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a b s t r a c t

Recent research aiming at the distinction between deterministic or stochastic behavior
in observational time series has looked into the properties of the ‘‘ordinal patterns’’ [C.
Bandt, B. Pompe, Phys. Rev. Lett. 88 (2002) 174102]. In particular, new insight has been
obtained considering the emergence of the so-called ‘‘forbidden ordinal patterns’’ [J.M.
Amigó, S. Zambrano, M.A. F Sanjuán, Europhys. Lett. 79 (2007) 50001]. It was shown that
deterministic one-dimensional maps always have forbidden ordinal patterns, in contrast
with time series generated by an unconstrained stochastic process inwhich all the patterns
appear with probability one. Techniques based on the comparison of this property in an
observational time series and in white Gaussian noise were implemented. However, the
comparisonwith correlated stochastic processes was not considered. In this paper we used
the concept of ‘‘missing ordinal patterns’’ to study their decay rate as a function of the time
series length in three stochastic processes with different degrees of correlation: fractional
Brownian motion, fractional Gaussian noise and, noises with f −k power spectrum. We
show that the decay rate of ‘‘missing ordinal patterns’’ in these processes depend on their
correlation structures. We finally discuss the implications of the present results for the use
of these properties as a tool for distinguishing deterministic from stochastic processes.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In the study of dynamical systems the corresponding underlying equations are, in general, not known. In fact quite
often the starting point to study these systems is a set of measurements of some representative variable, X , at discrete
time intervals (time series) given by the set S = {xt , t = 1, . . . ,N}, with N the number of observations. An important
problem is to determine whether an observed time series is deterministic, contains a deterministic component, or is purely
stochastic. Clearly, whether a time series has deterministic components or not dictates what approaches are appropriate for
its characterization and for the generation of a dynamic system model.
Several methods of nonlinear dynamical systems have been developed to detect determinism in time series; see i.e. Refs.

[1–13]. These methods are all based on properties of trajectories from the reconstructed phase space of the time series and
require a large number of data points. An important assumption that sometimes constrains the use of these methods is that
the time series analyzed need to be stationary. We must note that, acquiring a stationary time series of adequate length for
phase space reconstruction is almost impossible when working with real data, particularly if the series are from natural or
biological systems.
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Methods based on Information Theory constitute another research branch with the objective of detecting determinism
in time series [14–19]. When using Information Theory methods, it is necessary to associate a probability distribution
function (PDF) to the time series under analysis. The determination of the most adequate PDF is a fundamental problem.
Bandt and Pompe introduced a successful methodology for the evaluation of the PDF associated to scalar time series data
using a symbolization technique [14,20]. The symbolic data is created by ranking the values of the series and defined by
reordering the embedded data in ascending order, which is reconstructed with embedding dimension D (see definition and
methodological details below). In this way it is possible to quantify the diversity of the ordering symbols (patterns) derived
froma scalar time series, evaluating the so-called permutation entropy (the Shannon entropy corresponding to theBandt and
Pompe PDF). The Bandt and Pompe technique is computationally fast and does not require the reconstruction of an attractor
in phase space. This technique, as opposed to most of those currently used, takes into account the temporal structure of the
time series generated by the physical process under study. An additional advantage of using this technique is that it is based
on a very weak stationarity assumption. This characteristic allows us to uncover important details concerning the ordinal
structure of the time series [17,21–29], and can also uncover information about the temporal correlation [30,31].
Rosso et al. [17] have recently shown the advantage of incorporating the time causality, naturally present in the time

series, into the associated PDF. Specifically, they found that different Information Theory based measures (normalized
Shannon entropy and statistical complexity) allow a better distinction between deterministic chaotic and stochastic
dynamics when causal information is incorporated using the Bandt and Pompe methodology [14]. New insight into the
characterization of theoretical and observational time series, which has also been developed using the Band and Pompe’s
methodology, considers the emergence of the so-called ‘‘forbidden patterns’’ [18,19].

1.1. Forbidden versus missing ordinal patterns

As shown recently by Amigó et al. [18,19,32], in the case of deterministic one-dimensional maps not all the possible
ordinal patterns (as defined below using the Bandt and Pompe methodology) can be effectively materialized into orbits,
which in a sense makes these patterns ‘‘forbidden’’. Indeed, the existence of these forbidden ordinal patterns becomes a
persistent dynamical property. That is, for a fixed pattern length (embedding dimension)D the number of forbidden patterns
present in the time series (unobserved patterns) is independent of the series length N . It is interesting to remark that, this
persistence is in opposition to other properties such as proximity and correlation, which die out with time in a chaotic
(deterministic) dynamics [18]. For example, in the time series generated by the logisticmap xk+1 = 4xk(1−xk) if we consider
patterns of length D = 3, the pattern [2, 1, 0] is forbidden. That is, the pattern xk+2 < xk+1 < xk never appears [18].
In the case of time series generated by an unconstrained stochastic process (uncorrelated process) every ordinal pattern

has the same probability of appearance [18,19,32]. That is, if the data set is long enough, all the ordinal patterns will appear.
In this case, when the number of observations in the time series N → ∞, the associated probability distribution function
should be a uniform distribution, and the number of observed patterns will depend only, on the length N of the time series
under study.
For correlated stochastic processes it is reasonable to assume that the probability of pattern observation will depend not

only on the time series length N but also on the correlation structure. The existence of a non-observed ordinal pattern does
not qualify it as ‘‘forbidden’’, only as ‘‘missing’’ due to the time series finite length.
A similar observation also holds for the case of real data that always possess a stochastic component due to the

omnipresence of dynamical noise [33–35]. Wold proved [33] that any (stationary) time series can be decomposed into two
parts. The first part (deterministic) can be exactly described by a linear combination of its own past; the second part is a
moving average component of an infinite order.
Considering all the casesmentioned above the existence of ‘‘missing ordinal patterns’’ could be either related to stochastic

processes (correlated or uncorrelated) or deterministic noisy processes which is the case of observational time series.
The concept of forbidden/missing ordinal patterns has been recently used as a tool for the discrimination between

deterministic and stochastic behavior in observational time series [18,19,29,32,36,37]. Zanin [37] and Zunino et al. [29] have
recently studied the appearance of missing ordinal patterns in financial time series. They found evidence of deterministic
forces in themedium and long term dynamics. Moreover, they propose that the evolution of the number of missing patterns
could be an appropriate tool to quantify the randomness of certain time periods within the financial series. Also, missing
ordinal patterns have been proposed recently as evidence of deterministic dynamics during epileptic states. In Ref. [36], it
is suggested that the measure of missing patterns corresponding to EEG time series could be considered as a predictor of
epileptic absence seizures. It is important to remark that in the researchmentioned above, only non-correlated noise (white
noise) has been considered.
Amigó et al. [18,32] proposed a test that uses missing ordinal patterns to distinguish determinism (chaos) from

randomness in finite time series contaminated with observational white noise (uncorrelated noise), based in two important
practical properties: their finiteness and noise contamination. These two properties are important because finiteness
produces missing patterns in a random sequence without constrains, whereas noise blurs the difference between
deterministic and random time series. The methodology proposed by Amigó et al. [18] consists of a graphic comparison
between the decay of the missing ordinal patterns (of length D) of the time series under analysis as a function of the series
length N , and the decay corresponding to white Gaussian noise. They presented numerical evidence that missing patterns
persist in noisy deterministic data, even when the contamination with white Gaussian noise is high. However, the decay of
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the number of missing ordinal patterns with N for correlated stochastic and non-Gaussian processes was not analyzed, and
the authors explicitly stated the need for further research in this direction.
In the present work we extend the analysis of missing ordinal patterns to stochastic processes with different degrees of

correlation: fractional Brownian motion (fBm), fractional Gaussian noise (fGn) and, noises with f −k power spectrum (PS)
and (k ≥ 0). These three types of stochastic processes were chosen because they are frequently used to simulate and/or
characterize time series of natural phenomena (see i.e. [38–40]). Specifically, we analyze the decay rate of missing ordinal
patterns as a function of the pattern length D (embedding dimension) and number of time series data points N .

2. Methodology

2.1. Bandt and Pompe — Ordinal patterns

The Bandt and Pompe [14] methodology is used to determine the probability distribution P associated to a given
time series (dynamical system). The first step is to consider partitions of the pertinent D-dimensional space that will can
potentially relevant details of the ordinal structure of the one-dimensional time series S = {xt : t = 1, . . . ,N} with
embedding dimension D > 1. The approach analyzes the ‘‘ordinal patterns’’ of order D [14,21] generated by

(s) 7→
(
xs−(D−1), xs−(D−2), . . . , xs−1, xs

)
, (1)

which assigns to each time s the D-dimensional vector of values at times s, s − 1, . . . , s − (D − 1). Clearly, for greater
D−values there will be more ‘‘past’’ information incorporated into the vectors and more possible patterns are considered.
An ‘‘ordinal pattern’’ related to a time (s) corresponds to the permutation π = (r0, r1, . . . , rD−1) of [0, 1, . . . ,D−1] defined
by

xs−rD−1 ≤ xs−rD−2 ≤ · · · ≤ xs−r1 ≤ xs−r0 . (2)

In order to get a unique result we set ri < ri−1 if xs−ri = xs−ri−1 . Thus, for all the D! possible permutations π of order D, the
probability distribution P = {p(π)} is defined by

p(π) =
]{s|s ≤ N − D+ 1; (s), has type π}

N − D+ 1
. (3)

In this expression, the symbol ] stands for ‘‘number’’.
The Bandt and Pompemethodology is not restricted to time series representative of low-dimensional dynamical systems

but can also be applied to any type of time series (regular, chaotic, noisy, or observational), with a very weak stationary
assumption (for κ ≤ D, the probability for xt < xt+κ should not depend on t [14]). It is implicitly assumed that enough
data are available for a representative delay reconstruction. Of course, the embedding dimension D plays an important role
in the evaluation of the appropriate probability distribution because D determines the number of accessible states D!. It
also conditions the minimum acceptable length N of the time series that is needed in order to work with reliable statistics
(N � D!). In particular, Bandt and Pompe suggest for practical purposes working with 3 ≤ D ≤ 7, and this is what we do
here (in the present work we used D = 4, 5 and 6).

2.2. Stochastic processes considered

The following stochastic processes are considered in the present study:
(a) Noises with f −k power spectrum:
The corresponding time series are generated as follows [17]: (1) TheMatlab© RAND function is used to produce pseudo-

random numbers in the interval (−0.5, 0.5) with an (a) flat power spectrum (PS), (b) uniform probability distribution
function (PDF), and (c) zero mean value, xi. (2) Then, the Fast Fourier Transform (FFT) y1k of the time series is obtained and
multiplied by f −k/2 (k > 0), yielding y2k; (3) Now, y

2
k is symmetrized so as to obtain a real function and then the pertinent

inverse FFT xi is obtained, after discarding the small imaginary components produced by our numerical approximations. The
ensuing time series xi has the desired power spectrum properties and, by construction, is representative of non-Gaussian
noises.

(b) Fractional Brownian motion (fBm) and fractional Gaussian noise (fGn):
fBm is the only family of processes which is (a) Gaussian, (b) self-similar, and (c) endowed with stationary increments

(see Ref. [41] and references therein). The normalized family of these Gaussian processes, {BH (t), t > 0}, is endowed with
these properties: (i) BH (0) = 0 almost surely (a.s.), i.e., with probability 1, (ii)E[BH (t)] = 0 (zeromean), and (iii) covariance
given by

E[BH (t)BH (s)] = (t2H + s2H − |t − s|2H )/2, (4)

for s, t ∈ R. Here E[·] refers to the average computed with a Gaussian probability density. The power exponent 0 < H < 1
is commonly known as the Hurst parameter or Hurst exponent. These processes exhibit ‘‘memory’’ for any Hurst parameter
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except for H = 1/2, as one realises from Eq. (4). The H = 1/2−case corresponds to classical Brownian motion and
successive motion increments are as likely to have the same sign as the opposite (there is no correlation among them).
Thus, Hurst’s parameter defines two distinct regions in the interval (0, 1). WhenH > 1/2, consecutive increments tend to
have the same sign so that these processes are persistent. ForH < 1/2, on the other hand, consecutive increments are more
likely to have opposite signs, and we say that they are anti-persistent.
Let us introduce the quantity {WH (t), t > 0} (fBm-‘‘increments’’)

WH (t) = BH (t + 1)− BH (t), (5)

so as to express our Gaussian noise in the fashion

ρ(k) = E[WH (t)WH (t + k)]

=
1
2

[
(k+ 1)2H − 2k2H + |k− 1|2H

]
, k > 0. (6)

Note that forH = 1/2 all correlations at nonzero lags vanish and {W 1/2(t), t > 0} thus represents white noise.
The fBm and fGn are continuous but non-differentiable processes (in the classical sense). As a non-stationary process,

they do not possess a spectrum defined in the usual sense; however, it is possible to define a generalized power spectrum of
the form:

Φ ∝ |f |−α , (7)

with α = 2H + 1, 1 < α < 3 for fBm and, α = 2H − 1,−1 < α < 1, for fGn.
Due to their Gaussian nature, and other characteristics enumerated above, the Bandt–Pompe ideas are applicable to the

fBn and fGndynamical process [14,42]. For simulating the fBmand fGn time serieswe adopt theDavies–Harte algorithm [43],
as recently improved by Wood and Chan [44], which is both exact and fast.

2.3. Decay rate of missing ordinal patterns

As explained earlier, Amigó’s technique for investigating a possible deterministic structure in an observational time series
is based on a graphical comparison between the decay of the missing ordinal patterns in the analyzed time series, with
one corresponding to white Gaussian noise (random sequence without constrains). Amigo et al. [19] state that for white
noise generated by N independent and identically distributed random variables, the probability of having missing ordinal
patterns goes to 0 exponentially as N grows. In the present work, and with the aim of making the discrimination between
deterministic and stochastic behavior more thorough, we extend the analysis of missing ordinal patterns to stochastic
processes with different degrees of correlation. Specifically, our hypothesis is that noises with f −k PS, fBm and fGn, the
number of missing ordinal patterns goes to 0 exponentially as N grows. Though an analytical proof is not yet available, we
present below numerical evidence that supports the validity of our hypothesis.
We callM(N,D) the number ofmissing ordinal patterns. That is, the number of ordinal patterns of lengthD not observed

in a time serieswithN data values. In all cases, as the time series lengthN increases, the number of ‘‘missing ordinal patterns’’
decreases and eventually becomes zero.
In order to evaluate the decay rate of missing ordinal patterns we implement the following procedure:

• Step 1:We generate a long time series S of total length NT . For fixed D, we compute subseries of varying length in the
range D ≤ N ≤ NT using a small length increment δN .
• Step 2:Wemodel the decay ofM(N,D) as a function of N using an exponential function, as proposed by Amigó et al. [18,
19]:

M(N,D) = A · exp{R · N}, (8)

where R is the characteristic decay, and A a constant.
Other functional forms (i.e.: power laws, N−q) were also considered, however, the exponential functional form was
selected because it rendered the best fit.
• Step 3: The characteristic decay rate R is determined by fitting Eq. (8) to the numerically generated valued M(N,D)
using least square method. The mean value of the r2 coefficient of the exponential fit, (the goodness of the fit) for all the
stochastic processes considered is (0.9328 ± 0.0227) ≤ r2 ≤ (0.9994 ± 0.0003). Similar values were found for D = 4
and D = 5.

In the present work we study the decay rates for length patterns (embedding dimensions) D = 4, 5 and 6.
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3. Results and discussion

Fig. 1 illustrates a few typical examples of the three type of stochastic correlated processes considered in our analysis.
The behavior of the missing ordinal patterns for these stochastic processes, is shown in Figs. 2 and 3, for selected values of
the power spectrum exponents (α and k).
Fig. 2 shows the averaged missing ordinal patterns, 〈M(N,D)〉, as a function of the time series length N and for D = 6.

We average theM(N,D) obtained for M numerically generated time series with different initial conditions (see Step 1 of
the procedure). Fig. 2(a) shows the average number of missing ordinal patterns for three different k values of f −k PS process.
Higher k values have lower decays rates, and thus the minimum length N for which 〈M(N,D)〉 becomes zero increases as k
increases. A similar trend is observed for fBm that displays the highest decay rate for α = 1.2 and the lowest for α = 2.8.
A different trend is observed in Fig. 2(c) for the fGn processes. In this case the fastest decay corresponds to α = 0, and
decreases for both higher and lower values of α.
The corresponding averaged values 〈M(N,D)〉 for the three pattern lengths (embedding dimensions) considered, for

fixed values of k and α, are illustrated in Fig. 3. It can be observed from this figure that the decay rates increase rapidly as
pattern length D decreases.
Fig. 4 displays themean decay rate ofmissing ordinal patterns and their standard deviation (R±SD) as a function of power

spectrum exponent values (α for fBm and fGn and, k for f −k PS noise). Each point in these curves (R and SD) is estimated from
M values of R, obtained following the procedure described in previous section forM numerically simulated time series with
different initial conditions. The trends for themeandecay rate, corresponding to each pattern length (embedding dimension)
D, can be very well described by a polynomial function of order 2 for fGn and order 3 for both the fBm and f −k PS noise.
These trends are shown as dotted lines in the corresponding figures.
Fig. 4 shows that as the correlations of the fBm process (1 < α < 3) and f −k PS noises (0 < k < 3) become stronger

the mean decay rate R decreases. This indicates that the rate of appearance of ordinal patterns depends on the strength of
the correlations. The less correlated, the faster the patterns appear. In contrast, the fGn (−1 < α < 1) exhibits a symmetric
behavior, with a minimum R for α = 0 (white noise), and increasing values of R for both higher and lower α’s. This indicates
that persistent and anti-persistent fGns have very similar values of R.
Fig. 4 also shows that the standard deviation of the estimated R values decreases with increasing D. This is due to the

fact that longer patterns contain more temporal information and are therefore more effective in capturing the dynamics
of time series with correlation structures, which allows for a better discrimination between Gaussian and non-Gaussian
stochastic processes. In other words, the characterization of the stochastic process is more accurately determined with
longer pattern lengths. It can be observed from Fig. 4c (forD = 6) that f −k PS noises and fGnwith similar values of the power
spectrum exponent (α or k) have distinctly different decay rates except those corresponding to the higher correlations (note
the proximity of the values of R for α = 2.8 and k = 2.75). In contrast, the decay rates for f −k PS noises and fGn with power
spectrum exponent in the interval (0, 1) are not distinctly different, that is the standard deviation for the decay rates of both
processes overlaps within this range. Moreover, white Gaussian noise (represented by fGn with α = 0) and non-Gaussian
white noise (f −k PS noise with k = 0) have the same mean decay rate (R).
Finally, a gap in the values of R between the fBm and its associated noise, the fGn can be observed in Fig. 4. This gap

is similar to that found by Rosso et al. [23] for other Information Theory quantifiers (entropy and statistical complexity)
suggesting that it is an intrinsic characteristic of these processes.

4. Conclusions

In this study we analyze the rate of decay (R) as a function of the time series length (N) and pattern length (D), of the
missing ordinal patterns for stochastic processes with different degree of correlation: fractional Brownian motion (fBm),
fractional Gaussian noise (fGn) and, noises with f −k power spectrum (PS), k ≥ 0. As a general behavior we find that, for
a fixed pattern length, the decay rates are much lower for processes with higher correlation structures. It is possible to
conclude from these results that the decay of ordinal missing patters in correlated stochastic processes depends not only on
the series length but also on their correlation structures. In other words, missing ordinal patters persist in the time series
depending on how strong their correlation structures are.
As mentioned in the introduction, Amigó et al. [18] presented numerical evidence that ‘‘forbidden patterns’’ persist in

noisy deterministic data, even when the contamination is high. Considering that in noisy data these patterns are not really
forbidden, this assertion only means that they have just not appeared yet. The persistence of ‘‘missing patterns’’ in noisy
deterministic data only reveals that longer time series are needed for all patterns to appear and this persistence depends in
the noise level (see Fig. 2 in Ref. [18] for the case of deterministic dynamics with additive Gaussian noise).
In this work we find that stochastic time series with long term correlation structures (i.e, fractional Brownian motion

with high values of the Hurst Exponent or f −k noises with high k) also display ‘‘very high persistence of missing ordinal
patterns’’ as shown by the low decay rates R values in Fig. 4. In other words, the number of missing patterns decreases very
slowly with series length in a similar fashion to that of noisy deterministic data. Therefore, we conclude that the persistence
of missing patterns is not necessarily a signature of underlying determinism, as it was argued in the literature, because this
same persistence is found in stochastic time series with long term correlation structures.
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Fig. 1. Typical time series of length N = 1000 for selected values of power spectrum exponents (α for fBm and fGn, k for f −k PS noise) and for (a) f −k PS
noise (b) fBm and (c) fGn.

We suggest that the use of missing ordinal patterns as a tool for distinguishing underlying determinism in time series
must be reconsidered and some criteria has to be formalized. The results here presented could be used to evaluatewhether a
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Fig. 2. Average number of missing ordinal patterns 〈M(N,D)〉 as function of the time series length N , for embedding dimension D = 6 and for selected
values of power spectrum exponents (α for fBm and fGn, k for f −k PS noise). (a) f −k PS noise; (b) fBm and; (c) fGn. The number of series M considered
was 30.

given time series follows or not the behavior of the processes here studied. The estimated values of both themissing ordinal
pattern decay rate R and the power spectrum exponent parameter (obtained from Fourier Transformpower spectral analysis
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Fig. 3. Average number of missing ordinal patterns 〈M(N,D)〉 as function of the time series length N , for embedding dimensions D = 4, 5 and 6 and for
fixed values of power spectrum exponents (α for fBm and fGn, k for f −k PS noise). The number of seriesM considered for embedding dimensions D = 4, 5
and 6 was 1000, 250 and 30 respectively. (a) f −k PS noise; (b) fBm and; (c) fGn.

of the series) could be used to implement new tests with the objective of distinguishing deterministic from stochastic
dynamics. Of course, the case of deterministic dynamics contaminated with correlated noises must be considered. Research
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Fig. 4. Mean decay rate R with the corresponding standard deviations as a function of the power spectrum exponents (α for fBm and fGn, k for f −k PS
noise) for embedding dimensions (a) D = 4; (b) D = 5 and; (c) D = 6 for the three different stochastic process considered. The number of series M
considered for embedding dimensions D = 4, 5 and 6 was 1000, 250 and 30 respectively. The subseries were computed using a length increment δN = 5
for D = 4, 5, and δN = 20 for D = 6.

in this direction is currently under study. In addition, we should note that the rate of decay of missing ordinal patterns (R)
can be used to determine the Hurst exponent (H) from an experimental time series. Work to implement this technique is
being pursued by the authors.
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