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Peripheral inflammation triggers exacerbation in the central brain’s ongoing damage in several neurodegenerative diseases.
Systemic inflammatory stimulus induce a general response known as sickness behaviour, indicating that a peripheral stimulus
can induce the synthesis of cytokines in the brain. In Parkinson’s disease (PD), inflammation was mainly associated with microglia
activation that can underlie the neurodegeneration of neurons in the substantia nigra (SN). Peripheral inflammation can transform
the “primed” microglia into an “active” state, which can trigger stronger responses dealing with neurodegenerative processes.
Numerous evidences show that systemic inflammatory processes exacerbate ongoing neurodegeneration in PD patient and animal
models. Anti-inflammatory treatment in PD patients exerts a neuroprotective effect. In the present paper, we analyse the effect of
peripheral infections in the etiology and progression in PD patients and animal models, suggesting that these peripheral immune
challenges can exacerbate the symptoms in the disease.

1. Neurodegenerative Diseases and
Systemic Inflammation

Inflammation is a defensive reaction against harmful stimuli
that can induce a defensive response in the body. In the
central nervous system (CNS), the main innate immune
defensive role is played by the immunocompetent resident
cells, the microglia [1]. Neurodegenerative diseases present
microglia activation as the main hallmark, which can
change its morphology from quiescent and ramified (resting)
towards a round ameboidal shape (activated) [2]. Resting
microglia displays a low-level expression of membrane
receptors, such as CD45, CD14, and CD11b [1]. Activated
microglia exhibits upregulation of cell surface receptors and
proinflammatory and anti-inflammatory cytokines, such as
major histocompatibility complex (MHC) class II, CD40,
CD80, CD86, CD11b (reviewed by [3]) demonstrating
changes in their activity [4, 5] (Figure 1). Microglia can
be activated by proinflammatory stimuli, but microglia
activation does not always exert a proinflammatory reaction.
Microglial activation in some neurodegenerative diseases was
not accompanied by proinflammatory cytokine secretions

[6, 7]. Depino et al., 2003 demonstrated that microglial cells
induced an increase in IL-1β mRNA in the substantia nigra
(SN) but no translation of this cytokine was observed in
an animal model of PD. These observations prompted the
idea of “primed microglia” to describe the atypical microglia
state, which precedes a further neurotoxic microglial acti-
vation as a consequence of a secondary proinflammatory
stimulus [8, 9]. Microglia activation increases neurotoxicity
and, therefore, contributes to neurodegeneration through
the release of free radicals such as superoxide radicals,
nitric Oxide (NO), inducible nitric oxide synthase (iNOS)
[10–13], and proinflammatory, immunomodulatory and
anti-inflammatory cytokines, such as IL-1β, TNF-α, IL-
6, IL-8, IL-12, IL-15, and IL-10 [4, 14, 15]. Central or
peripheral inflammation can transform the “primed” state
of microglia into an “active” state, which can trigger or
induce stronger responses dealing with neurodegenerative
processes. Therefore, inflammation was mainly associated
with microglia activation that can underlie the neurodegen-
eration of dopaminergic neurons of the SN.

The CNS has been considered as immunologically privi-
leged and protected by the blood brain barrier (BBB) which
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Figure 1: Schematic diagram showing the relationship between peripheral inflammation and neuronal loss in PD. Neurodegenerative
diseases present microglial activation as the main hallmark, which can change its morphology from resting (ramified) towards an activated
round shape (ameboidal). The intermediate stage, “primed microglia”, describes the atypical microglial stage, which precedes a further
neurotoxic microglial activation as a consequence of a secondary pro-inflammatory stimulus. This stimulus can come from the periphery,
either through neural or humoral pathways. Activated microglia release pro-inflammatory cytokines which can act on neuronal integrity.

prevents entry of pathogens and immune cells into the
parenchyma. However, this statement has changed in the
last few years, because the communication between central
CNS and periphery is more fluid than previously considered.
In many neurological disorders, the immune system plays
an important role in the progression of these diseases.
Indeed, BBB breakdown and inflammation appear to play a
major role in the pathology of numerous neurodegenerative
diseases compromising the vascular unit and inducing
leukocyte migration within the brain parenchyma (reviewed
in [16]).

Systemic inflammatory stimuli circulate into the blood
and can get into the brain inducing the synthesis of cytokines
that, in turn, can induce a general inflammatory response
including liver acute phase response and the components
to induce sickness behaviour [17–21]. Proinflammatory
stimulus would trigger the secretion of proinflammatory
molecules in the diseased brain [6] (Figure 1).

Peripheral inflammation sparks off exacerbation in the
central brain’s ongoing damage in several neurodegenerative
diseases, such as Alzheimer’s disease (AD), multiple sclerosis,
Parkinson’s disease, prion disease, stroke, and Wallerian

degeneration [8, 9, 22–26]. Indeed, Perry’s group has
studied the effect of peripheral inflammation on behavioural
response, demonstrating a worsening of degenerative pro-
cesses related to delirium in AD [19, 27]. In particular,
PD patients and animal models with ongoing inflammatory
neurodegeneration processes evidence exacerbation of the
neurodegenerative process after a peripheral inflamma-
tory stimulus [28–33]. Aging was also proposed to prime
microglia cells [14]. MHC-II was increased in aged brains
and i.p administration of LPS resulted in an increased
inflammatory response in elderly patients [15, 34–36].

Previously, we described that the communication
between the brain and the periphery as a one way road.
However, the central-peripheral relationship is more com-
plex, and the traffic becomes a two way road. Acute brain
injury induces early hepatic expression of chemokines, which
in turn produce movement of leukocytes into the blood and
subsequently brain and liver inflammation [9, 37–40]. The
production of cytokines by the liver as a systemic response to
CNS injury is a component of CNS response. The injection
of IL-1 into the brain is associated with hepatic expression of
CXCL1, which is responsible for neutrophil recruitment to
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the brain [40]. Hepatic TNF-α is also a component of the
systemic response to IL-1β injured brain [39]. TNF-α was
also found associated with IL-1β induced sickness behaviour,
in addition, the inhibition of peripheral TNF-α can block
some components of sickness behaviour induced by centrally
injected IL-1β [41]. Peripheral TNF-α appears to be involved
in microglial activation and the subsequent recruitment of
monocytes into the brain in a model of peripheral liver
inflammation resulting from bile duct ligation [42]. There-
fore, the hepatic production of cytokines and chemokines
may also be considered as a target to neutralize acute and
chronic brain injury (Figure 1).

In summary, systemic inflammatory events could influ-
ence the aetiology and progression of many ongoing degen-
erative diseases. Despite previous evidences, the contribution
of peripheral inflammation to the progression of neurode-
generative diseases is not fully understood. Analysis of the
inflammatory components of the systemic response that
influence ongoing damage in the brain should be carefully
studied and considered as potential therapeutic targets.

2. Routes of Systemic Inflammation

The circulating cytokines and other inflammatory molecules
that are produced by systemically induced insults can affect
the brain through several routes, mainly humoral or neural
pathways. The humoral route between the nervous and the
immune systems has been related to sickness behaviour,
characterized by fever, anorexia, and alteration in the
behaviour. The humoral mechanisms are mostly related to
the presence of the blood brain barrier (BBB). The BBB
regulates the passage of substances from the blood to the
brain (reviewed in [43]). This barrier can be seriously
affected in brain injury. There are several ways of crossing
the barrier: (1) the substances can enter through the areas
in the CNS that lack BBB, like the circumventricular organs,
(2) some molecules may cross the BBB using specific
transporters (e.g., cytokines, amines), (3) BBB permeability
may be increased as a consequence of the stimuli per se, (4)
endothelial cells can be activated by the peripheral stimuli,
inducing the synthesis of molecules within the CNS [44–
46], and (5) the choroidplexus transiently alters its gene
expression profile as a response to peripheral LPS stimuli
[47]. Systemic injection of LPS can cause BBB damage and
allow the entrance of granulocytes from the periphery to
the brain [48]. Indeed, BBB breakdown was described in PD
patients and animal models [49–53]. The disruption of the
BBB allows the extravasation of proinflammatory cytokines
and immune cells which can activate microglia in the SN and,
therefore, induce neurodegeneration.

The second route of neuroimmune communication,
known as the neural pathway, is related to the transmission
of peripheral inflammatory signals through the autonomic
nervous system. The most important afferent responsible
for the neural transmission of peripheral signals is the
vagus nerve. Neural pathways are stimulated by peripheral
signals that rapidly increase the levels of brain cytokines
[2, 54, 55]. Subdiaphragmatic lesion of the vagus nerve
and vagotomy attenuate brain cytokine production and

behavioural effects after a systemic challenge [56–60]. IL-
1β receptors are present on vagal ganglia close to liver
and lymphatic nodes [61]. Inflammatory processes in the
periphery are conducted to the brain via the vagal afferents
and, as a response, the vagal efferents act on the systemic
inflammatory events through acetylcholinesterase secretions
[25, 54, 62]. In addition, Kamer et al., 2008, suggested that
the neural pathway is also involved in the transmission of
inflammatory signals from the oral cavity in periodontal
diseases, and this mechanism would be related to worsening
of AD symptoms [62].

A third potential pathway was recently proposed using
a model of inflammatory liver injury [42]. These authors
suggested the existence of cellular messengers, activated
monocytes, which were recruited into the brain. These
activated monocytes secreted messenger molecules, such as
TNF-α and MCP-1 (which has been classically defined as
humoral) within the brain during systemic inflammatory
diseases [42, 63].

3. Parkinson’s Disease and Systemic
Inflammation: Evidence from the Clinic

Peripheral immunological challenges and chronic inflam-
matory diseases influence the pathogenesis and progression
of PD. The communication between the immune and the
nervous system is very fluid, cytokines being the main
mediators of inflammation in both brain and periphery.
There is evidence that suggests a link between peripheral
inflammation and PD. The influenza pandemic during
the second world war was associated with an increase in
PD in the population [64]. In addition, people infected
with Japanese encephalitis virus and H5N1 influenza virus
presented a higher risk for developing PD [65, 66].

Activated microglial cells and proinflammatory cytok-
ines, including IL-1β, TNF-α, and IL-6, have been described
in SN of postmortem tissue [67, 68], as reviewed in [69].
In vivo studies have also demonstrated that the serum and
cerebrospinal fluid of PD patients have higher levels of IL-1β,
TNF-α, and IL-2 and also CD4+ and CD8+ T lymphocytes,
indicating peripheral activation of lymphocytes [70–74].
The relationship between inflammation and PD has been
demonstrated by several authors [3, 69, 75–79]. Subject
carriers of IL-1β-511 homozygous variant genotype show a
2-fold increased risk of PD, which induced an increment of
susceptibility of dopaminergic neurons to toxicity [80]. On
the other hand, increased peripheral cytokine production
influences PD progression. PD patients showed elevated
serum levels of TNF-α and TNF-α receptor 1 compared to
control subjects, which can contribute to PD pathogenesis
[72, 81, 82]. Also, elevated plasma concentration of IL-6
correlates with increased risk of PD [52].

Although late onset sporadic PD was recently associated
with genetic variation in the HLA DR region, stressing
the importance of the immune component in this disease,
[83] PD can also be triggered by diseases that induce sys-
temic infections. Indeed, PD patients often suffer infectious
diseases, and the main causes of death are pneumonia
and respiratory infections [30–33]. It was described that
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gastrointestinal infections could contribute to a worsening
of PD [84, 85]. However, peripheral immune response
in PD patients has shown contradictory results, because
some authors have found unaffected levels of cytokines
and immune parameters in PD patients [73, 86]. Several
studies support a role for the adaptative immune system
in PD etiology and progression. The presence of cytotoxic
T lymphocyte (CD4+ and CD8+) has been described to
infiltrate the SN of patients and animal PD models [87–
89]. The influx of these peripheral cells into the brain
parenchyma could indicate a BBB dysfunction in PD patients
[49, 69]. Indeed, the adaptative immune system might
modulate microglia activation in PD pathogenesis [90].

Anti-inflammatory therapies were used in PD patients to
decrease the effect of inflammatory reactions. The NSAIDs
had an anti-inflammatory and neuroprotective effect in
PD. Chronic users of nonsteroidal anti-inflammatory drugs
(NSAIDs), such as ibuprofen, a COX-1 and COX-2 inhibitor,
exhibited diminished PD incidence [91, 92]. Minocycline, a
derivate of tetracycline that crosses the BBB, also improves
neuronal survival in PD. This molecule was described as
an inhibitor of microglial activation, proliferation, and
release of proinflammatory cytokines [93–95]. It should
be taken into consideration that inflammation has a dual
action in neurodegeneration, also inducing molecules useful
in promoting repair and regeneration of damaged tissue.
Therefore, considering the beneficial effects of some of the
inflammatory components, restriction of the inflammatory
response is not always the best choice. Better alternative ther-
apies should be considered in order to really make progress
in this field (reviewed in [96]). These authors propose a
multidisciplinary research aimed at protein clearance and
immunoprotection induced by T cell regulators.

The studies related to the inflammatory processes in PD
should be carefully evaluated in order to develop more suit-
able tools that will allow us to diminish neurodegeneration
and improve the quality of life in PD patients.

4. Parkinson’s Disease and Systemic
Inflammation: Experimental Evidences

The link between peripheral infection and PD neurodegen-
eration in both patient and animal models was demonstrated
in several studies. LPS causes a systemic inflammatory
reaction known as sickness behaviour characterized by fever,
anorexia, weight loss, and reduction of activity [97]. A
similar response can be obtained with i.p injection of proin-
flammatory cytokines, such as IL-1β and IL-6 (reviewed in
[58]). The resident microglia in the brain responds to these
stimuli and generates sickness behaviour. Taking this into
consideration, ongoing inflammatory degenerative processes
can be accelerated by systemic inflammation. Peripheral
inflammatory states, such as infection and injury, can
exacerbate neuronal death stimulating “primed microglial
cells” towards a more aggressive state.

PD animal models support the previous hypothesis.
Pregnant rats exposed to intraperitoneal (i.p.) injection
of LPS resulted in a decreased number of dopaminer-
gic neurons in the pups when compared to nonexposed

controls [98]. In concordance with Carvey’s results, rat
foetuses exposed to LPS are more susceptible to 6-OHDA
in adulthood [99, 100]. In adult animals, there is also
data that strongly suggests the role of peripheral inflam-
mation in the ongoing PD model. Animals with central
dopaminergic hypoactivity are associated with an increased
peripheral inflammatory response after bacterial LPS injec-
tion [101]. Gastrointestinal dysfunctions are related to
peripheral inflammation; indeed, ulcerative colitis correlates
with increased levels of TNF-α, IL-1β, IL-6, and acute
phase proteins in rat serum [102]. Peripheral inflammation
induced by ulcerative colitis worsened the effects induced
by intranigral LPS, such as loss of dopaminergic neurons,
microglial activation, and alteration in BBB permeability
[102]. All previous data indicate that the relationship
between the peripheral immune system and the central
dopaminergic system is very close.

Proinflammatory cytokines, including IL-1β and TNF,
have been described as involved in promoting neurodegener-
ation. These cytokines induced the synthesis of chemokines,
producing in turn the recruitment of neutrophils and
monocytes from the blood stream. IL-1β alone might induce
the cellular recruitment to the brain parenchyma [103–106].
The effects of IL-1β in the progression of neurodegenerative
disease have been studied by several groups [9, 23, 28, 29, 37–
39, 104, 105, 107]. Systemic challenge with LPS induces
CNS IL-1β synthesis and sickness behaviour in animals
with ongoing central inflammation [19]. However, systemic
inflammation actively inhibits recruitment of leukocytes
in the CNS, when LPS is injected 2 hours before the
intracerebroventricular injection of IL-1β [108]. Systemic
inflammation generated by IL-1β induces BBB disruption
and increased brain damage in a model of stroke [9, 23].
In addition, chronic systemic expression of IL-1β was able
to exacerbate neuronal demise and microglial activation in
the SN of both 6OHDA and an inflammatory PD model
[28, 29], increasing the clinical impact of these findings [29].
Exacerbation of neurodegeneration in 6OHDA model was
accompanied by an increase in activated microglia in the
animals that received IL-1β as peripheral stimulus [28]. The
same group has demonstrated that a peripheral systemic
stimulus causes exacerbation of the behavioral symptoms
and neuronal loss in an inflammatory PD model based on
the chronic IL-1β expression in the striatum. These events
were accompanied by massive activation of microglia with
the concomitant expression of MHC-II [29]. Therefore,
the increment in the neurodegenerative process can be
correlated with an increase in MHC-II expression induced
by a peripheral stimulus [29].

Peripheral induction of TNF-α activates brain microglia
that, in turn, produces proinflammatory factors and, as a
consequence, induces dopaminergic neuronal loss in the SN
[109]. Indeed, dominant negative TNF-α inhibitor displayed
neuroprotective properties in both 6OHDA and chronic LPS
rat model [110].

However, on the contrary, some inflammatory compo-
nents of the adaptative immune response were described
as immunomodulators of the neurodegenerative pro-
cess. CD4+ CD25+ regulatory T cells (Tregs) suppress
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neuroinflammation, attenuate microglia response, and
induce nigrostriatal protection in a MPTP model [111,
112]. These cells exert their activity by upregulation of
brain-derived neurotrophic factor (BDNF), glial-derived
neurotrophic factor (GDNF), IL-10 and transforming
growth factor (TGF-β), and downregulating proinflamma-
tory cytokines and ROS production (reviewed in [111, 113]).
These data suggest that Tregs exert their action modulating
the immune response, possibly via the interaction between
the peripheral and the CNS immune system (Reviewed in
[89, 96]). Immunotherapy should be directed towards a Th2
Treg response in order to downregulate the Th1 response
[112]. The interaction of Tregs with cells or molecules may
modulate the adaptative immune response. Therefore, alter-
ations of the immune system as a consequence of peripheral
inflammation could change the immunological properties of
Tregs, inducing a phenotype not suitable for the beneficial
Treg activation. Further studies should be undertaken before
Tregs immunization treatment is to be considered for PD
patients with ongoing peripheral infections.

The use of anti-inflammatory drugs has been extensively
studied in PD animal models (reviewed in [78]). The role
of COX has been studied in an MPTP model demonstrating
that indomethacin protects dopaminergic neurons in SN
[114]. Treatment with rofecoxib and celecoxib also induces
a protective effect in the SN neurons [115–117]. In addition,
the use of dexamethasone was demonstrated to reduce the
neuronal loss in a 6-OHDA plus LPS exacerbation and, in
an inflammatory model of PD, exacerbated with IL-1β as a
peripheral inflammatory stimulus [28, 29].

The interaction between brain inflammation and sys-
temic inflammation may be responsible for the progression
of neurodegenerative disease. Studying the relationship
between CNS and periphery could help find targets for
therapeutic treatments.

5. Conclusion

Central or systemic inflammatory insults should be con-
sidered as risk factors in the PD aetiology and pro-
gression. The clear knowledge of mechanisms implicated
in immune/nervous communication and the mechanisms
involved in microglia activation and their switch to an
aggressive phenotype could help improve the therapeutic
tools leading to better patient quality of life, reducing the
exacerbation of PD symptoms, and delaying the progression
of the disease.

In addition, acute brain injury induces early hepatic
expression of chemokines, which in turn produce recruit-
ment of leukocytes into the blood and subsequently brain
and liver inflammation via a chemokines and cytokines
web.
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