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a b s t r a c t

A finely layered medium behaves as a homogeneous anisotropic medium at long wavelengths. When

each layer is a transversely isotropic viscoelastic (TIV) medium, attenuation anisotropy can be

described by a generalization of Backus averaging to the lossy case. We introduce a method to compute

the complex and frequency-dependent stiffnesses of the equivalent viscoelastic, homogeneous,

transversely isotropic medium from numerical simulations of oscillatory (harmonic) tests based on a

space–frequency domain finite-element (FE) method. We apply the methodology to a periodic

sequence of shale and limestone thin layers and determine the energy velocities and quality factors

of the qP-, qSV- and SH-wave modes as a function of frequency and propagation direction. The

agreement between theory and numerical experiments is very good when the long-wavelength

condition is satisfied.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Many geological systems, as for instance fluvial and lacustrine
depositional formations, are composed of very thin layers with
varying viscoelastic properties and cannot be correctly described
by isotropic rheological equations, requiring to be modeled as
transversely isotropic media. This occurs when the dominant
wavelength of the seismic signal is much larger than the thick-
ness of the single layers. The medium is seen by the signal as
transversely isotropic with a vertical axis of symmetry (Backus,
1962; Carcione, 2007).

Each single layer is transversely isotropic in many situations. For
instance, the elastic properties of shales are strongly affected by the
presence of clay minerals, controlling in particular the degree of
anisotropy. In fact, monocrystals of clay minerals are very thin
platelets whose aggregates may exhibit considerable anisotropy of
elastic properties (Bayuk et al., 2007). During deposition at the
sediment–water interface, clays have a high porosity because sedi-
mentation occurs more commonly as flocculated clay aggregates
having random orientation of clay particles. With increasing over-
burden pressures, mechanical compaction and dewatering processes
reduces the porosity because the platy clay domains tend to collapse
generating a preferred orientation (Revil et al., 2002), which is
ll rights reserved.
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generally perpendicular to the direction of maximum compaction
stress. Bottom currents can also reorient the grains to a more
preferred orientation. Other examples of intrinsic anisotropic materi-
als are biogenic carbonates. Having studied many sediment samples
from core drilling sites, Carlson and Christensen (1979) suggested
that in chalks and limestones the phenomenon results from the
preferred orientation of calcite grains, rather than the alignment of
cracks and pores in the sediment. Carlson et al. (1984) concluded that
carbonate-bearing deep-sea sediments may be regarded as transver-
sely isotropic media with symmetry axes normal to bedding. More-
over, the system studied in this work can be of interest in the theory
of composites, where fibers in the form of sheets or material
variations are usually used to deliberately make the composite
anisotropic along a given direction to induce maximum stiffness
(Amirkhizi et al., 2010).

To our knowledge, the first researcher to study the anisotropic
character of finely layered media was Bruggeman (1937). Others
analyzed the problem using alternative approaches, e.g., Riz-
nichenko (1949) and Postma (1955), who considered a two-
constituent periodically layered medium. Later, Backus (1962)
showed that a system composed of several thin layers is equiva-
lent (each layer is assumed thin relative to the dominant
wavelength) to a homogeneous, transversely isotropic medium,
and that the properties of this equivalent medium can be derived
using appropriate averaging techniques. Backus also obtained the
average elasticity constants in the more general case when
the single layers are transversely isotropic with the symmetry
axis perpendicular to the layering plane. Moreover, he assumed
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stationarity, i.e., in a given length of composite medium much
smaller than the wavelength, the proportion of each material is
constant (periodicity is not required).

Schoenberg and Muir (1989) extended Backus approach to single
layers of arbitrary anisotropic layers using a matrix formalism.
However, this generalization has been questioned by Hudson and
Crampin (1991), who state that the theory cannot be applied to
oblique sets of layers or cracks (even for weak anisotropy), since the
structure is no longer one-dimensional and Backus’s assumptions are
invalidated. In this paper, we consider single transversely isotropic
viscoelastic (TIV) layers with a vertical symmetry axis. The test of
Schoenberg and Muir’s theory in the lossless and anelastic cases is a
topic of future research.

Backus averaging for the lossless case has been verified
numerically by Carcione et al. (1991), who found that the
minimum ratio between the P-wave dominant pulse wavelength
and the spatial period of the layering depends on the contrast
between the constituents. For instance, for a periodic sequence of
epoxy-glass it is approximately 8, and for sandstone-limestone
(which has a lower reflection coefficient) it is between 5 and 6. In
any case, an optimal ratio can be found for which the equivalence
between a finely layered medium and a homogeneous transver-
sely isotropic medium is valid. Carcione (1992) generalized
Backus averaging to the anelastic case, obtaining the first model
for Q-anisotropy (see Carcione, 2007), hereafter referred to as the
Backus–Carcione theory. Other alternative models of Q-aniso-
tropy were proposed by Carcione and Cavallini (1994, 1995) and
Carcione et al. (1998). A brief description of all these models can
be found in Carcione (2007).

Picotti et al. (2010) and Santos et al. (2011) were the first to
test Backus–Carcione theory, introducing a novel method to
obtain the complex and frequency-dependent stiffnesses from
numerical simulations of oscillatory (harmonic) tests. They
applied the methodology to a shale-limestone and epoxy-glass
periodic sequence of thin layers, and computed the quality factor
and wave velocities as a function of frequency and propagation
direction. This analysis indicates that attenuation anisotropy due
to fine-layering is more pronounced for shear waves than for
compressional waves. Moreover, attenuation is higher in the
direction perpendicular to layering or close to it. Using a similar
approach, Picotti et al. (2010) and Santos et al. (2011) considered
isotropic layers, while Carcione et al. (2011) and Krzikalla and
Müller (2010) extended the methodology to poroelastic media,
obtaining the five complex and frequency-dependent stiffnesses
of the equivalent viscoelastic medium.

In order to test the general Backus–Carcione theory for
Q-anisotropy, we perform numerical simulations using an upscaling
procedure to obtain the complex stiffnesses of the effective viscoe-
lastic transversely isotropic medium. This is the generalized version
to the TIV case of the procedure used by Picotti et al. (2010) and
Santos et al. (2011). It consists of the simulation of oscillatory
compressibility and shear tests based on a space–frequency domain
FE method. First, we use the FE method at a single frequency to
approximate the solutions of the associated boundary value problems
and obtain the effective complex stiffnesses versus frequency. Then,
quality factors and energy velocities as a function of frequency and
propagation angle are computed, using the complex stiffnesses
obtained numerically and analytically. Finally, we compare the two
results and validate the theory, discussing the differences with the
results using isotropic layers (Picotti et al., 2010).
2. Generalized viscoelastic Backus averaging

We consider that each thin layer is a TIV medium that can
be described by the model developed by Carcione (1990). The
complex stiffnesses, in Voigt’s notation, are given by (Carcione,
2007)

pIðIÞ ¼ cIðIÞ�EþKM1þ
4
3mM2, ð2:1Þ

pIJ ¼ cIJ�EþKM1þ2mð1�1
3M2Þ, I,J¼ 1;2,3; Ia J, ð2:2Þ

p44 ¼ p55 ¼ c55M2, p66 ¼ c66þmðM2�1Þ, ð2:3Þ

where

K ¼ E�4
3m ð2:4Þ

and

E ¼ 1

3

X3

I ¼ 1

cII , m ¼ 1

3

X6

I ¼ 4

cII: ð2:5Þ

Here, M1 and M2 are frequency-dependent complex functions
corresponding to dilatational and shear deformations, respec-
tively, and cIJ are the unrelaxed (high-frequency limit) stiffness
components.

To quantify the anisotropy of each thin layer, we use
Thomsen’s (1986) coefficients:

E¼ c11�c33

2c33
,

g¼ c66�c55

2c55
,

d¼
ðc13þc55Þ

2
�ðc33�c55Þ

2

2c33ðc33�c55Þ
: ð2:6Þ

If cP and cS are the elastic high-frequency limit compressional-
and shear-wave velocities, and r is the density, the coefficients
c33 and c55 are given by

c33 ¼ rc2
P , c55 ¼ rc2

S : ð2:7Þ

The other three coefficients, c11, c66 and c13, can be obtained from
Eq. (2.6). According to Carcione (1992), the equivalent TIV is
defined by the following complex stiffnesses:

p11 ¼/p11�p2
13p�1

33 Sþ/p�1
33 S

�1/p�1
33 p13S

2,

p33 ¼/p�1
33 S

�1,

p13 ¼/p�1
33 S

�1/p�1
33 p13S,

p55 ¼/p�1
55 S

�1,

p66 ¼/p66S, ð2:8Þ

where the thickness weighted average of a quantity a is defined as

/aS¼
XL

l ¼ 1

qlal, ð2:9Þ

where ql is the relative thickness of material l. In the case of a
periodic sequence of two alternating layers, Eq. (2.8) are similar to
those of Postma (1955), who considered lossless layers.

The method is valid for any complex modulus describing the
anelastic properties of the medium. Here, we assume constant
quality factors over the frequency range of interest (until about
100 Hz). Such behavior is modeled by a continuous distribution
of relaxation mechanisms based on the standard linear solid
(Liu et al., 1976, Ben-Menahem and Singh, 1981, p. 909;
Carcione, 2007). The dimensionless dilatational and shear com-
plex moduli for a specific frequency can be expressed as

MnðoÞ ¼ 1þ
2

pQ0n
ln

1þ iot2

1þ iot1

� ��1

, n¼ 1;2, ð2:10Þ
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where o is the angular frequency, i¼
ffiffiffiffiffiffiffi
�1
p

, t1 and t2 are time
constants, with t2ot1, and Q0n defines the value of the quality factor
which remains nearly constant over the selected frequency range.

An alternative model describing the relaxation mechanism is a
single Zener element. The complex moduli associated with bulk
and shear deformations of a Zener element can be expressed as

Mn ¼
1þ iotðnÞE
1þ iotðnÞs

, n¼ 1;2, ð2:11Þ

where tðnÞs and tðnÞE are relaxation times. They are given by

tðnÞE ¼
t0

Q0n
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

0nþ1
q

þ1Þ, tðnÞs ¼ t
ðnÞ
E �

2t0

Q0n
, ð2:12Þ

where t0 is a relaxation time such that 1=t0 is the center
frequency of the relaxation peak and Q0n are the minimum
dilatational and shear quality factors.
3. Determination of the stiffnesses

In order to determine the coefficients in Eqs. (B.9)–(B.14) we
proceed as follows (see also Picotti et al., 2010; Santos et al., 2011;
Carcione et al., 2011.) We solve Eq. (B.8) in the 2D case on a
reference square O¼ ð0,LÞ2 with boundary G in the ðx1,x3Þ-plane.
Set G¼GL

[ GB
[ GR

[ GT , where

GL
¼ fðx1,x3ÞAG : x1 ¼ 0g, GR

¼ fðx1,x3ÞAG : x1 ¼ Lg,

GB
¼ fðx1,x3ÞAG : x3 ¼ 0g, GT

¼ fðx1,x3ÞAG : x3 ¼ Lg:

Denote by n the unit outer normal on G and let w be a unit tangent
on G so that fn,wg is an orthonormal system on G. The sample is
subjected to time-harmonic compressions DPeiot , where P

denotes pressure, and time-harmonic tangential forces DGeiot ,
where G is the shear stress (see Fig. 1). Moreover, denote by u and
s the displacement and stress vectors.
P

G P

P
G

G

G
G

G

P

Fig. 1. Oscillatory tests performed to obtain p33 (a), p11 (b), p55 (c), p13 (d) and p66 (e).

The orientation of the layers and the directions of the applied stresses are indicated.

The thick black lines at the edges indicate rigid boundary conditions, as described by

equations (3.3), (3.7), (3.9) and (3.13).
It follows how to obtain the stiffness components.
(i) p33: We solve Eq. (B.8) in O with the following boundary

conditions:

sðuÞn � n¼�DP, ðx1,x3ÞAGT , ð3:1Þ

sðuÞn � w¼ 0, ðx1,x3ÞAG, ð3:2Þ

u � n¼ 0, ðx1,x3ÞAGL
[GR

[ GB: ð3:3Þ

In this experiment E11ðuÞ ¼ E22ðuÞ ¼ 0 and from Eq. (B.11) we see
that this experiment determines p33 as follows.

Denoting by V the original volume of the sample and by DVðoÞ
its (complex) oscillatory volume change, we note that

DVðoÞ
V
¼�

DP

p33ðoÞ
, ð3:4Þ

valid in the quasi-static case. After solving Eq. (B.8) with the
boundary conditions (3.1)–(3.3), the vertical displacements
u3ðx,L,oÞ on GT allow us to obtain an average vertical displace-
ment uT

3ðoÞ at the boundary GT . Then, for each frequency o, the
volume change produced by the compressibility test can be
approximated by DVðoÞ � LuT

3ðoÞ, which enable us to compute
p33ðoÞ by using the relation (3.4).

(ii) p11: The boundary conditions are

sðuÞn � n¼�DP, ðx1,x3ÞAGR, ð3:5Þ

sðuÞn � w¼ 0, ðx1,x3ÞAG, ð3:6Þ

u � n¼ 0, ðx1,x3ÞAGL
[GB

[ GT : ð3:7Þ

In this experiment, E33ðuÞ ¼ E22ðuÞ ¼ 0 and from Eq. (B.9) we have
that this experiment determines p11 in the same way indicated
for p33.

(iii) p55: The boundary conditions are

sðuÞw¼ g, ðx1,x3ÞAGT
[ GL

[ GR, ð3:8Þ

u¼ 0, ðx1,x3ÞAGB, ð3:9Þ

where

g ¼

ð0,�DGÞ, ðx1,x3ÞAGL,

ð0,DGÞ, ðx1,x3ÞAGR,

ðDG,0Þ, ðx1,x3ÞAGT :

8><
>:

The change in shape of the rock sample allow us to compute
p55ðoÞ by using the relation

tan ½yðoÞ� ¼ DG

p55ðoÞ
, ð3:10Þ

where yðoÞ is the angle between the original positions of the
lateral boundaries and the location after applying the shear
stresses (Kolsky, 1963).

The horizontal displacements u1ðx1,L,oÞ at the top boundary
GT are used to obtain, for each frequency, an average horizontal
displacement uT

1ðoÞ at the boundary GT . This average value
allows us to approximate the change in shape suffered by the
sample, given by tan ½yðoÞ� � uT

1ðoÞ=L, which from Eq. (3.10) yields
p55ðoÞ.

(iv) p66: Since this stiffness is associated with shear waves
traveling in the ðx1,x2Þ-plane, we take the layered sample, rotate it
901 and apply the shear test as indicated for p55.

(v) p13: The boundary conditions

sðuÞn � n¼�DP, ðx1,x3ÞAGR
[ GT , ð3:11Þ

sðuÞn � w¼ 0, ðx1,x3ÞAG, ð3:12Þ

u � n¼ 0, ðx1,x3ÞAGL
[GB: ð3:13Þ
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Thus, in this experiment E22 ¼ 0, and from Eqs. (B.9) and (B.11)
we get

t11 ¼ p11E11þp13E33,

t33 ¼ p13E11þp33E33, ð3:14Þ

where E11 and E33 are the strain components at the right lateral
side and top side of the sample, respectively. Then from Eq. (3.14)
and using t11 ¼ t33 ¼�DP [cf. Eq. (3.11)], we obtain p13ðoÞ as

p13ðoÞ ¼
p11E11�p33E33

E11�E33
: ð3:15Þ

To estimate the effective complex stiffnesses, we use a FE
procedure to approximate the solution of the equations of motion
(B.8) under the boundary conditions described above. We use
Table 1
Material properties.

Medium r (kg/m3) cP (m/s) cS (m/s) Q01 Q02 E g d

Shale 2250 2074 869 60 20 0.110 0.165 0.090

Limestone 2700 5443 3043 80 40 0.056 0.067 �0.003

Fig. 2. qP-wave phase and energy velocities (a) and quality factor (b) as a function of fr

(solid line). The propagation angle is y¼ 601. We observe an excellent agreement unti

(2010) using isotropic layers, while (c) and (d) show the same curves obtained using a s

properties of the medium.
bilinear functions to approximate the solid displacement vector.
The variational formulation for the boundary-value problems
defined in this section, as well as the FE method is analogous to
that stated in Santos et al. (2011). The results on the existence and
uniqueness of the solution of the continuous and discrete pro-
blems presented in that reference can be extended to the TIV case
here analyzed. Also, a generalization of the argument given in
Santos et al. (2011) would yield a priori error estimates of order
h3/2 in the L2-norm and h1/2 in the H1-energy norm, h being the
size of the computational mesh.
4. Example

The example considers the shale-limestone periodic layered
medium described in Carcione (1992), where each layer is a TIV
medium. The properties are given in Table 1, where the aniso-
tropic coefficients are taken from Thomsen (1986) and Wang
(2002). Let the time constants in Eq. (2.10) be t1 ¼ 0:16 s and
t2 ¼ 0:3 ms, so that the quality factor of each single isotropic layer
is nearly constant over the exploration seismic band (from about
10 Hz to 100 Hz). In the long-wavelength limit, the medium is
equency obtained with the oscillatory tests (symbols) and Backus–Carcione theory

l about 300 Hz. The dashed curves represent the results obtained by Picotti et al.

ingle Zener element with a relaxation frequency of 30 Hz to describe the anelastic
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described by the Backus averaging relations (2.8), the phase
velocities (A.2), the energy velocities (A.3) and (A.7), and the
quality factors (A.10). In order to validate the Backus theory we
perform the numerical compressibility and shear oscillatory tests
described in the previous section. The stratified medium is a
50 cm side sample composed by 100 alternating plane layers of
shale and limestone of equal thickness. The spatial period of the
layering is then 1 cm. The simulations use a uniform mesh of
100�100 elements.

Fig. 2 shows the qP-wave phase and energy velocities (a) and
quality factor (b) as a function of frequency obtained with the
oscillatory tests (symbols), compared to Backus theory, general-
ized to the lossy case by Carcione (1992) (solid line). The dashed
curves represent the results obtained by Picotti et al. (2010) using
isotropic layers, while (c) and (d) show the same curves obtained
using a single Zener element [cf. Eq. (2.11)] with a relaxation
frequency of 30 Hz to describe the anelastic properties of the
medium. These figures show how the model for the relaxation
mechanism influences the velocity and attenuation plots versus
frequency.
Fig. 3. S-wave phase and energy velocities (a) and quality factor (b) as a function

of frequency obtained with the oscillatory tests (symbols) and Backus–Carcione

theory (solid line). The propagation angle is y¼ 601. We observe an excellent

agreement until about 300 Hz. The dashed curves represent the results obtained

by Picotti et al. (2010) using isotropic layers.
Fig. 3 displays the same results obtained for the shear waves.
The propagation angle corresponding to the phase velocity is
y¼ 601 (dashed line). The corresponding energy angles are
c¼ 83:81 for the qP wave, c¼ 26:31 for the qSV wave and
Fig. 4. Polar representation of the phase velocity (a), energy velocity (b) and

quality factor (c) corresponding to a frequency of 30 Hz (the vertical dashed lines

indicated in Figs. 2 and 3). The symbols represent the numerical simulations. The

dashed line in (a) corresponds to the phase angle y¼ 601. The solid, dashed and

dotted lines in (b) and (c) correspond to the energy angles c¼ 83:81 (qP wave),

c¼ 26:31 (qSV wave) and c¼ 81:81 (SH wave). The dashed curves represent the

results obtained by Picotti et al. (2010) using isotropic layers.
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c¼ 81:81 for the SH wave. It is seen that anisotropy implies quite
different phase and energy velocity curves. We observe an
excellent agreement between the theoretical and numerical
results until about 300 Hz.

Fig. 4 shows polar representations of the phase velocity (a),
energy velocity (b) and quality factor (c) at 30 Hz. The polar curve
for the quality factor is given by ðsin c, cos cÞQ . Both the phase
and energy angles are indicated. As before, the agreement is
excellent. This plot shows that attenuation anisotropy due to fine-
layering is more pronounced for shear waves than for compres-
sional waves. Moreover, the intrinsic layer anisotropy affects
more the quality factors than the velocities, in particular for qSV
and qP waves (compare to the isotropic case). In this case, the qP-,
qSV- and SH-wave wavelengths along the symmetry axis ðy¼ 0Þ
are 92 and 42 m, respectively. Therefore the dominant wave-
length (at 30 Hz) to spatial period ratio is 9200 and 4200,
respectively, i.e., well within the long-wavelength limit (which,
in theory, is between 5 and 8 for P waves approximately, and
depending on the single constituents).
5. Conclusions

The general Backus–Carcione theory describes the stiffnesses
and the anisotropic attenuation features of finely layered media at
long wavelengths, when each layer is a transversely isotropic
viscoelastic medium. The effective medium has the same material
symmetry. These systems can be found in many geological
environments, as for instance fluvial, lacustrine, and deep marine
sediments, where shales and carbonates are generally found to be
intrinsically anisotropic, and in man-made composites, designed
for specific purposes.

To test the theory, we have adapted a numerical method based
on oscillatory experiments introduced by the same authors in
previous works, i.e., we obtain the complex and frequency-
dependent stiffnesses which allow us to compute the wave
velocities and quality factors as a function of frequency and
propagation angle. The methodology is based on a finite-element
solution of the equations of motion in the space–frequency
domain to simulate harmonic compressibility and shear tests.
We consider a periodic sequence of shale and limestone aniso-
tropic layers. The agreement between the numerical and theore-
tical results is excellent. The method validates the anelastic
theory for Q-anisotropy and, in addition, the expressions of the
wave velocities and Q factors for homogeneous viscoelastic body
waves in anisotropic media. Moreover, the results of the experi-
ments show that layering anisotropy is more pronounced for
shear waves than for compressional waves, while intrinsic layer
anisotropy affects more the quality factors than the velocities, in
particular for qSV and qP waves.

Since attenuation anisotropy is more pronounced than velocity
anisotropy, Q-anisotropy estimation may provide more reliable
information about the orientation of layering and fractures.
Shear-wave experiments can provide useful information, since it
is seen that attenuation anisotropy due to fine-layering and
intrinsic anisotropy is more pronounced for shear waves than
for compressional waves. In poroelasticity, attenuation anisotropy
provides additional information for hydrocarbon reservoirs char-
acterization, because it may be used as an indicator of perme-
ability and fluid saturation.

The theory and numerical solver proposed in this work can be
applied to more complex geological systems and man-made
composite (lower symmetries, stochastic heterogeneities, frac-
tures, cracks, etc.).
Appendix A. Propagation properties

We consider homogeneous viscoelastic waves for which the
propagation and attenuation directions coincide (e.g., Carcione,
2007). The complex velocities are the key quantity to obtain the
wave velocities and quality factor of the equivalent anisotropic
medium. They are given by

vqP ¼ ð2rÞ�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p11l21þp33l23þp55þA

q
,

vqSV ¼ ð2rÞ�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p11l21þp33l23þp55�A

q
,

vSH ¼ r�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p66l21þp55l23

q

A¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðp11�p55Þl

2
1þðp55�p33Þl

2
3�

2þ4½ðp13þp55Þl1l3�
2

q
: ðA:1Þ

(Auld, 1990; Carcione, 2007, Eq. (1.79)), where r ¼/rS, l1 ¼ sin y
and l3 ¼ cos y are the directions cosines, y is the propagation
angle between the wavenumber vector and the symmetry axis,
and the three velocities correspond to the qP, qSV and SH waves,
respectively. The phase velocity is given by

vp ¼ Re
1

v

� �� ��1

, ðA:2Þ

where v represents either vqP, vqSV or vSH. The energy velocity
vector of the qP and qSV waves is given by

ve

vp
¼ ðl1þ l3 cot cÞ�1be1þðl1 tan cþ l3Þ

�1be3 ðA:3Þ

(Carcione, 2007; Eq. (6.158)), where

tanc¼
ReðbnXþxnWÞ

ReðbnWþxnZÞ
ðA:4Þ

defines the angle between the energy velocity vector and the
z-axis, and

b¼ pv
ffiffiffiffiffiffiffiffiffiffiffiffi
A7B

p
,

x¼ 7pv
ffiffiffiffiffiffiffiffiffiffiffiffi
A8B

p
,

B¼ p11l21�p33l23þp55 cos 2y, ðA:5Þ

where the upper and lower signs correspond to the qP and qSV
waves, respectively. Moreover,

W ¼ p55ðxl1þbl3Þ,

X ¼ bp11l1þxp13l3,

Z ¼ bp13l1þxp33l3 ðA:6Þ

(Carcione, 2007; Eqs. (6.121)–(6.123)), where ‘‘pv’’ denotes the
principal value, which has to be chosen according to established
criteria (e.g., Sidler et al., 2008).

On the other hand, the energy velocity of the SH wave is

ve ¼
vp

rReðvÞ
l1Re

p66

v

� �be1þ l3Re
p55

v

� �be3

� �
ðA:7Þ

and

tanc¼
Reðp66=vÞ

Reðp55=vÞ
tan y ðA:8Þ
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(Carcione, 2007; Eq. (4.115)). In general, the phase velocity is
related to the energy velocity by

vp ¼ ve cos ðc�yÞ, ðA:9Þ

where ve ¼ 9ve9. The quality factor is given by

Q ¼
Reðv2Þ

Imðv2Þ
: ðA:10Þ

The values of the qP quality factor along the layering plane and
symmetry axis are

QPðy¼ p=2Þ ¼
Reðp11Þ

Imðp11Þ
and QPðy¼ 0Þ ¼

Reðp33Þ

Imðp33Þ
, ðA:11Þ

respectively, while those of the shear waves are

QSV ðy¼ p=2Þ ¼QSV ðy¼ 0Þ ¼ QSHðy¼ 0Þ ¼
Reðp55Þ

Imðp55Þ
ðA:12Þ

and

QSHðy¼ p=2Þ ¼
Reðp66Þ

Imðp66Þ
: ðA:13Þ

Appendix B. The stress–strain relation

Let sij and eijðuÞ denote the time Fourier transform of the stress
and strain tensors of the viscoelastic material, where u is the
displacement vector. For a medium composed of a sequence of
TIV layers, OðnÞ,n¼ 1, . . . ,N, the frequency-domain stress–strain
relations on each On are (Carcione, 1992, 2007)

s11ðuÞ ¼ pðnÞ11 e11ðuÞþpðnÞ12 e22ðuÞþpðnÞ13 e33ðuÞ, ðB:1Þ

s22ðuÞ ¼ pðnÞ12 e11ðuÞþpðnÞ11 e22ðuÞþpðnÞ13 e33ðuÞ, ðB:2Þ

s33ðuÞ ¼ pðnÞ13 e11ðuÞþpðnÞ13 e22ðuÞþpðnÞ33 e33ðuÞ, ðB:3Þ

s23ðuÞ ¼ 2pðnÞ55 e23ðuÞ, ðB:4Þ

s13ðuÞ ¼ 2pðnÞ55 e13ðuÞ, ðB:5Þ

s12ðuÞ ¼ 2pðnÞ66 e12ðuÞ, ðB:6Þ

where pðnÞij ðoÞ are the complex coefficients for the n-layer.
The conversion between the Voigt stiffnesses and the stiff-

nesses of the 4th-rank tensors is

pIJ ¼ pijkl,

I¼ idijþð1�dijÞð9�i�jÞ,

J¼ kdklþð1�dklÞð9�k�lÞ, ðB:7Þ

where dij denotes the Kronecker delta. The equation of motion is

o2ruðx,oÞþr � sðuðx,oÞÞ ¼ 0, ðB:8Þ

where s is given by (B.1)–(B.6).
Let us consider x1 and x3 as the horizontal and vertical

coordinates, respectively. As shown in Schoenberg and Muir
(1989) the medium behaves as a homogeneous TIV medium at
long wavelengths. Denoting by tij the stress tensor of the
equivalent TIV medium, the corresponding stress–strain relations,
stated in the space–frequency domain, are (Carcione, 1992, 2007)

t11ðuÞ ¼ p11E11ðuÞþp12E22ðuÞþp13E33ðuÞ, ðB:9Þ

t22ðuÞ ¼ p12E11ðuÞþp11E22ðuÞþp13E33ðuÞ, ðB:10Þ

t33ðuÞ ¼ p13E11ðuÞþp13E22ðuÞþp33E33ðuÞ, ðB:11Þ
t23ðuÞ ¼ 2p55E23ðuÞ, ðB:12Þ

t13ðuÞ ¼ 2p55E13ðuÞ, ðB:13Þ

t12ðuÞ ¼ 2p66E12ðuÞ, ðB:14Þ

where Eij is the effective strain tensor and pIJ are the complex and
frequency-dependent Voigt stiffnesses given by Eq. (2.8), to be
determined with the harmonic experiments.
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