
’ a logðdII

G � dmaxÞ þ f ðdminÞ: ð25Þ

This expression cannot be put in the form of a dependence on a sin-
gle combination between dmax and dmin, as traditional interpreta-
tions of the Paris law require. It is however compatible with two-
parameter interpretations of the Paris law, as suggested for instance
by Vasudeven et al. (1994); Sadananda et al. (1999); Sadananda and
Vasudevan (2004); Vasudevan and Sadananda (2007).

Note that there is a well defined value of dmax (depending on
dmin) below which there is no systematic crack advance. This indi-
cates the existence of an endurance limit for our model below
which fatigue crack propagation does not occur. The rate of crack
advance increases with dmax, and becomes very large approaching



(b)

(a)

Fig. 10. Overload effect: (a) crack tip position versus number of cycles. The crack is
loaded cyclically between dmax ¼ 1:054dI

G and dmin ¼ �0:6dI
G . At n ¼ 11 an overload

doverload ¼ 1:063dI
G is applied. The effect after many cycles amounts to a net

retardation of two lattice units, in the present case. (b) Profile of the system uðxÞ and
the springs rest length l0ðxÞ in the final configuration (simulations with D ¼ 1=20).
Compare panels (a) and (b) with Figs. 10.10 in Broek (1982).

Fig. 11. The plane dmax versus dmin , indicating the fatigue limit (continuous line)
separating regions in which cyclic crack propagation occurs, or not, for the current
parameters (ubk=unl ¼ 4; P ¼ 0:5). Within the region of fatigue propagation, the
dotted line limits the region in which this propagation can be arrested by a single
overload in the system. Above this line, a region of overload retardation (dashed,
not accurately determined) exists.
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dII
G. In the middle, there is a transition between the two limiting

cases. However, this intermediate regime (which is the typical
Paris regime) is very narrow compared to most experimental sit-
uations (see for instance Broek (1982), Fig. 10.1). We associate
this fact to the existence of a single chain in our model. If the sys-
tem was ‘‘two-dimensional’’ (i.e., with many chains), plastic defor-
mation would appear in all the chains, and the load region in
which fatigue crack advance occurs would be largely increased.
We have obtained this enhancement effect in two-dimensional
simulations, and plan to report on it elsewhere. For our present
simulations, it is remarkable that such a simple model displays
the same qualitative behavior observed in a large class of real
materials.

3.3. Overload retardation

A characteristic effect observed in cyclic crack growth is over-
load retardation (Suresh, 1998, pp. 520–526; Bolotin, 1999, pp.
257–263; Sadananda et al., 1999). Consider a crack subjected to
cyclic loading, advancing some finite distance per cycle. If the max-
imum load in one particular cycle is increased, the crack will ad-
vance a larger distance in that cycle. But also a relatively bigger
plastic deformation will be produced, that will shield the crack
tip and reduce the advance in the following cycles so that eventu-
ally, when the system reaches steady state advance again, the crack
tip position may be lagged with respect to the case in which over-
load was not present. In some cases, the crack may even com-
pletely arrest after the overload. This somewhat counter intuitive
phenomenon is very well known experimentally, and is a stringent
constraint for any model that is supposed to describe fatigue crack
growth. Models that have been proposed to describe this behavior
may be classified into two main categories. In crack tip plasticity
models (Wheeler, 1972; Willenborg et al., 1971) it is assumed that
crack growth retardation occurs due to the large plastic zone
developed during overloading. The residual compressive stresses
formed in this zone will reduce the magnitude of the tensile stres-
ses during the next fatigue cycle and tend to delay crack growth. In
crack closure models (Elber, 1971) it is argued that as a result of
the tensile plastic deformation left in the wake of a fatigue crack,
a partial closure of the crack faces occurs during part of a fatigue
load cycle.

We have been able to reproduce the overload retardation effect
using our model (Fig. 10). The system is initially cycled between
dmax ¼ 1:054dI

G and dmin ¼ �0:6dI
G. After about n � 10 cycles the

growth rate stabilizes at dx=dn ¼ 0:2 which corresponds to four
lattice units per cycle, taking into account that D ¼ 1=20 in this
simulation. In cycle n ¼ 11 the overloading is applied, through an
increase in dmax of about 1%, and the crack is seen to advance more
than three times the previous value. In the following cycles the
crack advance is seen to be reduced drastically, and the whole ef-
fect once the original rate is recovered results in a net retardation
of two lattice units. The reason for this reduction in crack tip ad-
vance is the larger plastic deformation induced during the overload
cycle. Fig. 10b shows this enhanced plastic deformation in l0ðxÞ at
the overload cycle. The additional plastic deformation has a stabi-
lizing effect on the crack tip, so the application of dmax after the
overload is much less efficient in generating crack tip advance.
Eventually, when the crack tip has moved far away of the enhanced
plasticity zone, the crack tip elongation rate returns to its equilib-
rium value.

Whether the combined effect of the larger advance in the over-
load cycle and reduced advance in ulterior cycles gives an overall
retardation or not, depends in a delicate way on the parameters
and the values of d that have been used. However, one extreme
case in which we can be more quantitative is the following. We
investigated what the conditions for the largest possible overload
to arrest the crack advance are. To answer this question, we first
refer to Fig. 11. There, the continuous line (picked up from data
as that in Fig. 9) separates the region of cyclic crack propagation
(above the curve) from that of no propagation (below). Now, on
each situation of a propagating crack, we apply the largest overload
the system is able to sustain, namely, one in which d is increased to
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almost dII
G.3 This produces a very large elongation during the over-

load cycle. After that, d is reduced to the corresponding dmin, and then
increased. The value of d at which crack tip starts elongation again
(indicated by the dotted line in the figure) is the minimum value
of dmax required for crack elongation after the overload. In other
words, in the region between continuous and dotted lines in
Fig. 11, a crack is arrested by the overload in the system. This quan-
tifies appropriately the conditions for crack arrest in the system,
showing clearly that conditions can be found for the process to oc-
cur. Typically, above the curve of crack arrest, there is a region of
overload retardation (shown shadowed in Fig. 11) that we have
not determined in detail for all the parameters. For even larger val-
ues of dmax, a net retardation of the crack does not occur, instead the
crack gets a net advance due to the overload.
4. Conclusions

In this paper we have introduced a simple quasi-one-dimen-
sional model of a crack advancing in between two elasto-plastic
chains. The chains are joined by breakable springs and attached
to two lateral strain gauges by which external loading in the form
of prescribed strains are applied to the system. The use of elasto-
plastic elements forming the chains gives the possibility of a cyclic
fatigue crack advance, in which a finite advance of the crack is ob-
tained at each cycle of the external strain between a maximum and
a minimum value. For the case in which we start with a virgin sam-
ple (i.e., without plasticity) we have derived analytical expressions
to solve the position of the crack tip in terms of the applied strain,
and have successfully compared these results with those of numer-
ical simulations. In the case of cyclic advance, we have numerically
obtained curves for the amount of elongation in terms of the max-
imum and minimum strain. We have observed the existence of an
endurance limit below which fatigue propagation does not occur,
and a maximum strain above which the abrupt rupture of the sam-
ple occurs.

The mechanism of fatigue crack advance in the present model is
crack tip shielding by a plasticity wake behind the crack tip. It can
be described in the following way. During load increase, a stable
crack tip advance occurs due to the generation of a plasticity wake
behind the crack tip that avoids the immediate unstable propaga-
tion of the crack. Upon load reduction, part of the plasticity in the
vicinity of the crack tip is reverted. In the second period of load in-
crease, the zone of reverted plasticity allows for a new finite elon-
gation of the crack. As the reverted region is typically smaller than
the plastic region induced during crack advance, the elongation
slightly decreases in consecutive cycles until it reaches a stationary
value. The plasticity profile left behind by the advance of the crack
has typical serrations that reflect in corresponding undulations of
the chain profile, reminiscent of the same phenomenon during cyc-
lic fatigue propagation in real materials.

Crack tip advance per cycle was seen to be a function of both the
maximum and minimum value of applied strain dmax and dmin. This
means that it cannot be simply written in term of a single DK , as in
the simplest form of a Paris law. It could be interpreted that an
additional dependence on the stress ratio R � Kmin=Kmax exists. If
a single parameter interpretation of the fatigue advance can be gi-
ven in our case, this single parameter should be considered to be
the amount of plasticity reverted during the unloading part of
the cycle. However, this amount depends on both dmax and dmin giv-
ing a two-parameter Paris law.
3 Note that as this overload generates a very large elongation, the result is
independent of previous values of dmin and dmax . This means that a single simulation of
the overload suffices for all dmin and dmax .
In addition, we have studied and reproduced the effect of over-
loading, showing that a cycle with an excess of applied strain can
lead to a net retardation in the elongation of the crack, and even
to a complete arrest of it. We have numerically determined the
conditions in the plane dmax; dmin for this arrest to occur. The origin
of crack retardation or crack arrest in our model is the shielding of
the crack tip by the enhanced plastic deformation during the over-
load cycle.

The minimal model we have presented allows a detailed analy-
sis of the fundamental processes that lead to the possibility of fa-
tigue crack propagation. In a forthcoming publication we plan to
discuss the similar properties of a more realistic system consisting
of a two-dimensional mesh of elasto-plastic springs and masses
loaded in a mode I configuration, where qualitatively the same
kind of fatigue propagation is observed.
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