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a b s t r a c t

Conditions for discontinuous bifurcation in limit states of selective non-local thermodynamically consis-
tent gradient theory for quasi-brittle materials like concrete are evaluated by means of both geometrical
and analytical procedures. This constitutive formulation includes two internal lengths, one related to the
strain gradient field that considers the degradation of the continuum in the vicinity of the considered
material point. The other characteristic length takes into account the material degradation in the form
of energy release in the cracks during failure process evolution.
The variation from ductile to brittle failure in quasi-brittle materials is accomplished by means of the

pressure dependent formulation of both characteristic lengths as described by Vrech and Etse (2009).
In this paper the formulation of the localization ellipse for constitutive theories based on gradient plas-

ticity and fracture energy plasticity is proposed as well as the explicit solutions for brittle failure condi-
tions in the form of discontinuous bifurcation. The geometrical, analytical and numerical analysis of
discontinuous bifurcation condition in this paper are comparatively evaluated in different stress states
and loading conditions.
The included results illustrate the capabilities of the thermodynamically consistent selective non-local

gradient constitutive theory to reproduce the transition from ductile to brittle and localized failure modes
in the low confinement regime of concrete and quasi-brittle materials.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Quasi-brittle materials like concrete exhibit strong spatial dis-
continuities of the kinematic fields when they are sufficiently
deformed into the inelastic regime. The formation of cracks and
shear bands observed in experiments on concretes and soils are
typical examples of localized failure mechanisms that strongly
depend on the governing stresses and on themechanical and chem-
ical features of the material micro and mesostructure, see a.o.
Vardoulakis (1980), Petersson (1981), Oda and Kazama (1988),
Willam and Etse (1990), Ehlers and Volk (1997), van Mier (1997).
In tensile regime the concrete response to mechanical loading is
highly brittle as the damage entirely localizes in one single crack
of zero width. Failure mechanism in tensile regime is fully con-
trolled by the fracture energy release process in one single crack
while the material outside the crack remains practically undam-
aged and subjected to elastic unloading, see a.o. Planas and Elices

(1986), Planas and Elices (1989), Guo and Zhang (1987), Phillips
and Binsheng (1993), Etse and Willam (1994).

In compressive regime the ductility of concrete failure behavior
strongly increases with the confining pressure. The failure mecha-
nism is characterized by both the appearance of several micro-
cracks in the normal direction to the local maximum principal
stress and by the evolution of material damage processes in zones
located in between cracks or microcracks. Concrete failure behav-
ior in compressive regime is governed by both, fracture energy
releases in active microcracks andmaterial degradation in between
these cracks. Moreover, the width of the characteristic dimension
of the material volume participating in the energy dissipation
process in the form of cracks opening and material degradation
mechanisms, increases with the acting confining pressure, as can
be seen in Hurlbut (1985), van Geel (1998), Sfer et al. (2002), Lu
(2005), van Mier (1984).

This complex variation from brittle to ductile failure mode in
quasi-brittle materials like concrete requires special provisions
for constitutive theories to accurately describe the whole spectrum
of possible failure mechanisms. As the involved complexity goes
beyond the capability of every known material formulation, a
combination of constitutive theories is required. In this regard, a re-
cent proposal by the authors, Vrech and Etse (2009), refers to a
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thermodynamically consistent constitutive formulation that com-
bines both fracture energy and gradient concepts. The so-called
fracture energy and gradient-based model includes isotropic hard-
ening and softening formulations. In the hardening regime the
material model is fully local. To account for the increasing ductility
with the confining pressure the hardening rule is formulated as a
dependent function of the first invariant of the stress tensor. In
the softening regime it is considered that two independent pro-
cesses contribute to the material decohesion: the degradation pro-
cess of the continuum in between cracks and the crack opening
process (single or multiple). The first one is described by means
of a non-local gradient-based plasticity formulation with pressure
dependent characteristic length to appropriately describe the vari-
able shear band width with the acting confinement. The crack
opening process is described by a fracture energy-based plasticity
formulation similarly to the proposal by Etse and Willam (1994).

Given the extensive use of the smeared-crack theory for consti-
tutivemodelling of engineeringmaterials, one of themost challeng-
ing and relevant research activities in computational mechanics are
those related to the analysis of the failure mode predicted by the
material theories (localized or diffuse) for the whole spectrum of
maximal stress states. Particularly important is the evaluation of
brittle or localized failure modes that in the framework of continu-
ums models are described by means of discontinuous bifurcations
or jumps in the velocity gradients. In this regard, there were several
analytical and geometrical attempts to capture the onset of locali-
zation and to determine both direction and amplitude of the related
cracks or shear bands. After the original works by Hadamard (1903),
Nadai (1950), Thomas (1961), Hill (1962), Rudnicki and Rice (1975),
many authors studied the problem in a systematic manner. They
basically developed mathematical conditions and indicators that
signalize the initiation of localized failure modes in the form of dis-
continuous bifurcation, see a.o. Sobh (1987), Perić (1990), Ottosen
and Runesson (1991), Willam and Etse (1990), Rizzi et al. (1995),
Etse and Willam (1999), Pijaudier-Cabot and Benallal (1993), Jirá-
sek and Rolshoven (2009a,b), Etse and Vrech (2006), Vrech and Etse
(2006), Arslan et al. (2007). In this work, analytical and geometrical
methods are developed to evaluate the predictions of localized fail-
uremodes and the transition from brittle to ductile failure provided
by the thermodynamically consistent gradient and fracture energy-
based plasticity theory for cohesive-frictional materials like con-
crete as proposed by Vrech and Etse (2009) when it is combined
with the Leon–Drucker Prager (LDP) maximum strength criterion.
The gradient-dependent elastoplastic localization properties are
casted in the form of an elliptical envelope condition in the rN � sN
coordinates of Mohr, as described in Benallal and Comi (1996) and
Liebe andWillam (2001). Thereby, the tangency condition between
the localization ellipse and the major principal circle defines the
existence of localized failure mode and the corresponding critical
directions. The results of the localization analysis demonstrate
the capability of the thermodynamically consistent gradient and
fracture energy dependent elastoplastic LDP model to realistically
predict both brittle and ductile failure modes of concrete when
the governing stress state varies from the tensile and low confine-
ment regime to the high confinement one. The localization analysis
results are complemented with model predictions of the gradient
characteristic length for different stress conditions to demonstrate
the strong dependence of the acting confinement on the zone size,
where the inelastic and fracture processes is located.

2. Thermodynamically consistent gradient-dependent
elastoplasticity

Following the thermodynamically consistent gradient-regular-
ized material theory for small strain kinematics by Svedberg and

Runesson (1997), the free energy density W can be additively
decomposed into three components as follows: elastic, local and
non-local plastic. Considering isotropic plasticity, the non-local
effects are only restricted to the scalar hardening/softening vari-
able j.

As deduced in Svedberg (1999), the constitutive equation for
the stress tensor r, obtained from the Coleman’s relations, results

r ¼ q
@W
@e

; r ¼ Ee : ee ð1Þ

being e the strain tensor and Ee the fourth order elastic operator.
The dissipative stress within the continuum is defined as the addi-
tion of the local and non-local plastic dissipative stresses, K = Kp + Kg,
with

Kp ¼ �q @Wp

@j
and Kg ¼ $ � q

@Wg

@ð$jÞ
� �

ð2Þ

while the dissipative stress on the boundary oX results

Kðg;bÞ ¼ �m � q @Wg

@ð$jÞ ð3Þ

with m the (outward) normal to oX.
The evolution equations of the strains tensor _ep and state vari-

able _j, are

_ep ¼ _k
@U�

@r
and _j ¼ _k

@U�

@K
ð4Þ

being _k the rate of the plastic parameter and U⁄ =U⁄(r,K) the dis-
sipative potential which turns U =U(r,K), the convex yield func-
tion, in case of associated plasticity.

3. Elastoplastic LDP model based on gradient theory and
fracture energy

In this section the thermodynamically consistent gradient-
dependent model based on the LDP failure criterion, as proposed
by Vrech and Etse (2009), is summarized.

The LDP failure criterion is

Uðp�;q�Þ ¼ 3
2
q�2 þm0

q�ffiffiffi
6

p þ p�
� �

� c0 ¼ 0 ð5Þ

whereby the Haigh–Westergaard coordinates

p� ¼ I1
3f 0c

; q� ¼
ffiffiffiffiffiffiffi
2J2

p
f 0c

ð6Þ

where introduced, being I1 the first invariant of the stress tensor
and J2 the second invariant of the deviatoric stress tensor.

The frictional parameter calibrated in terms of the uniaxial ten-
sile and compression strengths f 0t and f 0c , respectively, results

m0 ¼ 3
2

f 0c
2 � f 0t

2
� �

f 0c f
0
t

ð7Þ

while the cohesion is c0 = 1.
Fig. 1 compares the LDP strength criterion for axisymmetric

state with the normalized peak stresses of concrete obtained from
experimental tests. The LDP criterion overestimates the strength
of concrete in the tensile meridian (i.e. when the Lode angle equals
zero). Nevertheless its overall accuracy is acceptable in view of the
associated simplicity as it only depends on two stress invariants.

3.1. Yield condition

Loading surface in hardening and softening regimes is ex-
pressed as
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Uðp�;q�;Kh;KsÞ ¼ 3
2
q�2 þm0

q�ffiffiffi
6

p þ p�
� �

� KhKs ¼ 0 ð8Þ

The evolution of the yield surfaces in the pre-peak regime is
controlled by the variation of the hardening dissipative stress
Ko

h 6 Kh 6 1, while the softening dissipative stress remains con-
stant Ks = 1. A local and pressure-dependent inelastic hardening
formulation is considered for the LDP model, as can be observed
in Vrech and Etse (2009). When Kh = 1 the LDP criterion for con-
crete strength is reached. Under monotonic loading beyond peak
stress the softening regime is activated. The strength degradation
during the post-peak process is controlled by the decay of the soft-
ening dissipative stress 1P Ks P 0 while Kh = 1 remains constant.

3.2. Isotropic softening law

It is considered that the instantaneous concrete strength in soft-
ening regime results from a parallel mechanism between two com-
ponents: the strength to start or further develop fracture processes
Kp

sf , and the strength to start or further develop damage processes
in the continuummaterial located in between active cracks Kg

sc . The
considered mechanism controlling the strength degradation
process in the post-peak regime can be mathematically expressed
as

Ksðjs;$jsÞ ¼ Kp
sf ðjsÞ þ Kg

scð$jsÞ ð9Þ
being js the softening state variable, the only one of non-local char-
acter, and $js its spatial gradients.

3.2.1. Fracture energy-based softening law
The evolution law of the local softening dissipative stress is, see

Vrech and Etse (2009)

_Kp
sf ¼ af expð�af kÞ; af ¼ 5

hf ðp�Þ
ur

khmIik ð10Þ

being ur the maximum crack opening displacement in mode I type
of failure and hf the fracture characteristic length that defines the
separation between cracks or microcracks. This measure represents
the high of an equivalent elastoplastic continuum, obtained through
the homogenization process of the released fracture energy in a dis-
continuous of the same size, similarly to the fracture energy-based
plasticity models by Willam et al. (1985) and Etse and Willam
(1994). In quasi-brittle materials like concrete the distance between
microcracks strongly depends on the type of fracture as well as on
the acting confining pressure.

The Mc Auley brackets in Eq. (10) indicate that only tensile prin-
cipal plastic strains contribute to the energy density during frac-
ture evolution processes.

3.2.2. Gradient-based softening law
The non-local dissipative stress in softening results

_Kg
sc ¼ �½lcðp�Þ�2Hg

scr2 _k ð11Þ
being r2 _k the second derivative of the plastic parameter rate, Hg

sc

the scalar gradient modulus and lc the gradient plasticity character-
istic length. In quasi-brittle materials like concrete lc strongly
depends on the acting confining pressure during softening process.
This dependence is mathematically defined by Vrech and Etse
(2009) as

lcðp�Þ ¼
0 if p� P 0;
0:5lc;m 1þ sin 2p� � p

2

	 
� �
if � 1:5 6 p� < 0;

lc;m if p� < �1:5:

8><
>: ð12Þ

being lc,m the maximum value of lc. Thereby it is assumed that lc
equals the maximum aggregate size lc,i when p⁄ = � 0.33, i.e. when
the confining pressure equals f 0c corresponding to the case of the
uniaxial compression test.

Note that when the characteristic length based on gradient plas-
ticity lc turns zero in the low confinement regime, see Eq. (12), the
strength degradation process is fully controlled by the fracture
energy-based mechanism. In this way, the diffusion of failure that
characterizes the predictions of gradient plasticity-based material
theories is suppressed and the strong localization of concrete fail-
ure in the low confinement regime should be able to be reproduced.
This will be investigated in Section 6 related to localization analysis
with the LDP fracture energy and gradient-based model. It should
be noted that when lc = 0 all eventual localized failure modes pre-
dicted by the model are related discontinuous bifurcation and,
therefore, to losses of the well-posedness of the involved boundary
value problem.

Traditionally, the gradient internal length has been imposed
with the aim to lead dimensional stability, see a. o. Vardoulakis
and Aifantis (1991), Sluys et al. (1993), Pamin (1994), Svedberg
(1999). Actually, according to Svedberg and Runesson (1997) there
are three possible interpretations of lc:

– a convenient dimensional parameter in order to H and Hg will
get the same dimension,

– a physical entity that defines a characteristic measure of the
microstructure, and

– a parameter that numerically stabilizes the non-local constitu-
tive theory.

In this paper lc is a gradient characteristic length that: (i)
homogenizes the dimensions of H and Hg , (ii) determines the
energy dissipation zone depending on the microstructure, or (iii)
stabilizes the algorithmic solution process, according to the math-
ematical, physical or numerical viewpoint, respectively.

Moreover, in recent years several authors have investigated the
physical aspects of the characteristic length corresponding to gran-
ular materials, see a.o. Voyiadjis et al. (2005) and Arslan and Sture
(2008).

3.2.3. Non-associated flow rule
To reduce excessive dilatation of concrete during fracture pro-

cess in the low confinement regime, a limited non-associated flow
rule was defined for the constitutive model, whereby only the vol-
umetric flow is non-associated. The plastic potential is defined as

U�ðp�;q�;Kh;KsÞ ¼ Uðp�;q�;Kh;KsÞ þm0p�ðg� 1Þ ¼ 0 ð13Þ
being g the degree of volumetric non-associativity that varies be-
tween 0 6 g 6 1. Fig. 2 shows the effect of the non-associated rule
in the dilatation performance of model predictions of failure behav-
ior in the uniaxial compression test.

0 4 8 12
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−4

0

4

8

LDP Criterion
Leon Criterion
Chinn
Mills
Richart
Balmer

−p*

ρ∗

Fig. 1. Comparison of LDP strength criterion against triaxial test data on concrete.
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4. Analytical solution for localized failure of the LDP fracture
energy and gradient-based model

In the realm of the smeared crack approach, localized failure
modes are related to discontinuous bifurcations of the equilibrium
path, and lead to lost of ellipticity of the equations that govern the
static equilibrium problem. The inhomogeneous or localized defor-
mation field exhibits a plane of discontinuity that can be identified
by means of the eigenvalue problem of the acoustic or localization
tensor, see a.o. Ottosen and Runesson (1991) and Willam and Etse
(1990).

Analytical solutions of the discontinuous bifurcation condition
in gradient non-local continua follow from the waves propagation
analysis, see Svedberg (1999).

The elastoplastic material operator can be expressed as

Eep ¼ Ee � 1
ðhþ hgÞE

e :
@U�

@r
� @U

@r
: Ee ð14Þ

whereby the generalized local plastic modulus h is defined as

h ¼ @U
@r

: Ee :
@U�

@r
þ H; with H ¼ H

@U
@K

@U�

@K
ð15Þ

while the non-local one hg as

hg ¼ Hg 2pl
d

� �2

; Hg ¼ Hg @U
@K

@U�

@K
ð16Þ

being d the final localization or wave length and H and Hg the local
and non-local hardening/softening modulus, respectively. Similarly,
H and Hg are the thermodynamically consistent local and non-local
hardening/softening modulus, respectively.

The localized failure condition of gradient-dependent
elastoplasticity

detðQ gÞ ¼ 0 ð17Þ
leads to the analysis of the spectral properties of the localization
tensor Qg defined as

Q g ¼ Q � 1
hþ hg a

� � a ð18Þ

being Q the elastic localization tensor

Q ¼ nl � Ee � nl ð19Þ

and nl the normal direction to the discontinuity surface.
The smallest eigenvalue of Qg with respect to the metric defined

by [Q]�1 is

kð1Þ ¼ 1� aðnlÞ � ½QðnlÞ��1 � a�ðnlÞ
hþ hg ¼ 0 ð20Þ

with the vectors a⁄ and a defined as

a� ¼ nl � Ee :
@U�

@r
; a ¼ @U

@r
: Ee � nl ð21Þ

By replacing Eqs. 15, 16 and 21 in Eq. (20), results

Hþ @U
@r

: Ee :
@U�

@r
� a � ½Q ��1 � a� ¼ 0 ð22Þ

with

H ¼ Hg
c

2plc
d

� �2

þ Hc ð23Þ

The localization condition in Eq. (22) serves as a basis for ana-
lytical and numerical evaluations of the most critical (maximum)
hardening parameter HcðnlÞ ¼ max½HðnlÞ� and Hg

c ðnlÞ ¼ max½HgðnlÞ�
for discontinuous bifurcation and of their associated localization
directions nl, corresponding to any possible stress history.

In the particular case of local elastoplasticity, when lc ? 0, the
localization condition det(Qep) = 0 turns

Hc þ @U
@r

: Ee :
@U�

@r
� a � ½Q ��1 � a� ¼ 0 ð24Þ

General explicit solutions for the critical hardeningmodulus and
related localization directions for classical plasticity were devel-
oped by Ottosen and Runesson (1991) in case of tridimensional
stress states, and by Perić (1990) in case of plane states. Analytical
solutions for discontinuous bifurcation of quasi-brittle materials
were developed by Etse (1992a) and Etse (1992b) under consider-
ation of a local elastoplastic model for concrete. As demonstrated
by Vrech and Etse (2006) gradient-based elastoplastic theories with
non-local effects limited to the state variables are unable to fully
regularize softening behavior and lead to similar localized failure
modes of their associated local formulations when:

Case 1: Wave length d?1, resulting hg = 0, i.e. the local plas-
ticity case is recovered. Then, Eq. (24) turns the valid
localization condition.

Case 2: The adopted hardening/softening local modulus satisfies
the condition H < Hc. Then

Hc ¼ H þ Hg
c

2plc
d

� �2

ð25Þ

and the critical gradient modulus verifies

Hg
c ¼ ðHc � HÞ d

2plc

� �2

ð26Þ

Notice in this last equation, that adopting Hg < Hg
c the regular-

ization properties of the gradient theory are suppressed, i.e. local-
ized failure modes are obtained, allowing brittle-ductile failure
transitions.

5. Geometrical method for discontinuous bifurcation in
gradient-based elastoplastic LDP model

In this section, the geometrical method for localization analysis
of the thermodynamically consistent gradient and fracture energy-
based LDP model is developed. The approach follows the original
proposal by Benallal (1992), which was further developed by Pijau-
dier-Cabot and Benallal (1993), Benallal and Comi (1996), Liebe and
Willam (2001) for classical plasticity, and by Etse and Vrech (2006),
Vrech and Etse (2006) for non-local gradient-based plasticity.

The localization condition in Eq. (22) defines an ellipse

6 4 2 0 −2 −4 −6 −8 

−10

−20

Associated plasticity
Non−associated plasticity

−σy

εx −εy

ε
−ε

x

y

Plane stress condition

Fig. 2. Comparison of the associated and non-associated rules of LDP model
predictions in the uniaxial compression test.
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ðr� r0Þ2
A2 � s2

B2 ¼ 1 ð27Þ

in the r � s Mohr’s coordinates

r ¼ nl � r � nl; s ¼ nl � S � nl ð28Þ
s ¼ ðnl � SÞ � ðnl � SÞ � ðnl � S � nlÞ2 ð29Þ
being S the deviatoric stress tensor and nl the normal to the plane,
where the Mohr components are evaluated. The localization ellipse
and Mohr’s circle parameters are shown in Fig. 3.

To obtain the ellipse’s center r0 and the horizontal and vertical
half axes A and B corresponding to the gradient-dependent non-
associated LDP model, the gradient functions

n ¼ @U
@r

¼ a1S þ a2I ; m ¼ @U�

@r
¼ a1S þ a3I ð30Þ

are involved with

a1 ¼ 3f 0t þ
m0ffiffiffi
6

p
q
f 0t f

0
c ð31Þ

a2 ¼ m0

3
f 0t f

0
c ð32Þ

a3 ¼ ga2 ð33Þ
By adopting for the elastic tensor Ee the form

Ee ¼ 2GI4 þKI � I ð34Þ
with the Lame’s parameters

K ¼ Em
ð1þ mÞð1� 2mÞ ; G ¼ E

2ð1þ mÞ ð35Þ

the traction vectors in Eq. (21) can be rewritten as

a� ¼ 2a1Gnl � S þ a3
E

ð1� 2mÞnl ð36Þ

a ¼ 2a1Gnl � S þ a2
E

ð1� 2mÞnl ð37Þ

Replacing Ee from Eq. (34) in Eq. (19), we obtain

Q ¼ G I � 1
ð1� 2mÞnl � nl

� �
ð38Þ

and its inverse results

½Q ��1 ¼ 1
G

I � 1
2ð1� mÞnl � nl

� �
ð39Þ

The maximum hardening/softening parameter Hc and the criti-
cal directions hc for localization, according Fig. 3, are obtained
when the Mohr circle of stresses

ðr� rcÞ2 þ s2 ¼ R2 ð40Þ
contacts the elliptical localization envelope. The center and radius
of the Mohr circle in Eq. (40), are

rc ¼ r1 þ r3

2
and R ¼ r1 � r3

2
ð41Þ

with r1 and r3, the major and minor principal stresses, respectively.
The center r0 and half axes A and B of the localization ellipse in
Eq. (27) are defined by

r0 ¼ 1
3
I1 � ða2 þ a3Þ

2a1
ð1þ mÞ
ð1� 2mÞ ð42Þ

B2 ¼ H
4Ga2

1

þ J2 þ
a2a3
a21

ð1þ mÞ
ð1� mÞ þ

ða2 þ a3Þ2
8a21

ð1þ mÞ2
ð1� 2mÞð1� mÞ ð43Þ

A2 ¼ 2
ð1� mÞ
ð1� 2mÞ B

2 ð44Þ

According to Liebe (1998) three different failure modes may be
distinguished depending on the contact points location: mode I,
mode II and mixed mode. Fig. 4 illustrates the interrelationship be-
tween the radius R of the Mohr’s circle and the curvature of the
localization ellipse qe for the three different failure modes, with

qe
min 6 qe 6 qe

max; being qe
min ¼ B2

A
; qe

max ¼ B ð45Þ

The critical failure directions hc for localization, obtained from
the tangential contact between the elliptical localization envelope
of Eq. (27) and the major Mohr’s circle of Eq. (40), are expressed as

tan2ðhcÞ ¼ R� ðrc � r0Þ=ðd2 � 1Þ
Rþ ðrc � r0Þ=ðd2 � 1Þ

; d2 ¼ A2

B2 ð46Þ

Remark. In the particular case of classical elastoplasticity the
differential Eq. (22) turns

HcðnlÞ ¼ � @U
@r

: Ee :
@U�

@r
þ a � ½Q e��1 � a� ð47Þ

therefore, the parameter B2 representing the vertical axis of the el-
lipse in Eq. (27) takes now the form

Fig. 3. Mohr circle and localization ellipse. Fig. 4. Failure modes and localization envelope of Mohr’s circle.

1298 S.M. Vrech, G. Etse / International Journal of Solids and Structures 49 (2012) 1294–1303



B2 ¼ Hc

4Ga21
þ J2 þ

a2a3
a21

ð1þ mÞ
ð1� mÞ þ

ða2 þ a3Þ2
8a21

ð1þ mÞ2
ð1� 2mÞð1� mÞ ð48Þ

6. Localization analysis for the gradient and fracture energy-
based thermodynamically consistent LDP model

The localization analysis in this section considers both plane
strain and plane stress conditions. In Section 6.1 the localization
properties of the thermodynamically consistent LDP model are
analyzed for the particular plane strain state when rz = m(rx + ry).
Section 6.2 refers to the localization analysis in plane stress condi-
tion. The following material properties are considered

Elastic modulus� E ¼ 19305:3 MPa
Poisson0s ratio� m ¼ 0:2
Compressive strength� f 0c ¼ 22:0 MPa
Tensile strength� f 0t ¼ 2:7 MPa
Initial internal length� lc;i ¼ 25:0 mm
Maximal internal length� lc;m ¼ 110:0 mm
Gradient modulus� Hg ¼ 470:70 MPa

Previously to the localization analysis it is illustrative to see the
differences of model predictions in plane strain and plane stress
conditions. Fig. 5 shows the predictions of uniaxial compression
tests in both plane conditions. Due to the induced out-of-plane
stress, the plane strain condition leads to overestimation of the
material strength and to a more ductile failure behavior.

6.1. Localization analysis plane strain state

Fig. 6 illustrates the variation of the normalized localization
indicator det(Qg)/det(Q) of the LDP gradient and fracture energy-
based material along its maximal strength criterion defined in
terms of the normalized first and second Haigh–Westergaard
stress coordinates and under plane strain conditions. The gradient
internal length lc follows Eq. (12). As can be observed from Fig. 6, a
clear and realistic transition point from ductile or diffuse failure
modes to brittle or localized ones is predicted by the model when
the confining pressure decreases towards the low confinement and
tensile regimes. This transition is signalized by the appearance of
null values of the normalized localization indicator corresponding
to discontinuous bifurcation.

Fig. 7 shows the evolution of the normalized critical hardening
parameter Hc=E along the maximum strength surface in the r1=f 0c
and r2=f 0c plane and under plane strain conditions. In this figure
Hc=E is depicted in the normal direction to the strength surface

in outward direction when it’s positive. It can be observed that
the plane strain conditions strongly limits the region, where local-
ized failure modes may occur (between points A and B). It is very
illustrative to evaluate the influence of the eccentricity e = qt/qc

of the maximum strength surface on the localized failure indicator.
Figs. 8 and 9 show the maximum strength surfaces for e = 1 (Leon–
Drucker Prager strength criterion), e = 0.8 and e = 0.5 in the r1=f 0c vs
r2=f 0c plane under plane strain conditions. The reduction of the
eccentricity, i.e. the increase of the third invariant influence in
the yield condition destabilizes the failure modes as the length of
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the maximal strength surface under localized failure mode, relative
to the total length of this surface, significantly increases. Moreover,
as can be observed in Fig. 9, more confinement is required to re-
main in the region of diffuse failure mode by decreasing e.

Now the localization analysis in plane strain conditions is per-
formed by means of the geometrical method. Fig. 10a and b show
the tangential condition analysis between the Mohr circle and the
localization ellipse of the LDP material under consideration of the
peak stresses of the uniaxial compression test (Fig. 10a) and of
the simple shear and uniaxial tensile tests (Fig. 10b). With excep-
tion of the uniaxial compression test, the tangential localized fail-
ure condition is fulfilled at peak of the other two tests. In case of
the simple shear test and the uniaxial tensile test, tangential con-
dition takes place in the critical directions hc1 = 0� and hc2 = 180�.

As a verification analysis, the normalized localization indicator is
numerically evaluated at the peak stresses corresponding to the
simple shear, uniaxial tensile and uniaxial compression tests under
plane strain conditions and the results are depicted in Fig. 11. Both
the geometrical and numerical results demonstrate that under
plane strain conditions, the LDP model predicts localized or brittle
failure modes in tensile and simple shear regimes while the transi-
tion to ductile failure modes takes place when the stress state
moves to the low confining regime. In the uniaxial compression
test the failure mode turns ductile already. Also, both the geomet-
rical and the numerical evaluations of localized failure condition
lead to the same critical angles for the discontinuity surface. It is
also interesting to notice that in the uniaxial compression test un-
der plane strain condition, the critical angles for localization or
shear bands are hc1 = 43� and hc2 = 137�. In this case the character-
istic length for gradient plasticity lc is larger than zero and equals
the maximum aggregate size lc,i. Therefore, the discontinuous
bifurcation conditions are suppressed.

The influence of the increasing confining pressure in the evolu-
tion of failure modes of the LDP material under plane strain condi-
tions is shown in Figs. 12 and 13. The first one is related to the
geometrical localization analysis for the triaxial compressive tests
with lateral confinements r1 of �0.6 MPa, �3.3 MPa and
�13.2 MPa. It can be clearly observed in Fig. 12 that the increasing
confinement leads to larger separations between the Mohr circle
and the localization ellipse, indicating that more stable or ductile
failure modes take place. The numerical analyses of localization in
Fig. 13 demonstrate both the absence of discontinuous bifurcation
in the high confinement regime and, moreover, the increment of
the positive definition of the localization tensor as well as of the
related critical localization angle with the acting confinement. In
conclusion, the LDP material is able to reproduce the transition
from brittle to ductile failure modes of concrete under plane strain
conditions when the stress state varies from the tensile to the
compressive regime with increasing confinement. The results also
demonstrate the capability of the combined gradient and fracture
energy-based material theory to realistically reproduce the
variation of the critical localization direction with the confining
pressure. These predictions agree very well with experimental
observations on failure behaviors of concrete specimens.

6.2. Localization analysis in plane stress state

Fig. 14 shows the variation of the normalized localization indica-
tor alongmaximumstrength surfaceof the LDPmodel inplane stress
state. By comparing these results with those in Fig. 6 corresponding
to plane strain state it can be concluded that the lack of out-of-plane
stress in case of plane stresses is responsible to considerable
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destabilizations of the kinematic field at peak stresses in the form of
discontinuous bifurcation. Consequently, the region of the maxi-
mum strength surface related to localized failure is much larger
when the material is subjected to plane stress conditions.

The variation from diffuse to localized failure regimen at peak
strength of the LDP model in plane stress conditions can be
observed in Fig. 15 in terms of the normalized critical hardening
parameter Hc=E obtained with the analytical method for discontin-
uous bifurcation. In Fig. 16, the influence of the eccentricity e = qt/
qc in the evolution of the critical hardening parameter Hc is shown.
It can be clearly recognized that the increasing dependence of the
maximum strength surface in the third invariant (decreasing e)
potentials the occurrence of localized failure in a more relevant
portion of the maximal strength surface. The same effect was
obtained in case of plane strain conditions.

Fig. 17 illustrates the results of the geometrical localization
analysis at peak of the simple shear, uniaxial tension and uniaxial
compression tests in plane stress states. Similarly to the case of
plane strain condition, the uniaxial compression test is the only
one that leads to diffuse failure mode as no contact between the
circle of Mohr and the localization ellipse is obtained. Whereas
the critical localization directions are hc1 = 0� and hc2 = 180� in
the simple shear and in the uniaxial tensile test.

The predictions of the geometrical localization analyses related
to the occurrence of discontinuous bifurcation and their associated
critical directions of Fig. 17 are confirmed with the results of
numerical analysis shown in Fig. 18 in terms of the determinant
of the elastoplastic localization tensor normalized with that of
the elastic one.

In Figs. 19 and 20 the influence of the confinement is evaluated
for three different triaxial compression tests with increasing lateral
pressure. Comparing the results in Fig. 20 with those of Fig. 13 cor-
responding to plane strain state, it can be concluded that in plane
stress condition the positive definition of the localization tensor is
more sensitive to the acting confinement. However, the critical
direction for localization is more sensitive to the confining pressure
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in plane strain state as the relevant increment of the out-of-plane
stress that takes place in this case leads to more pronounce varia-
tions of the direction of the discontinuity surface.

Finally it is interesting to compare the performance of the local-
ization indicator at peak stress of the uniaxial compression test in
plain strain and plane stress conditions. The results in Figs. 11 and
18, respectively, demonstrate that plane strain conditions leads to
more stable and ductile failure behavior as the determinant of the
acoustic tensor is larger than that of the plane stress condition.

7. Conclusions

In this work, numerical, analytical and, particularly, geometrical
procedures for localized failure evaluations in thermodynamically
consistent gradient and fracture energy-based materials are pre-
sented. The constitutive theory for quasi-brittle materials like
concrete proposed by the authors, see Vrech and Etse (2009), is
considered together with the so-called Leon–Drucker Prager max-
imum strength criterion. Numerical analyses of the condition for
discontinuous bifurcation are based on the evaluation of the spec-
tral properties of the acoustic or localization tensor through the
calculation of its determinant. In the analytical procedure for local-
ized failure evaluation, explicit solutions for the critical or maxi-
mum possible hardening/softening parameter of the considered
material theory are obtained, that fulfill the discontinuous bifurca-
tion condition. Finally, in the geometrical localization method also
pursued in this work, the localization ellipse in the Mohr stress
coordinates is formulated for the considered selective non-local
constitutive theory and then, the tangential conditions with the
Mohr circle are evaluated. Both the analytical and geometrical for-
mulations for localized failure analysis presented in this paper
allow detailed evaluations of the failure mode predictions of the
gradient and fracture energy-based constitutive theory for con-
crete. The obtained results for the localization analyses under
plane strain and plane stress conditions demonstrate the capabili-
ties of the constitutive model for concrete to reproduce diffuse fail-
ure modes in the medium and high confinement regimes while
localized failure in the tensile regime. Due to the relative or limited
non-locality of the constitutive theory, localized failure modes in
tensile regime when the confinement pressure turns zero are
related to loss of well-posedness of the boundary value problem
and to discontinuous bifurcation. In this form, the well known qua-
si-brittle properties of concrete are realistically reproduced as well
as the strong localization and unstable behavior during failure
processes in the tensile regime. The results also illustrate the fun-
damental differences between failure modes in plane strain and
plane stress conditions. The second one is more sensitive to local-
ized failure mode in the form of discontinuous bifurcation, while
the plane strain condition leads to more relevant variations of
the critical localization directions.
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Perić, D., 1990. Localized Deformation and Failure Analysis of Pressure Sensitive
Granular Materials. University of Colorado, CEAE Dept., Boulder, USA.

Petersson, P.E. (1981). Crack Growth and Development of Fracture Zones in Plain
Concrete and Similar Materials. Report TVBM-1006. Technical Report, Lund
Institute of Technology, Sweden.

Phillips, D.V., Binsheng, Z., 1993. Direct tension tests on notched and un-notched
plain concrete specimens. Mag. Conc. Res. 45, 25–35.

Pijaudier-Cabot, G., Benallal, A., 1993. Strain localization and bifurcation in a non-
local continuum. Int. J. Solids Struct. 13, 1761–1775.

Planas, J., Elices, M., 1986. In: Wittmann, F.H. (Ed.), Towards a Measure of Gf: An
Analysis of Experimental Results. Elsevier.

Planas, J., Elices, M., 1989. Conceptual and experimental problems in the
determination of the fracture energy of concrete. In: Mihashi, H., Takahashi,
H., Wittmann, F.H. (Eds.), Fracture Toughness and Fracture Energy: Test
Methods for Concrete and Rock. Balkema.

Rizzi, E., Carol, I., Willam, K.J., 1995. Localization analysis of elastic degradation with
application to scalar damage. J. Eng. Mech. 121-4, 541–554.

Rudnicki, J., Rice, J., 1975. Conditions for the localization of deformation in pressure-
sensitive dilatant materials. J. Mech. Phys. Solids 23, 371–394.

Sfer, D., Gettu, R., Carol, I., Etse, G., 2002. Experimental study of the triaxial behavior
of concrete. J. Eng. Mech. 128-2, 156–163.

Sluys, L.J., de Borst, R., Mühlhaus, M., 1993. Wave propagation, localization and
dispersion in a gradient-dependent medium. Int. J. Solids Struct. 30, 1153–1171.

Sobh, N., 1987. Bifurcation Analysis of Tangential Material Operators. University of
Colorado, CEAE Dept., Boulder, USA.

Svedberg, T., 1999. On the Modelling and Numerics of Gradient-Regularized
Plasticity Coupled to Damage. Ph.D. Thesis, Chalmers University of
Technology, Sweden.

Svedberg, T., Runesson, K., 1997. A thermodynamically consistent theory of
gradient-regularized plasticity coupled to damage. Int. J. Plast. 13 (6-7), 669–
696.

Thomas, T., 1961. Plastic Flow and Fracture in Solids. Academic Press, London.
van Geel, X., 1998. Concrete Behaviour in Multiaxial Compression. Ph.D. Thesis,

Technische Universiteit Eindhoven, Neatherlands.
van Mier, J.G.M., 1984. Strain-Softening of Concrete under Multiaxial Loading

Conditions. Ph.D. Thesis, Eindhoven University of Technology, Neatherlands.
van Mier, J.G.M., 1997. Fracture Processes of Concrete. CRC Press.
Vardoulakis, I., 1980. Shear band inclination and shear modulus of sand in biaxial

tests. Int. J. Numer. Anal. Meth. Geomech. 4, 103–119.
Vardoulakis, I., Aifantis, E.C., 1991. A gradient flow theory of plasticity for granular

materials. Acta Mech. 87, 197–217.
Voyiadjis, G., Alsaleh, M., Alshibli, K., 2005. Evolving internal length scales in plastic

strain localization for granular materials. Int. J. Plast., 2000–2024.
Vrech, S., Etse, G., 2006. Geometrical localization analysis of gradient-dependent

parabolic Drucker Prager elastoplasticity. Int. J. Plast. 22, 943–964.
Vrech, S., Etse, G., 2009. Gradient and fracture energy-based plasticity theory for

quasi-brittle materials like concrete. Comput. Meth. Appl. Mech. 199, 136–147.
Willam, K.J., Etse, G., 1990. Failure assessment of the extended Leon model for plain

concrete. In: SCI-C Conf., Zell and See, Austria. Pineridge Press, Swansea, UK, pp.
851–870.

Willam, K., Hurbult, B., Sture, S., 1985. Experimental and constitutive aspects of
concrete failure. In: US-Japan Seminar on Finite Element Analysis of Reinforced
Concrete Structures, ASCE-Special Publication, pp. 226–254.

S.M. Vrech, G. Etse / International Journal of Solids and Structures 49 (2012) 1294–1303 1303


