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a b s t r a c t

We highlight the potentiality of a special Information Theory (IT) approach in order to
unravel the intricacies of nonlinear dynamics, the methodology being illustrated with
reference to the logistic map. A rather surprising dynamic feature→ plane-topographymap
becomes available.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

A great ideal of interest exists in the behavior of dynamical systems that are highly sensitive to initial conditions, a
sensitivity popularly referred to as the butterfly effect. Small differences in initial conditions (such as those due to rounding
errors in numerical computation) yield widely diverging outcomes for chaotic systems, rendering long-term prediction
impossible in general [1]. This happens even though these systems are deterministic and their ‘‘future’’ is fully determined
by their initial conditions, with no random elements involved, so that the deterministic nature of these systems does not
make them predictable. Explanation of such behavior may be sought in various ways, an important one being the through
analysis of nonlinear models, that usually yields a wealth of interesting information.
Information theory, in turn, is a powerful weapon in the theoretical physicist’s arsenal [2] that has been put to good use

in the analysis just referred to, with an exuberant literature dealing with such matters (see references given below in the
text). The present effort tries to add, hard as it sounds, some new ingredients to this kind of approach, and we expect to
convince the readers in the forthcoming sections that this is not an empty claim.
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2. Shannon entropy & Fisher Information Measure

Given a continuous probability distribution function (PDF) f (x), its Shannon entropy S is [3]

S[f ] = −
∫
f ln(f )dx, (1)

a measure of ‘‘global character’’ that it is not too sensitive to strong changes in the distribution taking place on a small-sized
region.
Such is not the case with Fisher’s information measure (FIM) F [2,4], which constitutes a measure of the gradient content

of the distribution f , thus being quite sensitive even to tiny localized perturbations. It reads [2]

F [f ] =
∫
| E∇f |2

f
dx. (2)

FIM can be variously interpreted as a measure of the ability to estimate a parameter, as the amount of information that can
be extracted from a set of measurements, and also as a measure of the state of disorder of a system or phenomenon [2,
5]. Its most important property is the so-called Cramer–Rao bound, that we recapitulate in one-dimension, for simplicity’s
sake. The classical Fisher information associated with translations of a one-dimensional observable x with corresponding
probability density f (x) is [6]

Ix =
∫
dxf (x)

(
∂ ln f (x)
∂x

)2
, (3)

which obeys the above referred to Cramer–Rao inequality

(∆x)2 ≥ I−1x (4)

involving the variance of the stochastic variable x [6]

(∆x)2 = 〈x2〉 − 〈x〉2 =
∫
dxf (x)x2 −

(∫
dxf (x)x

)2
. (5)

We insist in remarking that the gradient operator significantly influences the contribution of minute local f -variations to
FIM’s value, so that the quantifier is called a ‘‘local’’ one. Note that Shannon’s entropy decreases with skewed distribution,
while Fisher’s information increases in such a case. Local sensitivity is useful in scenarios whose description necessitates
appeal to a notion of ‘‘order’’ (see below).
Let now P = {pi; i = 1, . . . ,N} be a discrete probability distribution set, with N the number of possible states of the

system under study. The concomitant problem of loss of information due to the discretization has been thoroughly studied
(see, for instance, [7–9] and references therein) and, in particular, it entails the loss of FIM’s shift-invariance, which is of no
importance for our present purposes. In the discrete case, Shannon’s quantifier is evaluated via

S[P] = −
N∑
i=1

pi ln(pi), (6)

and we define a ‘‘normalized’’ Shannon entropy as H[P] = S[P]/Smax, where the denominator obtains for a uniform
probability distribution.
For the FIM-computation measure, we follow the proposal of Ferri and coworkers [10] (among others)

F [P] =
1
4

N−1∑
i=1

2
(pi+1 − pi)2

(pi+1 + pi)
. (7)

If our system is in a very ordered state and thus is represented by a very narrow PDF, we have a Shannon entropy S ∼ 0
and a Fisher’s information measure F ∼ Fmax. On the other hand, when the system under study lies in a very disordered
state one gets an almost flat PDF and S ∼ Smax while F ∼ 0. Of course, Smax and Fmax are, respectively, the maximum values
for the Shannon entropy and Fisher information measure. One can state that the general behavior of the Fisher information
measure is opposite to that of the Shannon entropy [11].

3. Temporal information and methodologies for getting the pertinent PDFs

Informationmeasures are functionals of a probability distribution function (PDF). In evaluating them, one has to properly
determine this underlying PDF P (here associated with a given dynamical system or time series). This is an often neglected
issue that indeed deserves detailed consideration. Why? Because P and the sample-spaceΩ are inextricably linked. Many
schemes have been proposed for an adequate selection of pair (Ω, P). We canmention, among others: (a) procedures based



Author's personal copy

4606 O.A. Rosso et al. / Physica A 389 (2010) 4604–4612

on amplitude statistics [12], (b) binary symbolic dynamics [13], (c) Fourier analysis [14] and, (d) wavelet transform [15].
Their applicability depends on particular characteristics of the pertinent data such as stationarity, length of the time series,
variation of the parameters, level of noise contamination, etc. In all these cases, the global aspects of the dynamics can be
somehow captured, but the different approaches are not equivalent in their ability to discern all the relevant physical details.
One must also acknowledge the fact that the above techniques are introduced in a rather ad hoc fashion and are not directly
derived from the dynamical properties themselves of the system under study, as can be conveniently achieved, for instance, by
recourse to the Bandt–Pompe methodology [16].
Bandt and Pompe introduced a successful approach for the evaluation of the PDF associated with scalar time series data

using a symbolization technique [16,17]. The symbolic data are created by ranking the values of the series and defined (this
the essential detail) by reordering the embedded data in ascending order, which is in turn reconstructedwith an embedding
dimensionD (see definition andmethodological details below). ‘‘Causal’’ information is, consequently, properly incorporated
into the ‘‘building-up’’ process that yields (Ω, P) [16,17]. In this way it is possible to quantify the diversity of the ordering
symbols (patterns) derived from a scalar time series, evaluating the so called permutation entropy (the Shannon entropy
special version corresponding to the Bandt and Pompe PDF). The Bandt and Pompe technique is computationally fast and
does not require the reconstruction of an attractor in phase space. It is the only procedure, among thosemost currently used,
that takes into account the temporal structure of the time series generated by the physical process under study. An additional
advantage of using this approach is that it is based on quite weak stationarity assumptions, a property that allows one to
uncover important details concerning the ordinal structure of the time series [12,18–27], and can also reveal information
about temporal correlations [28,29].

3.1. PDF based on histograms

In order to extract a PDF via amplitude statistics, divide first the interval [a, b] (with a and b theminimum andmaximum
values in the time series) into a finite number Nnbin of nonoverlapping subintervals Ai : [a, b] =

⋃Nnbin
i=1 Ai with Ai

⋂
Aj =

∅∀i 6= j. One then employs the usual histogrammethod, based on counting the relative frequencies of the time series’ values
within each subinterval. It should be clear that the resulting PDF lacks any information regarding temporal evolution. The
only pieces of information we have here are the xt-values that allow one to assign inclusion within a given bin, ignoring just
where they are located (this is, the subindex i). Note that in Eqs. (6) and (7) N = Nbin and that the division procedure of the
interval [a, b] provides the natural order sequence for the evaluation of the PDF gradient involved in Fisher’s information
measure. Let us also point out that it is relevant to consider a judiciously chosen optimal value for Nbin (see i.e. De Micco
et al. [12]). The information measures obtained via histogram PDFs are called in this paper H(Hist) and F (Hist), respectively.

3.2. PDF based on Bandt and Pompe methodology

To use the Bandt and Pompe [16] methodology for evaluating probability distribution P associated with the time series
(for a given dynamical system) under study one starts by considering partitions of the pertinent D-dimensional space that
will hopefully ‘‘reveal’’ relevant details of the ordinal structure of this time series {xt : t = 1, . . . ,M} with embedding
dimension D > 1. We are interested in ‘‘ordinal patterns’’ of order D [16,19] generated by

(s) 7→
(
xs−(D−1), xs−(D−2), . . . , xs−1, xs

)
, (8)

which assign to each time s the D-dimensional vector of values at times s, s − 1, . . . , s − (D − 1). Clearly, the greater the
D-value, the more information on the past is incorporated into our vectors. By the ‘‘ordinal pattern’’ related to the time (s),
we mean the permutation π = (r0, r1, . . . , rD−1) of (0, 1, . . . ,D− 1) defined by

xs−rD−1 ≤ xs−rD−2 ≤ · · · ≤ xs−r1 ≤ xs−r0 . (9)

In order to get a unique result, we set ri < ri−1 if xs−ri = xs−ri−1 . Thus, for all the D! possible permutations π of order D, the
probability distribution P = {p(π)} is defined by

p(π) =
]{s|s ≤ M − D+ 1; (s), has type π}

M − D+ 1
. (10)

In this expression, the symbol ] stands for ‘‘number’’. For the computation of the Bandt and Pompe PDF, we follow the very
fast algorithmdescribed by Keller and Sinn in Ref. [19], inwhich the different ordinal patterns are generated in lexicographic
ordering and this is the order sequence used in the evaluation of the PDF gradient involved in the Fisher informationmeasure.
The two information measures obtained via the ensuing Bandt and Pompe PDF are called in this paper H(BP) and F (BP).
The Bandt–Pompes methodology is not restricted to time series representatives of low dimensional dynamical systems

but can be applied to any type of time series (regular, chaotic, noisy, or reality based),with a veryweak stationary assumption
(for k = D, the probability for xt < xt+k should not depend on t [16]). One also assumes that enough data are available
for a correct attractor reconstruction. Of course, the embedding dimension D plays an important role in the evaluation of
the appropriate probability distribution because D determines the number of accessible states D!. Also, it conditions the
minimum acceptable lengthM � D! of the time series that one needs in order to work with a reliable statistics.
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a b

Fig. 1. (a) Bifurcation diagram (∆r = 0.001) and (b) Lyapunov exponentΛ (∆r = 0.0003), for the logistic map as a function of the parameter r .

4. Application to the logistic map

The logistic map constitutes a paradigmatic example, often employed as a testing ground in order to illustrate new
concepts in the treatment of dynamical systems. Thus, we will use it in order to exemplify the behavior of two quantifiers
based on Information Theory, namely, the normalized Shannon entropy H and Fisher’s information measure F , both
evaluated with PDFs based on either histograms or Bandt–Pompe’s procedure.
It is well known that the logistic map is a polynomial mapping of degree 2, F : xn → xn+1 [30,31], described by the

ecologically motivated, dissipative system described by the first-order difference equation

xn+1 = r · xn · (1− xn) (11)

with 0 ≤ xn ≤ 1 and 0 < r ≤ 4. Fig. 1(a) depicts the popular bifurcation diagram for the logistic map for 3.4 ≤ r ≤ 4.0
(∆r = 0.001), while, in Fig. 1(b), the corresponding Lyapunov exponentΛ (∆r = 0.0003) is displayed.
Let us briefly review, with reference to Fig. 1, some exceedingly well-known results for this map that we need in order to

put into an appropriate perspective the properties of our quantifiers. For values of the control parameter 1 < r < 3, there
exists only a single steady-state solution. Increasing the control parameter past r = 3 forces the system to undergo a period-
doubling bifurcation. Cycles of period 8, 16, 32, . . . , occur and, if rn denotes the value of r where a 2n cycle first appears, the
rn converge to a limiting value r∞ ∼= 3.5699456 [30,31]. As r grows still more, a quite rich, and well-known structure arises.
In order to be in a position to better appreciate at once the long-term behavior for all values of r lying between 3.4 and 4.0,
we plot the pertinent bifurcation diagram in Fig. 1(a). We immediately note there the cascade of further period doubling
that occurs as r increases, until, at r∞, the maps become chaotic and the attractors change from comprising a finite set of
points to becoming an infinite set. For r > r∞ the orbit diagram reveals an ‘‘strange’’ mixture of order and chaos. The large
window beginning near r ∼= 3.82842 contains a stable period-3 cycle.
The behavior of the Lyapunov exponentΛ as a function of the parameter r is displayed in Fig. 1(b). From this figure, we

see thatΛ and, as a result, the associated degree of chaoticity grows globally with r since there are many periodic windows
whereΛ drops to negative values, reaching amaximumat r = 4. The non-zero Lyapunov characteristic exponentΛ remains
negative for r < r∞. We notice that Λ approaches zero at the period-doubling bifurcation. The onset of chaos is apparent
near r ∼= 3.5699, where Λ first becomes positive. As stated above, for r > r∞, the Lyapunov exponent increases globally,
except for the dips one sees in thewindows of periodic behavior. Notice the particularly large dip due to the period-3window
near r ∼= 3.82842.
Following thework of Ferri et al. [10] and in order to facilitate the comparisonwith their results, we scrutinize the dynam-

ics of the logistic map around this period-3 window. In particular, we analyze the logistic parameter range 3.8 ≤ r ≤ 3.87
demarcated with the rectangle in Fig. 1(a) and with vertical lines in Fig. 1(b). The bifurcation diagram (∆r = 0.0005) and
the corresponding Lyapunov exponent (∆r = 1 × 10−5) are displayed for this parameter range in Fig. 2. With this rather
fine resolution one detects the presence of additional periodic windows, dips in which the Lyapunov exponent isΛ < 0 in
Fig. 2(b).
The period-3 attractor arises through a saddle-node bifurcation at r1 ∼= 3.82842 (tangent bifurcation) till r2 ∼= 3.8415

(flip bifurcation). The chaotic dynamics that exists before reaching r1 is called ‘‘Chaos 1’’. As r grows beyond r2, the period-3
solutions experience a new sequence of period-doubling bifurcations that ends in a totally chaotic dynamics at r3 ∼= 3.84943.
The chaotic attractor consists of three narrow disjoint segments and is referred to as ‘‘Chaos 2’’. At r4 ∼= 3.85681 (interior
crisis) this chaotic attractor is again replaced by another one designed as ‘‘Chaos 3’’ which lives within a wider segment that
includes the three parts of the previous attractor. For r2 < r < r4, the period-3 window expanded in Fig. 2(a) shows three
miniature bifurcation diagrams that are similar to the large one in Fig. 1(a). Note that in similar fashion as with the boundary
crisis at r = 4, these smaller regions suddenly expand at r4 to fill a single wider interval.
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a b

Fig. 2. (a) Bifurcation diagram (∆r = 0.0005) and (b) Lyapunov exponent Λ (∆r = 1 × 10−5), for the logistic map as a function of the parameter
3.8 ≤ r ≤ 3.87.

a b

Fig. 3. (a) Normalized Shannon entropy and, (b) Fisher information measure for the logistic map as function of the parameter 3.4 ≤ r ≤ 4 with step
∆r = 0.0003. For the time series generation, we discard the first 105 iterations and after that N = 2 × 106 data time series was generated. For the PDF
based on histogram Procedure, we considered Nbins = 216 in the interval [0, 1].

The behavior of our information theory quantifiers: the normalized Shannon entropy,H and, Fisher informationmeasure,
F , as functions of the logistic parameter r are displayed in Figs. 3 and 5 for 3.4 ≤ r ≤ 4; ∆r = 0.0003; Figs. 4 and 6 for
3.8 ≤ r ≤ 3.87; ∆r = 1 × 10−5; for PDFs based on histograms and Bandt–Pompe’s methodology, respectively. For the
logistic map time series generation, we discarded the first 105 iterations and, after that, N = 2× 106 data were generated.
For the PDF based on the histogram procedure, we considered Nbins = 216 in the interval [0, 1]. For the Bandt–Pompe based
PDF, we fixed the patterns’ length at D = 6.
For values of the parameter r for which a periodic window is associated, the corresponding PDF consist of a few pi 6= 0

values. That is, in the case of the ‘‘PDF histogram’’ a fewbins iwill have nonzero probabilities. Note that for the PDFhistogram,
all the bins are duly considered, including those for which pi = 0, instead of just eliminating them as Ferri et al. [10] do. In
the case of a PDF of the Bandt and Pompe type, only few patterns of the total D! will be observed. Accordingly, for periodic
behavior the normalized Shannon entropy (NSE)will take low values, indicating that the system is ‘‘well ordered’’. Contrary-
wise, the FIM for this situation should be large since it is associatedwith derivatives of the PDF. Comparing the corresponding
bifurcation diagram and Lyapunov exponent as a function of the logistic parameter (see Figs. 1 and 2) with the information
theory quantifiers H and F (Figs. 3–6), it is clear that observed dips in the normalized Shannon entropy H and peaks in the
Fisher informationmeasure F correspond to periodic windows, a fact that cannot be appreciated in the bifurcation diagram.
This is due to the fact that, in order to observe these extremes one needs a much finer resolution in the pertinent drawings.
Both information quantifiersH and F detect period doubling. It isworth of note to focus attention on the transition delimiters
between different dynamical regimes.
The NSE and FIM for the logistic parameter range 3.4 ≤ r ≤ 4 are displayed in Figs. 3 and 5. For r < r∞ low entropy

values are found, corresponding to periodic behavior. We observe in all instances an abrupt entropy growth around
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a b

Fig. 4. (a) Normalized Shannon entropy and, (b) Fisher information measure for the logistic map as a function of the parameter 3.8 ≤ r ≤ 3.87 with step
∆r = 1× 10−5 . For the time series Generation, we discard the first 105 iterations and after that N = 2× 106 data time series was generated. For the PDF
based on histogram procedure, we considered Nbins = 216 in the interval [0, 1].

a b

Fig. 5. (a) Normalized Shannon entropy and, (b) Fisher information measure for the logistic map as a function of the parameter 3.4 ≤ r ≤ 4 with step
∆r = 0.0003. For the time series generation, we discard the first 105 iterations and after that N = 2 × 106 data time series was generated. For the PDF
based on Bandt–Pompe Methodology, we considered D = 6.

a b

Fig. 6. (a) Normalized Shannon entropy and, (b) Fisher information measure for the logistic map as a function of the parameter 3.8 ≤ r ≤ 3.87 with step
∆r = 1× 10−5 . For the time series Generation, we discard the first 105 iterations and after that N = 2× 106 data time series was generated. For the PDF
based on Bandt–Pompe methodology, we considered D = 6.
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r > r∞ ∼= 3.5699 (see Figs. 3(a) and 5(a)). After we leave this point behind, the entropy displays an increasing trend,
acquiring its maximum value at r = 4. The several ‘‘drops’’ in entropic values in the interval r∞ < r < 4 correspond to the
periodic windows (see the details for range 3.8 ≤ r ≤ 3.87 in Figs. 3(b) and 5(b)), as can easily be confirmed by comparing
with the bifurcation diagram and with the Lyapunov exponent depicted in Figs. 1 and 2. Note also that for the window
3.8 ≤ r ≤ 3.87, the H(Hist) entropy exhibits similar values for the regions called ‘‘Chaos 1’’ and ‘‘Chaos 3’’. Only ‘‘Chaos 2’’
dynamics exhibit lower entropic values. Also notice the increasing entropy values for the period-3 zone (r1 < r < r2) and
also the increasing values attained for the period 6 and period 12 (r2 < r < r3) instances. It is interesting to point out that, in
the PDF-histogram instance, the entropy for r = 4 is almost unity (H(Hist) ' 0.977). The reason is that the invariantmeasure
of the logistic map is in this case given by an almost constant function [30,31]. Only the PDF Bandt and Pompe leads to the
realistic value H(BP) ' 0.630 (more about this point is elucidated below).
As previously mentioned, FIM’s behavior is opposite to NSE’s, as is clearly appreciated in Figs. 3(b), 4, 5 and 6(b). For

r < r∞ FIM exhibits constant values F (Hist) = F (BP) = 1, with the exception of small dips at the transition, doubling-
period points. For parameters values r∞ < r < 4 histogramic-FIM F (Hist) displays almost null values, indicative of chaotic
behaviors, alternating with sharp peaks. Comparison with the bifurcation diagram and the Lyapunov exponent (see Figs. 1
and 2) indicates that these peaks are correlated with the emergence of periodic windows. Consequently, they signal the
transition between different dynamical behaviors, i.e., from chaotic to periodic ones.
It is worthy of note to scrutinize the behavior of our quantifiers, evaluated either with PDF histograms or à la PDF-

Bandt and Pompe, in the vicinity of r-values, to be called rT , at which transitions between different dynamical regimes
take place. At r ∼ r1 one finds a transition between Chaos 1 and period 3 regimes. For small values r ≤ r1 typical orbits
exhibit intermittencies that separate time-intervals of quasi-periodic motion. These intermittencies ‘‘explore’’ in sporadic
fashion the remainder of the attractor. The H(His) and F (His) (see Fig. 4) evince a very sharp transition in their respective
values at rT . Contrary-wise, for H(BP) and F (BP), a smooth transition is there observed. For r ∼ r2 a period doubling is
observed, corresponding to period 3 to period 6 change overs, highlighted by increasing values of H(His) and H(BP). FIMs
values F (His) = F (BP) = 1 save for a very small decrease for r2, where de bifurcation occurs. This behavior is not observed in
the respective figures due to the scale’s size. A similar situation is observed in the parameter interval r2 < r < r3, where
subsequent period-duplications take place.
At the parameter range r3 < r < r4 another remarkable feature emerges, a ‘‘band splitting’’ phenomenon. The iterates

alternates between three bands in periodic fashion. However, inside each band motion is chaotic. For r ∼ r3 a period-
doubling accumulation event is observed and a transition to a chaotic regime comes about. Note also that inside each band
several periodic windows are detected. We denote this parameter region as ‘‘Chaos 2 with periodic window’’. If r > r4 the
attractor still remains chaotic but consist now of a rather large interval that contains inside it the above mentioned small
periodic windows. We speak of an interior crisis [30,31]. We designate this region as the Chaos 3-one. The values-trend of
H(His) is here lower (excluding the dips corresponding to the periodic windows) for r3 < r < r4 than for r > r4. Summing
up, the values for H(His) are lower for the Chaos 2 zone than for the corresponding ones for Chaos 1 and Chaos 3. However,
for these last two chaotic zones, their H(His)-values are similar. F (His) ∼ 0 for Chaos 1, 2 and 3 zones, with the exception of
the peaks corresponding to periodic windows.
The values ofH(BP) and F (BP) display a trend that clearly distinguishes amongst the different chaotic behaviors (Chaos 1, 2

and 3 zones). Again the NSE-drops FIM-peaks for periodic windows become evident (cf. Fig. 6). This fact clearly constitutes
the main advantage of using a PDF that takes into account temporal-causality in the evaluation of the quantifiers. The NSE
evaluatedwith a PDF-Bandt and Pompe,H(BP), incorporates in a seemingly naturalway ‘‘time causality’’, which togetherwith
the properties of the quantifier referred to as the ‘‘statistical complexity’’ allows in fact for the possibility of distinguishing
between chaotic and stochastic dynamics [18]. Indeed, if time-causality is not properly taken into account, as is the case of
PDF histograms, one hasH(Hist) ∼= 1 for both kind of dynamics, in contradiction to what happens using the Bandt and Pompe
methodology to determine the PDF, for which the situation H(BP) ∼= 1 is only attained in the case of stochastic (noise)
dynamics [18]. In plain words, ‘‘chaos is not noise’’ even if they share some common characteristics. In point of fact, chaos
is representative of deterministic processes, and thus time-causality constitutes an important facet that must be taken into
account for a proper characterization.
One gets some important complementary insights of this situation via the Vignat–Bercher’s Fisher–Shannon (F × H)

plane [32–36], thatwewill employ to characterize our different dynamic-regimes.Wedisplay in Figs. 7 and8 this F×H-plane
for the two different instances of PDF-evaluation under consideration, for the r-ranges 3.4 ≤ r ≤ 4 and 3.8 ≤ r ≤ 3.87
(the control parameter does not explicitly appear in the graph, of course), respectively. We see that a wealth of ‘‘geographic
information’’ regarding plane-locations for different kinds of dynamics becomes then available, a sort of dynamic feature→
plane-topographymap, which constitutes a rather surprising correspondence between dynamics an planar geometry.
Comparing the results obtained using PDF histograms with PDF-BP ones in Figs. 7 and 8, it becomes clear that in the

last case these characteristics are more clearly evidenced, facilitating in this way planar behavior-characterization (see, in
particular, Fig. 8). We can readily appreciate the fact that each distinct regime is located at different planar location.

5. Conclusions

Themain idea of the present contribution has been to underline the potentiality of a special Information Theory approach
in order to unravel the intricacies of nonlinear dynamics, the methodology being illustrated with reference to the logistic
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a b

Fig. 7. Fisher–Shannonplane corresponding to (a) PDF based onhistograms (b) PDF based onBandt–Pompeprocedure, for the logisticmap in the parameter
range 3.4 ≤ r ≤ 4.

a b

Fig. 8. Fisher–Shannonplane corresponding to (a) PDF based onhistograms (b) PDF based onBandt–Pompeprocedure, for the logisticmap in the parameter
range 3.8 ≤ r ≤ 3.87.

map. The central facets of the approach are that of (i) extracting out of the pertinent time series themost suitable probability
distribution function P in order to describe the associated dynamics: This PDF is obtained by recourse to the Bandt–Pompe
technique [16] and (ii) constructing with this PDF two Information Theory quantifiers, namely, a NSE and FIM. These
quantifiers’s results are in turn compared with those produced by the usual histogram methodology. A first conclusion
is that the latter methodology is clearly inferior to the former.
More importantly, we have shown in the preceding section that the present approach is able to reveal extremely fine

details of the dynamics, not easily available otherwise. Out of the two Information Theory quantifiers we have constructed
the so-called Fisher–Shannon plane. Trajectories in the plane disclose novel dynamics features, even in such an well-known
model as the logistic one. We conclude by suggesting that an extremely powerful treatment for uncovering delicate aspects
of nonlinear physics has been advanced.
The present effort leaves open some possibilities for future research. We intend to perform further work related to the

possible detection of real periodic and quasi-periodic behavior different from the one studied here, i.e., not in a window of
periodicity but obtained through aHopf bifurcationwhere the Lyapunov exponent touches zero and stays quasi-periodically
there. We note also that Fig. 8(b) suggests that there may exist a missing dimension that would serve to separate each
dynamical behavior, a tantalizing possibility.
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