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a b s t r a c t

Prior to applying any interatomic potential, it is important to know the stability of the different phases it
describes. In the literature many methods to determine the phase diagram from an interatomic potential
are described. Although for pure elements the procedure to obtain the thermodynamic functions is well
established, for alloys it is not. In this work a method is developed to determine the phase diagram, i.e.,
solubility limits and spinodal gap, for the case of miscibility gaps. The method combines Monte Carlo
simulations in the isobaric semi-grand canonical ensemble, full thermodynamic integration and Red-
lich–Kister expansions to parameterize the Gibbs free energy. Besides numerical inaccuracies, this
method does not rely on any physical approximations to determine the phase diagram of a given inter-
atomic potential. The method is applied to two different Fe–Cr potentials that are widely used in the lit-
erature. The resulting phase diagrams are discussed by comparing them to the experimental one and
ones obtained in other works from the same potentials.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Prior to applying any interatomic potential, it is important to
know the stability of the different phases it describes. In the liter-
ature many methods to determine the phase diagram from inter-
atomic potentials are described. For pure elements the procedure
to obtain the thermodynamic functions is well established; for
example using the coupling parameter method based on either
molecular dynamics (MD) or Monte Carlo (MC) simulations [1–
4]. For (binary) alloys, however, the situation is less clear.

In the literature there are some examples where the authors
have extended the thermodynamic integration procedure to al-
loys, with mixed success [5–7]. The major drawback of such pro-
cedures is the decoupling between vibrational and configurational
entropy as both are calculated independently from each other. In
addition, the configurational entropy is approximated by the ideal
solution or a cluster variation method expression [8]. Other proce-
dures rely on MC simulations in the canonical ensemble (N, V, T) to
estimate the phase boundaries from the identification of phase

separation [9,10] or the determination of the thermodynamic
functions [11]. The main shortcoming of the latter procedures is
their need to operate in coexisting phase conditions. Due to the fi-
nite size of a simulation box, the obtained thermodynamic func-
tions are susceptible to interface effects and are therefore
inherently box size dependent.

The most appropriate method when dealing with solid solu-
tions are MC simulations in the isobaric semi-grand canonical
ensemble (N, P, T, Dl). This method does not suffer from interface
effects since the fixed chemical potential difference guarantees
single phase regime. The aim is to obtain (at a given temperature)
the equilibrium concentration of a given phase as a function of
the chemical potential difference. Any discontinuity observed in
such a curve is then associated with a phase transition, with
the concentration just before and after the transition indicating
the solubility limits [12]. Such procedures work well when the
transformation barrier for nucleation of the new phase is low.
In the other cases, however, the solubility limits cannot be deter-
mined unambiguously since hysteresis occurs, i.e., the location of
the discontinuity depends essentially on the initial phase from
which the simulation was started. Also, in the particular case of
miscibility gaps, it is impossible to estimate the spinodal gap
from the latter procedure.
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To overcome these problems, in this work a methodology to
determine the solubility limits and spinodal gap in the case of mis-
cibility gaps is established. We combine MC simulations in the iso-
baric semi-grand canonical ensemble, full thermodynamic
integration techniques and the theory of Redlich–Kister expansions
to determine the Gibbs free energy curves, from which the phase
diagram is determined. Besides numerical inaccuracies, the applied
procedure does not rely on any physical approximations.

The method is illustrated on two different interatomic poten-
tials fitted to the iron–chromium system. This system exhibits a
miscibility gap (with high transformation barrier for nucleation
of the second phase [13]), which has recently received renewed
interest as high-Cr steels are candidate structural materials for nu-
clear applications [14]. The (Fe, Cr) alloy exhibits a large Cr solubil-
ity (�9%Cr) [15], which is in the composition range of technological
applications (5–12%Cr) [14]. From the modelling viewpoint, it is
therefore important to establish as precisely as possible the phase
diagram associated with the different Fe–Cr potentials.

The paper is organised as follows; in Section 2 a brief overview
of the used methods is given. In Section 3 the followed procedure
to obtain the thermodynamic functions and corresponding phase
diagram given an interatomic potential is explained. In Section 4
the results of the former procedure on the different Fe–Cr poten-
tials are presented and the obtained phase diagrams are compared
to the Calphad calculated one. In Section 5 the phase diagrams ob-
tained in the present work are compared with the ones from pre-
vious works. Based on this comparison the performance of the
present method is discussed.

2. Methodology

2.1. Cohesive model

The atomic interactions of the iron–chromium system are de-
scribed using the two-band model (2BM) [16]. This model is
known to be capable of describing an alloy’s complex behaviour
– such as the (Fe, Cr) system – with composition [17], for example
mixing enthalpy, short-range order parameter, etc. The 2BM con-
stitutes of the standard embedded atom method (EAM) extended
with an extra embedding term that accounts for contributions
from the s-band electronic density to the cohesive energy.

In this work two such type of potentials that are available in the
literature are used, namely, the one fitted by Olsson et al. [16,18]
(henceforth OLS) and its recent refit by Bonny et al. [19,20] (hence-
forth BON). In both cases the potentials were fitted accounting for
(amongst many other properties) thermodynamics and should
therefore give a reasonable description of the thermodynamic
functions as obtained from both experiments and density func-
tional theory (DFT) data.

The pure elements (Fe and Cr) are described by the EAM poten-
tials fitted by Ackland et al. [21] (Fe part of OLS), Mendelev et al.
[22] (Fe part of BON), Olsson et al. [16] (Cr part of OLS) and Bonny
et al. [19,20] (Cr part of BON). They all constitute the present state-
of-the-art EAM potentials for Fe and Cr (see [23] for a review on the
Fe parts).

2.2. Isobaric Monte Carlo in semi-grand canonical ensemble

Metropolis Monte Carlo (MC) sampling [24] within the isobaric
semi-grand canonical ensemble (N, P, T, Dl) is used to estimate the
equilibrium concentration of a given phase containing N atoms at a
given temperature T, pressure P and chemical potential difference
Dl. The MC method includes three types of trials: (i) a random dis-
placement of all atoms from their current positions (by this trial
lattice relaxation and vibrational entropy are accounted for); (ii)

the change of species of a randomly picked atom (by this trial
the equilibrium composition is sampled); (iii) the overall volume
change of the simulation box (this trial allows the desired pressure
to be maintained, even if a structural transition were to occur). The
decision on the acceptance of the new configuration is based on the
standard Metropolis algorithm [24] and one set of these trials is
termed an ‘‘MC step’’.

All MC simulations were performed starting from bcc crystals
containing N = 1024 atoms, at P = 0 Pa, in the ranges T = 300–
1200 K, Dl = lCr � lFe = �0.25–0.35 eV and under periodic bound-
ary conditions along the three principal directions. They were per-
formed until convergence in concentration and its variance was
reached, which typically takes �2 � 105–2 � 106 MC steps.

2.3. Thermodynamic integration

The Gibbs free energy G(T) (henceforth free energy) of the pure
elements is calculated using a coupling parameter method which
relates the free energy of a desired state to a reference state along
a (quasi-) adiabatic path. As the reference state the Einstein crystal
at 300 K is chosen for which the free energy can be determined ex-
actly [1]. The appropriate spring strengths associated with the
Einstein oscillators for the Fe and Cr potentials were determined
from MD runs in canonical ensemble (N, V, T), as explained in
[25]. After equilibration of such a reference state with free energy
GEinstein(300 K), dynamic adiabatic switching [3] was used to
switch quasi-statically between the reference and the real system
as to obtain its free energy, GReal(300 K).

Secondly, GReal(300 K) is used as reference state to apply revers-
ible scaling [4] between the latter and the real system as to obtain
its free energy at 1500 K, GReal(1500 K). Using this procedure, the
free energy of the real system GReal(T) is obtained as a function of
temperature in the interval 300–1500 K.

Both switching procedures were applied on bcc simulation crys-
tals containing 2000 atoms. Typical equilibration times of initial
and final states – GEinstein(300 K), GReal(300 K) and GReal(1500 K) –
were �10 ps and the typical switching time between two states
was 25 ps and 150 ps for the first and second switching procedure,
respectively. For both switching procedures the forward and back-
ward path was calculated. The enclosed surface between both
curves represents the irreversible work performed due to the finite
switching time and is a measure for the precision of the obtained
free energy. From these cycles it was checked that for the above
parameters the error on the free energy is of the order 1 meV/atom.

3. Phase diagram calculation

Firstly, the aim is to obtain the equilibrium concentration of the
different phases (in our case the a and a0 phases) as a function of
chemical potential difference Dl = lCr � lFe in the temperature
range of interest (until full solubility is observed). This is done by
performing MC simulations in the isobaric semi-grand canonical
ensemble, as described in Section 2.2. At temperatures within the
miscibility gap, such a curve typically exhibits a discontinuity that
indicates a phase transition. The value of Dl for which this transi-
tion occurs can depend (for high transformation barriers for nucle-
ation of the new phase) on the initial phase from which the
simulations were started, i.e., pure Fe or Cr. This effect is known
as hysteresis and is visualised by repeating the procedure twice,
once starting from pure Fe and Cr, respectively. Particularly at
low temperature this effect is non-negligible (see for example
Fig. 1a). The temperature for which full solubility is observed is
identified by continuity and the lack of hysteresis of the equilib-
rium concentration with Dl. Clearly this indicates single phase re-
gime (see for example Fig. 1b).
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The chemical potential difference Dl in turn is the first deriva-
tive of the Gibbs free energy G(x) with respect to concentration, x
(x = xCr),

DlðxÞ ¼ @GðxÞ
@x

: ð1Þ

By integration of Eq. (1), G(x) is obtained up to an additive constant.
Practically, G(x) is represented following the Calphad methodology
[26] as:

GðxÞ ¼ xCrGCrðTÞ þ xFeGFeðTÞ þ kBTðxCr ln xCr þ xFe ln xFeÞ

þ xFexCr

XM

p¼0

LpðxCr � xFeÞp: ð2Þ

Here the first two terms represent the free energy of the mechanical
mixture with GFe (GCr) the Gibbs free energy for pure Fe (Cr); the
third term is the configurational entropy for an ideal solution with
kB Boltzmann’s constant; and the fourth term is a Redlich–Kister
(RK) expansion [27] accounting for deviations from the ideal solu-
tion, with Lp RK coefficients and M the order of the RK expansion.
As shown in [26,28], such an expansion is suitable to describe dis-
ordered and short-range ordered solid solutions.

Secondly, the Gibbs free energy of the pure phases – first and
second terms in Eq. (2) – is determined using the full thermody-
namic integration described in Section 2.3 (see for example
Fig. 2). Given the latter, the derivative of Eq. (2) is fitted to the

resulting curves for the a and a0 phases at each calculated temper-
ature, where the RK coefficients are the only remaining fitting
parameters. From the resulting free energy curves, the solubility
limits are determined by a common tangent construction.

To ensure the high precision on G(x) needed to determine the
solubility limits, a different RK expansion was fitted for the a and
a0 phase (see for example Fig. 3a). Here M typically takes values be-
tween 3 and 5. It should be noted that each curve was visually in-
spected to guarantee that no unphysical oscillations occur in the
concentration range of interest.

To obtain an estimate for the spinodal gap, G(x) must be fitted
by a single RK expansion for both the a and a0 phases, as the spin-
odal gap is determined from the flexing points of G(x) (see for
example Fig. 3b). To avoid unphysical oscillations M was limited
to three, which provides reasonable fits at low temperature
(<500 K) but lacks precision above. Due to this limitation the loca-
tion of the spinodal gap is only indicative. It should also be noted
that, although presently used in the fit, GFe and GCr are not strictly
necessary when a single RK expansion is fitted to describe both a
and a0 phases.

4. Results

In Fig. 1 typical plots of xCr versus Dl are shown for BON and
OLS. Similar figures (not all shown) were plotted in steps of
100 K for temperatures from 300 K up to 800 K and 1200 K – where
full solubility is observed – for OLS and BON, respectively. In all fig-
ures, the error bars are taken as the 95% confidence interval for the
average concentration obtained from the MC simulations (i.e.,
twice the standard deviation around the mean value). The resolu-
tion on the Dl axis was 10 meV and 1 meV in the vicinity of a pos-
sible phase transition.

In Fig. 1a typical curves for temperatures inside the miscibility
gap are shown (400 K). For both potentials a clear discontinuity –
indicating a phase transition – well outside the error bars is ob-
served. From the figure it is clear that (particularly for BON) the
hysteresis effect mentioned in Section 3 does not allow an unam-
biguous determination of the solubility limit. In Fig. 1b typical
curves for temperatures above the miscibility gap are shown
(800 K for OLS and 1200 K for BON). In these cases no hysteresis
is observed and each curve describes the whole concentration
range continuously, which indicates full solubility.

In Fig. 2 the free energy calculated from the full thermodynamic
integration (see Section 2.3) is plotted for all four potentials
describing the pure elements. Each curve consists of two data sets
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Fig. 1. Composition of the a and a0 phases as a function of chemical potential difference for both potentials; (a) within the miscibility gap and (b) above it.

200 400 600 800 1000 1200 1400 1600

-4.8

-4.6

-4.4

-4.2

-4.0

-3.8

Iron
 Mendelev '03
 Ackland '05

Chromium
 Bonny '11
 Olsson '05

G
 (e

V/
at

.)

T (K)

Fig. 2. Free energy calculated by a full thermodynamic integration (see Section 2.3)
for all four potentials describing the pure elements.

2218 G. Bonny et al. / Computational Materials Science 50 (2011) 2216–2220



Author's personal copy

representing the full switching cycle. Although both data sets are
plotted, they cannot be distinguished as they do not differ by more
than 1 meV. The full curves are polynomial interpolations of both
data sets. For practical reasons it is these curves that enter the
RK expansion (GFe and GCr), but it is emphasized that these interpo-
lations do not affect the overall precision.

In Fig. 3 the free energy (lower panels) and its derivative (top
panels) is illustrated for BON (a) and OLS (b) at 400 K. In the top
panels the quality of the RK fit to Dl is illustrated, i.e., the RK fits
are well within the error bars. In Fig. 3a one RK expansion per
phase was fitted to ensure a high quality fit to determine the phase
boundaries while in Fig. 3b a single RK expansion was fitted to both
phases as to determine the spinodal gap. At the present tempera-
ture, for both cases the RK expansions fall well within the MC ob-
tained error bars. For high temperatures (>500 K) this is only true if
one RK expansion is fitted per phase. In the lower panels the result-
ing Gibbs free energy is plotted together with the common tangent
construction indicating the solubility limits of the miscibility gap.
In Fig. 3b, besides the latter, the spinodal region is also indicated.

The phase diagrams – miscibility gap and spinodal gap – calcu-
lated from both potentials are compared to a recently proposed
parameterization based on the Calphad methodology [6] in Fig. 4.
The Calphad miscibility gap is calculated from an experimentally
based [15,29] Gibbs free energy parameterization. The error bars
were taken from the corresponding Dl versus xCr curves (see for

example Fig. 3) at the compositions obtained from the common
tangent constructions.

When focused on the Calphad curve in the Fe-rich region, large
Cr solubility at low temperature is observed. As shown in Fig. 4,
this behaviour is well reproduced by both potentials. At about
750 K the Fe-rich solubility limit of the Calphad curve increases un-
til full solubility is observed above the critical temperature �900 K.
The curve resulting from OLS underestimates this critical temper-
ature by �200 K while BON overestimates it by roughly the same
amount. The difference in critical temperature between OLS and
BON is mainly attributed to their difference in the excess vibra-
tional entropy, as discussed in [19].

On the Cr-rich side, the Fe solubility following from the Calphad
curve approaches zero with decreasing temperature, which is
reproduced by BON but not by OLS. The latter predicts high Fe sol-
ubility as an unphysical artefact of a negative heat of mixing at the
Cr-rich side (see [19,25] for an extended discussion).

Regarding the spinodal gap, all models (potentials and Calphad)
follow the shape of the miscibility gap but shifted towards the cen-
tre by �20%. It is only at �100 K below the transition temperature
towards full solubility that the miscibility gap converges to the
spinodal one. Since the same behaviour is observed for the Calphad
model and the potentials, our method to estimate the spinodal gap
seems reasonable. However, we emphasize that the spinodal gaps
are only indicative as they rely on the extrapolation capabilities of
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Fig. 3. Illustration of the free energy (lower panel) and its derivative (top panel) at 400 K using BON (a) and OLS (b).
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the RK expansion and the Calphad parameterization was not fitted
to it.

5. Discussion and concluding remarks

In a previous work [25] the phase diagram resulting from OLS
was already calculated using indirect but computationally inex-
pensive methods. For the sake of comparison, the same methods
were also applied to BON. Briefly, the phase diagram was estimated
using the (freely available) ATAT package [30,31], which was inter-
faced to an in-house MD code working as ‘energy engine’. The
package works in two stages: firstly, an automated statistically
optimised procedure is followed in order to build a cluster expan-
sion of the configuration energy on the bcc lattice (this is where the
MD code, namely the interatomic potential, enters); secondly, the
previous expansion is fed to a rigid lattice MC code working in
semi-grand canonical ensemble for tracking the phase boundaries.
The cluster expansion is here used as an economical way to com-
pute the configuration energy of any configuration of the simula-
tion box. The method implicitly accounts for the configurational
entropy but neglects vibrational entropy. To account for this short-
coming, vibrational entropy calculated from separate MD runs [25]
or a harmonic analysis [32] on random alloys was indirectly in-
cluded by making the cluster expansion temperature dependent
[25]. In this way vibrational entropy is effectively included,
although it is decoupled from the configurational entropy.

The phase diagrams from the latter procedure are compared
with the ones presented here in Fig. 5. Given the error bars, the
ATAT curves follow the ones of the present work well below
700 K for OLS and up to full solubility for BON. For OLS, the critical
temperature for full solubility resulting from ATAT is overesti-
mated by �200 K compared to the one presented here. Judging
from the difference between both procedures to estimate the
phase diagram, it seems that vibrational and configurational entro-
py are coupled stronger for OLS than for BON.

In a previous work harmonic analysis of random alloys has
shown that the excess vibrational entropy from OLS is about twice
larger than that from BON [19]. Thereby the former amounts to
about half the configurational entropy. These results in combina-
tion with our observation from Fig. 5 suggest that the coupling
strength between excess vibrational and configurational entropy
strongly depends on the ratio between both, with strongest cou-
pling when their ratio approaches one.

To conclude, the following recommendations seem in place: (i)
when excess vibrational and configurational entropy are strongly
coupled, i.e., of similar size (for simplicity) evaluated on random
solutions, then the methodology developed in the present work
should be followed; (ii) when the former are weakly coupled, i.e.,
essentially different in size, then the ATAT method probably pro-
vides a reasonable estimate. It should be noted that the high accu-
racy of the presented method comes at the cost of an increase of
the computational load by about an order of magnitude compared
to the ATAT method.
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