

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701 Editor: Anthony Linden

Monodentate and bridging behaviour of the sulfur-containing ligand 4'-[4-(methylsulfanyl)phenyl]-4,2':6',4"-terpyridine in two discrete zinc(II) complexes with acetylacetonate

Juan Granifo, Rubén Gaviño, Eleonora Freire and Ricardo Baggio

Acta Cryst. (2012). C68, m269-m274

Copyright © International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site or institutional repository provided that this cover page is retained. Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission in writing from the IUCr.

For further information see http://journals.iucr.org/services/authorrights.html

Acta Crystallographica Section C: Crystal Structure Communications specializes in the rapid dissemination of high-quality studies of crystal and molecular structures of interest in fields such as chemistry, biochemistry, mineralogy, pharmacology, physics and materials science. The numerical and text descriptions of each structure are submitted to the journal electronically as a Crystallographic Information File (CIF) and are checked and typeset automatically prior to peer review. The journal is well known for its high standards of structural reliability and presentation. Section C publishes approximately 1000 structures per year; readers have access to an archive that includes high-quality structural data for over 10000 compounds.

Crystallography Journals Online is available from journals.iucr.org

Acta Crystallographica Section C Crystal Structure Communications

Monodentate and bridging behaviour of the sulfur-containing ligand 4'-[4-(methylsulfanyl)phenyl]-4,2':6',4"terpyridine in two discrete zinc(II) complexes with acetylacetonate

Juan Granifo,^a* Rubén Gaviño,^b Eleonora Freire^{c,d}‡ and Ricardo Baggio^c

^aDepartamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería, Ciencias y Administración, Universidad de La Frontera, Casilla 54-D, Temuco, Chile, ^bInstituto de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Circuito Exterior Coyoacán, 04510 México, DF, Mexico, ^cGerencia de Investigación y Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina, and ^dEscuela de Ciencia y Tecnología, Universidad Nacional General San Martín, Buenos Aires, Argentina Correspondence e-mail: jgranifo@ufro.cl

Received 1 June 2012 Accepted 6 August 2012 Online 1 September 2012

The Zn complexes bis(acetylacetonato- $\kappa^2 O, O'$)bis{4'-[4-(methylsulfanyl)phenyl]-4,2':6',4''-terpyridine- κN^1 }zinc(II), [Zn(C₅H₇- O_2 ₂($C_{22}H_{17}N_3S$ ₂], (I), and { μ -4'-[4-(methylsulfanyl)phenyl]-4.2':6',4''-terpyridine- $\kappa^2 N^1: N^{1''}$ }bis[bis(acetylacetonato- $\kappa^2 O, O'$)zinc(II)], $[Zn_2(C_5H_7O_2)_4(C_{22}H_{17}N_3S)]$, (II), are discrete entities with different nuclearities. Compound (I) consists of two centrosymmetrically related monodentate 4'-[4-(methylsulfanyl)phenyl]-4,2':6',4"-terpyridine (L1) ligands binding to one Zn^{II} atom sitting on an inversion centre and two centrosymmetrically related chelating acetylacetonate (acac) groups which bind via carbonyl O-atom donors, giving an N_2O_4 octahedral environment for Zn^{II} . Compound (II), however, consists of a bis-monodentate L1 ligand bridging two Zn^{II} atoms from two different Zn(acac)₂ fragments. Intraand intermolecular interactions are weak, mainly of the C-H··· π and π - π types, mediating similar layered structures. In contrast to related structures in the literature, sulfur-mediated nonbonding interactions in (II) do not seem to have any significant influence on the supramolecular structure.

Comment

The study of the coordination chemistry of 2,2'.6',2''-terpyridine and its derivatives has been directed more commonly to their behaviour as chelating ligands, *i.e.* in systems in which they present a convergent disposition of their pyridine

‡ Member of Consejo Nacional de Investigaciones Científicas y Técnicas, Conicet.

N-donor atoms to link to metal centres (Constable, 2007; Eryazici *et al.*, 2008). In contrast, 4'-aryl-substituted terpyridine-based ligands with divergent coordinating geometry, able to

bridge at least two metal centres, have been scarce and structural reports on their complexes are relatively recent. The pioneering work of Cave & Raston (2002) was based on the 4'-(4-octyloxyphenyl)-4,2':6',4"-terpyridine (L2) ligand, which in its reaction with ZnCl₂ produced the helical coordination polymer $[ZnCl_2(L2)]_n$, in which the ligand bridges two Zn^{II} centres via only its terminal pyridine N atoms. The remaining reports using this type of functionalized 4.2':6'.4''-terpyridine are very recent, from 2008 onward (Li et al., 2008; Constable, Zhang, Coronado et al., 2010; Constable, Zhang, Housecroft et al., 2010; Constable et al., 2011; Li et al. 2011). A common feature in all of these compounds is the bridging behaviour of the terpyridine-based derivatives, which gives rise to polymeric structures ranging from one- to three-dimensional, with the sole exception of a discrete molecular metallohexacycle obtained from the reaction of ZnCl₂ and 4'-(4-ethynylphenyl)-4,2':6',4"terpyridine (Constable et al., 2011).

Figure 1

The molecular structure of (I), showing the atom and ring labelling, and drawn with 40% probability displacement ellipsoids. H atoms are not shown. [Symmetry code: (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z$.]

We report herein two Zn^{II} complexes containing a ligand of this type, namely 4'-[4-(methylsulfanyl)phenyl]-4,2':6',4''terpyridine (*L*1), along with the acetylacetonate (acac) anion. Both complexes have unusual discrete molecular character, *viz.* [Zn(acac)₂(*L*1)₂], (I), is mononuclear and [Zn₂(acac)₄(μ -*L*1)], (II), is dinuclear. To our knowledge, (I) is the first reported complex with monodentate coordination for a functionalized 4'-aryl-substituted 4,2':6',4''-terpyridine ligand. This is in contrast to the three known complexes involving the *L*1 ligand, which are polymers, one (one-dimensional) obtained by reacting *L*1 with Zn(NO₃)₂ (Constable, Zhang, Coronado *et al.*, 2010) and the other two (one- and twodimensional) with Cd(NO₃)₂ (Constable, Zhang, Housecroft *et al.*, 2010).

Compound (I) (Fig. 1) consists of two centrosymmetrically related monodentate *L*1 ligands bound to atom Zn1, which sits on an inversion centre, and two (also centrosymmetrically related) chelating acac groups which bind laterally *via* carbonyl O-atom donors to provide a nearly regular N₂O₄ octahedral environment [Zn1-O2*A* = 2.0448 (13) Å, Zn1-O1*A* = 2.0667 (12) Å and Zn1-N1 = 2.2607 (14) Å; *cis* angles are in the range 90±2.05 (5)°].

Sharing with (I) its novel discrete character, but differing from it in being a binuclear structure, compound (II) consists of a bis-monodentate L1 ligand bridging two Zn^{II} atoms (Zn1 and Zn2) from two different $Zn(acac)_2$ fragments (Fig. 2). Each Zn^{II} centre has an NO₄ coordination sphere; four sites are provided by two different acac groups [Zn-O = 1.9663 (16)–2.0894 (15) Å] coordinated in the usual chelating mode through their carbonyl O-atom donors, with the planar rings forming dihedral angles of 52.00 (9) and 52.60 (10)° for Zn1 and Zn2, respectively. This contrasts markedly with the rigorous coplanarity of the acac ligands in (I), related by the centre of symmetry. The fifth site of the coordination polyhedron in (II) is occupied by a pyridine N atom from the *L*1 ligand [Zn1–N1 = 2.0793 (16) Å and Zn2–N3 = 2.0538 (16) Å]. The geometry around each Zn^{II} atom is trigonal bipyramidal, with O2*A*–Zn1–O2*B* and O1*C*–Zn2–O1*D* angles of 175.17 (7) and 172.91 (7)°, respectively, and apical and equatorial angles in the ranges 90±4.96 (7) and 90±3.89 (7)°, respectively.

In both structures, the *L*1 ligand deviates from planarity, involving rotation of neighbouring six-membered rings. In (I), the N2/C6–C10 and N3/C11–C16 pyridine rings are almost coplanar [dihedral angle = $1.92 (6)^{\circ}$], while the N1/C1–C5 pyridine ring and the methylsulfanyl-substituted benzene ring (C16–C21) deviate significantly from this disposition [dihedral angle = $54.95 (9)^{\circ}$]. Compound (II), instead, presents all three lateral rings, *viz*. pyridine N1/C1–C5, pyridine N2/C6–C10 and benzene C16–C21 (Fig. 2), rotated with respect to the central N3/C11–C15 pyridine ring by dihedral angles of 18.20 (12), 12.91 (11) and 7.37 (11)^{\circ}, respectively.

Nonbonding interactions in (I) and (II) $(C-H\cdots\pi)$ and $\pi-\pi$) are very weak and could probably be assigned the character of London forces and/or dipole-induced dipole interactions. In spite of their weakness, however, they play an esential role in crystal stability, which will be discussed below.

In (I), two intramolecular $C-H\cdots\pi$ contacts (Table 1, first and second entries, and Fig. 3*a*) serve to limit the free rotation of the N1/C1-C5 pyridine ring around the Zn1-N1 bond. The N1/C1-C5 pyridine ring and its symmetry equivalent partner at $(-x + \frac{1}{2}, -y + \frac{1}{2}, -z)$ are rigorously parallel by symmetry. The remaining $C-H\cdots\pi$ (Table 1, third entry and Fig. 3*b*) and

Figure 2

The molecular structure of (II), showing the atom and ring labelling, and drawn with 40% probability displacement ellipsoids. H atoms are not shown.

Figure 4

The packing in (I), (a) showing two parallel strands extending in the b direction and (b) a view perpendicular to that shown in (a), showing the stacking of consecutive (102) planes (alternating light and dark lines).

π - π (Table 2 and Fig. 3*c*) contacts complete the intermolecular interaction scheme. The final result is the formation of planar arrays of Zn(*L*1)₂ groups parallel to (102) (Fig. 4*a*) formed by

Figure 3

The different noncovalent interaction types in (I). For details in (*a*), see Table 1 (first and second entries), in (*b*), see Table 1 (third entry), and in (*c*), see Table 2 (unique entry). [Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z$; (ii) -x, -y + 1, -z; (iii) -x, -y + 2, -z.]

Figure 5

The different noncovalent interactions in (II). For details in (*a*), see Table 3 (first entry), in (*b*), see Table 3 (second entry), and in (*c*), see Table 3 (third entry). [Symmetry codes: (i) x, y - 1, z; (ii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) -x, -y + 1, -z.]

Figure 6 The packing in (II), showing the planar arrays of $Zn_2(L1)$ fragments (bold lines) and the protruding acac anions (lighter lines).

parallel molecules extending along b, with the acac anions roughly perpendicular to the principal plane of the array. These planes have the peculiarity of not presenting any direct 'in-plane' interaction, but rather of being connected only through indirect 'interplanar' contacts mediated by molecules in neighbouring planes, in the staggered pattern shown in Fig. 4b.

In (II), the most significant intermolecular interactions are three weak $C-H\cdots\pi$ contacts (Table 3 and Fig. 5). The overall arrangement is again a pattern of planar arrays [formed by the $Zn_2(L1)$ groups] parallel to (100) (Fig. 6). As in (I), there are no direct 'in-plane' interactions present, cohesion being achieved through indirect zigzag contacts between molecules in neighbouring planes. What appear to be voids in Fig. 6 are in fact visual artifacts – the locus of unrepresented H atoms – as can be seen in a space-filling drawing (see *Supplementary materials*). *PLATON* (Spek, 2009) was used to confirm the absence of voids.

Compound (II) is similar to a recently published dinuclear analogue, *viz*. $[Zn_2(acac)_4(\mu-L3)]$ {L3 is 4'-[4-(methylsulfanyl)phenyl]-3,2':6',3''-terpyridine; Granifo *et al.*, 2011}, (III), displaying a similar dinuclear configuration despite an important difference in that the pyridine N-donor atoms have a convergent disposition in L3. The point to be highlighted, however, is the significant influence that sulfur-mediated nonbonded interactions have in (III), while their influence appears almost non-existent in the structures of (I) and (II) reported here.

Experimental

The ligand L1 was synthesized as reported previously (Constable, Zhang, Coronado *et al.*, 2010). To a hot solution (using an oil bath at 337–341 K) of L1 (8.6 mg, 0.024 mmol) in MeCN (7 ml) contained in a closed volumetric flask (25 ml) was added an excess of Zn(acac)₂ (63.8 mg, 0.242 mmol). The resulting solution was heated in the oil

bath for 10 h. Block-like colourless crystals were obtained after removal of the hot solvent and washing with MeCN (3×5 ml) and diethyl ether (2×4 ml) (yield: 12 mg, 56.6%). Analysis calculated for $C_{42}H_{45}N_3O_8SZn_2$: C 57.15, H 5.14, N 4.76, S 3.63%; found: C 57.32, H 5.26, N 4.63, S 3.68%. Careful examination of the solid product identified two slightly different kinds of crystals; the major fraction corresponding to compound (II) and a second strictly minor fraction corresponding to compound (I). The latter appear recurrently, though in trace amounts, during the synthesis described above, irrespective of reaction conditions.

Compound (I)

Crystal data

 $\begin{bmatrix} Zn(C_5H_7O_2)_2(C_{22}H_{17}N_3S)_2 \end{bmatrix}$ $M_r = 974.47$ Monoclinic, C2/c a = 26.6479 (7) Å b = 10.7706 (3) Å c = 16.4983 (5) Å $\beta = 99.187$ (3)°

Data collection

Oxford Diffraction Gemini CCD S Ultra diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2009) $T_{min} = 0.83, T_{max} = 0.92$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.099$ S = 1.005288 reflections

Compound (II)

Crystal data

 $\begin{bmatrix} Zn_2(C_5H_7O_2)_4(C_{22}H_{17}N_3S) \end{bmatrix}$ $M_r = 882.61$ Monoclinic, $P2_1/c$ a = 14.1522 (3) Å b = 13.4408 (3) Å c = 23.3887 (5) Å $\beta = 101.342$ (2)°

Data collection

Oxford Diffraction Gemini CCD S Ultra diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2009) $T_{\rm min} = 0.80, T_{\rm max} = 0.85$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.087$ S = 0.989862 reflections

Z = 4
Mo $K\alpha$ radiation
$\mu = 0.67 \text{ mm}^{-1}$
T = 295 K
$0.26 \times 0.20 \times 0.12 \text{ mm}$

V = 4674.5 (2) Å³

9886 measured renections
5288 independent reflections
3620 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.017$

307 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

$V = 4362.05 (16) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation
$\mu = 1.20 \text{ mm}^{-1}$
T = 295 K
$0.32 \times 0.16 \times 0.14 \text{ mm}$

27845 measured reflections 9862 independent reflections 6308 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$

 $\begin{array}{l} \text{505 parameters} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.41 \text{ e } \text{\AA}^{-3} \\ \Delta \rho_{min} = -0.35 \text{ e } \text{\AA}^{-3} \end{array}$

H atoms bonded to C atoms were found in a difference Fourier map, but were further idealized and refined as riding atoms [aromatic C-H = 0.93 Å, with $U_{iso}(H) = 1.2U_{eq}(C)$; methyl C-H = 0.97 Å, with $U_{iso}(H) = 1.5U_{eq}(C)$].

Table 1

 $C-H\cdots\pi$ contacts (Å, °) in (I).

Cg1 is the centroid of the Zn1/O1A/C2A/C3A/C4A/O2A chelate ring and Cg2 is the centroid of the N1/C1–C5 pyridine ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C2-H2\cdots Cg1^{i}$ $C3-H3\cdots Cg1$ $C21-H21\cdots Cg2^{ii}$	0.93 0.93 0.93	2.66 2.43 2.87	3.187 (2) 3.001 (2) 3.560 (2)	116 120 132

Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z$; (ii) -x, -y + 1, -z.

Table 2

π - π contacts (Å, °) in (I).

Cg4 is the centroid of the N3/C11-C15 pyridine ring.

Group 1/Group 2	ccd (Å)	da (°)	ipd (Å)	sa (°)
$Cg4\cdots Cg4^{iii}$	3.945 (2)	0	3.7822 (14)	16.48

Symmetry code: (iii) -x, -y + 1, -z. Notes: ccd is the centre-to-centre distance (distance between ring centroids); da is the dihedral angle between rings; ipd is the interplanar distance (distance from one plane to the neighbouring centroid), sa is the slippage angle (angle subtended by the intercentroid vector to the plane normal). For details, see Janiak (2000).

Table 3

C-H··· π contacts (Å, °) in (II).

Cg4 is the centroid of the Zn2/O1D/C2D/C3D/C4D/O2D chelate ring and Cg8 is the centroid of the C16–C21 benzene ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C4-H4\cdots Cg4^{i}$	0.93	2.85	3.712 (3)	155
$C1B - H1BC \cdot \cdot \cdot Cg4^{ii}$	0.96	2.78	3.563 (4)	140
$C5D - H5DB \cdots Cg8^{iii}$	0.96	2.67	3.549 (5)	152

Symmetry codes: (i) x, y - 1, z; (ii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) -x, -y + 1, -z.

For both compounds, data collection: *CrysAlis PRO* (Oxford Diffraction, 2009); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

The authors acknowledge the Universidad de La Frontera (proyecto DIUFRO DI11–0026) and also ANPCyT (project No. PME 2006–01113) for the purchase of the Oxford Gemini CCD diffractometer and the Spanish Research Council (CSIC) for provision of a free-of-charge license to the Cambridge Structural Database (Allen, 2002).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FA3281). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380–388.
Cave, G. W. V. & Raston, C. L. (2002). J. Supramol. Chem. 2, 317–319.
Constable, E. C. (2007). Chem. Soc. Rev. 36, 246–253.
Constable, E. C., Zhang, G., Coronado, E., Housecroft, C. E. & Neuburger, M. (2010). CrystEngComm, 12, 2139–2145.

Granifo et al. • $[Zn(C_5H_7O_2)_2(C_{22}H_{17}N_3S)_2]$ and $[Zn_2(C_5H_7O_2)_4(C_{22}H_{17}N_3S)]$ **m273** electronic reprint

- Constable, E. C., Zhang, G., Housecroft, C. E., Neuburger, M. & Zampese, J. A. (2010). CrystEngComm, 12, 3733–3739.
- Constable, E. C., Zhang, G., Housecroft, C. E. & Zampese, J. A. (2011). *CrystEngComm*, **13**, 6864–6870.
- Eryazici, I., Moorefield, Ch. N. & Newkome, G. R. (2008). Chem. Rev. 108, 1834–1895.
- Granifo, J., Gaviño, R., Freire, E. & Baggio, R. (2011). J. Mol. Struct. 1006, 684-691.
- Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
- Li, X.-Z., Li, M., Li, Z., Hou, J.-Z., Huang, X.-C. & Li, D. (2008). Angew. Chem. Int. Ed. 47, 6371–6374.
- Li, X.-Z., Zhou, X.-P. Li, D. & Yin, Y.-G. (2011). CrystEngComm, 13, 6759–6765. Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2012). C68, m269-m274 [doi:10.1107/S010827011203483X]

Monodentate and bridging behaviour of the sulfur-containing ligand 4'-[4-(methylsulfanyl)phenyl]-4,2':6',4''-terpyridine in two discrete zinc(II) complexes with acetylacetonate

Juan Granifo, Rubén Gaviño, Eleonora Freire and Ricardo Baggio

(I) bis(acetylacetonato- $\kappa^2 O, O'$) bis{4'-[4-(methylsulfanyl)phenyl]- 4,2':6',4''-terpyridine- κN^1 }zinc(II)

Crystal data

 $[Zn(C_5H_7O_2)_2(C_{22}H_{17}N_3S)_2]$ $M_r = 974.47$ Monoclinic, C2/cHall symbol: -C 2yc a = 26.6479 (7) Å b = 10.7706 (3) Å c = 16.4983 (5) Å $\beta = 99.187$ (3)° V = 4674.5 (2) Å³ Z = 4

Data collection

Oxford Diffraction Gemini CCD S Ultra diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans, thick slices Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2009) $T_{\min} = 0.83, T_{\max} = 0.92$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.099$ S = 1.005288 reflections 307 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 2032 $D_x = 1.385 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9886 reflections $\theta = 3.8-28.9^{\circ}$ $\mu = 0.67 \text{ mm}^{-1}$ T = 295 KBlock, colourless $0.26 \times 0.20 \times 0.12 \text{ mm}$

9886 measured reflections 5288 independent reflections 3620 reflections with $I > 2\sigma(I)$ $R_{int} = 0.017$ $\theta_{max} = 28.9^{\circ}, \theta_{min} = 3.8^{\circ}$ $h = -20 \rightarrow 35$ $k = -14 \rightarrow 13$ $l = -22 \rightarrow 18$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0549P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.27$ e Å⁻³ $\Delta\rho_{min} = -0.40$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Znl	0.2500	0.2500	0.0000	0.03104 (10)	
S1	-0.22969 (2)	0.25503 (6)	0.20448 (5)	0.0654 (2)	
N1	0.18461 (6)	0.33489 (14)	0.05266 (9)	0.0338 (4)	
N2	0.05064 (6)	0.63117 (14)	0.11045 (10)	0.0349 (4)	
N3	0.01939 (8)	1.08964 (18)	0.11689 (15)	0.0706 (6)	
C1	0.14304 (7)	0.50523 (19)	0.10663 (13)	0.0438 (5)	
H1	0.1457	0.5843	0.1295	0.053*	
C2	0.18550 (7)	0.4475 (2)	0.08669 (13)	0.0446 (5)	
H2	0.2164	0.4891	0.0975	0.054*	
C3	0.13966 (8)	0.27750 (17)	0.04058 (13)	0.0367 (5)	
Н3	0.1381	0.1983	0.0179	0.044*	
C4	0.09553 (7)	0.32755 (17)	0.05944 (11)	0.0339 (4)	
H4	0.0654	0.2824	0.0500	0.041*	
C5	0.09622 (7)	0.44535 (16)	0.09254 (11)	0.0312 (4)	
C6	0.04921 (7)	0.50658 (17)	0.11032 (11)	0.0308 (4)	
C7	0.00698 (7)	0.43913 (17)	0.12383 (11)	0.0332 (4)	
H7	0.0076	0.3528	0.1224	0.040*	
C8	-0.03643 (6)	0.50110 (16)	0.13962 (11)	0.0307 (4)	
C9	-0.03453 (7)	0.63055 (17)	0.13924 (12)	0.0362 (4)	
H9	-0.0625	0.6761	0.1493	0.043*	
C10	0.00861 (7)	0.69151 (18)	0.12412 (12)	0.0339 (4)	
C11	0.01171 (7)	0.82965 (17)	0.12092 (12)	0.0375 (5)	
C12	-0.02682 (12)	0.9052 (2)	0.1351 (3)	0.1119 (15)	
H12	-0.0568	0.8709	0.1474	0.134*	
C13	-0.02166 (13)	1.0334 (3)	0.1314 (3)	0.1182 (15)	
H13	-0.0492	1.0822	0.1398	0.142*	
C14	0.05544 (10)	1.0158 (2)	0.10173 (18)	0.0715 (8)	
H14	0.0850	1.0523	0.0896	0.086*	
C15	0.05338 (9)	0.8878 (2)	0.10226 (16)	0.0563 (6)	
H15	0.0806	0.8416	0.0898	0.068*	
C16	-0.08256 (7)	0.43551 (16)	0.15548 (11)	0.0310 (4)	
C17	-0.08026 (7)	0.32421 (17)	0.19845 (11)	0.0336 (4)	
H17	-0.0488	0.2879	0.2163	0.040*	
C18	-0.12371 (7)	0.26613 (16)	0.21532 (12)	0.0363 (4)	
H18	-0.1211	0.1922	0.2448	0.044*	
C19	-0.17111 (7)	0.31761 (18)	0.18844 (12)	0.0358 (4)	
C20	-0.17422 (7)	0.42817 (19)	0.14415 (12)	0.0410 (5)	
H20	-0.2058	0.4633	0.1250	0.049*	
C21	-0.13062 (7)	0.48542 (18)	0.12868 (12)	0.0382 (5)	
H21	-0.1333	0.5596	0.0995	0.046*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C22	-0.21480 (9)	0.1278 (2)	0.27307 (14)	0.0592 (7)
H22A	-0.1993	0.0627	0.2459	0.089*
H22B	-0.2454	0.0973	0.2899	0.089*
H22C	-0.1916	0.1547	0.3204	0.089*
O1A	0.22421 (5)	0.07433 (12)	0.02249 (8)	0.0365 (3)
O2A	0.20393 (5)	0.24688 (12)	-0.11169 (8)	0.0370 (3)
C1A	0.18303 (10)	-0.1193 (2)	0.00482 (15)	0.0593 (6)
H1AA	0.2130	-0.1697	0.0077	0.089*
H1AB	0.1557	-0.1568	-0.0320	0.089*
H1AC	0.1737	-0.1124	0.0585	0.089*
C2A	0.19366 (7)	0.00850 (17)	-0.02625 (12)	0.0358 (4)
C3A	0.16957 (7)	0.04515 (19)	-0.10402 (12)	0.0397 (5)
H3A	0.1471	-0.0111	-0.1331	0.048*
C4A	0.17611 (7)	0.15876 (19)	-0.14219 (11)	0.0370 (5)
C5A	0.14763 (8)	0.1800 (2)	-0.22755 (13)	0.0527 (6)
H5AA	0.1342	0.2629	-0.2316	0.079*
H5AB	0.1202	0.1216	-0.2387	0.079*
H5AC	0.1703	0.1692	-0.2667	0.079*

Atomic displacement parameters (A^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.02582 (16)	0.02878 (16)	0.03907 (18)	0.00138 (14)	0.00684 (12)	-0.00130 (14)
S 1	0.0357 (3)	0.0678 (4)	0.0976 (5)	-0.0049 (3)	0.0255 (3)	0.0256 (4)
N1	0.0287 (8)	0.0311 (8)	0.0429 (9)	0.0038 (7)	0.0100 (7)	-0.0008 (7)
N2	0.0294 (8)	0.0283 (8)	0.0481 (9)	0.0011 (7)	0.0099 (7)	-0.0034 (7)
N3	0.0581 (13)	0.0297 (10)	0.126 (2)	-0.0050 (10)	0.0202 (13)	-0.0022 (11)
C1	0.0313 (10)	0.0363 (11)	0.0657 (14)	-0.0031 (9)	0.0139 (10)	-0.0183 (10)
C2	0.0264 (10)	0.0452 (12)	0.0634 (14)	-0.0027 (9)	0.0107 (9)	-0.0156 (10)
C3	0.0364 (11)	0.0272 (10)	0.0492 (12)	0.0019 (8)	0.0149 (9)	-0.0014 (8)
C4	0.0278 (9)	0.0281 (10)	0.0480 (11)	-0.0005 (8)	0.0125 (8)	0.0010 (8)
C5	0.0277 (9)	0.0301 (10)	0.0373 (10)	0.0034 (8)	0.0095 (8)	0.0013 (8)
C6	0.0264 (9)	0.0295 (10)	0.0370 (10)	0.0017 (8)	0.0065 (8)	-0.0013 (8)
C7	0.0300 (10)	0.0251 (9)	0.0457 (11)	0.0041 (8)	0.0101 (8)	-0.0008 (8)
C8	0.0247 (9)	0.0291 (10)	0.0385 (10)	0.0010 (8)	0.0058 (8)	0.0010 (8)
C9	0.0264 (9)	0.0289 (10)	0.0550 (12)	0.0061 (8)	0.0117 (9)	-0.0012 (9)
C10	0.0296 (10)	0.0264 (9)	0.0467 (11)	0.0026 (9)	0.0089 (9)	-0.0014 (9)
C11	0.0321 (10)	0.0263 (10)	0.0550 (12)	-0.0002 (9)	0.0092 (9)	-0.0016 (9)
C12	0.079 (2)	0.0289 (13)	0.251 (4)	-0.0045 (14)	0.097 (3)	-0.013 (2)
C13	0.087 (2)	0.0301 (13)	0.257 (5)	-0.0003 (15)	0.088 (3)	-0.017 (2)
C14	0.0485 (14)	0.0383 (13)	0.130 (2)	-0.0086 (12)	0.0225 (15)	0.0136 (15)
C15	0.0395 (12)	0.0360 (12)	0.0974 (19)	0.0035 (10)	0.0230 (13)	0.0088 (12)
C16	0.0261 (9)	0.0279 (9)	0.0404 (10)	0.0025 (8)	0.0092 (8)	-0.0028 (8)
C17	0.0282 (9)	0.0291 (10)	0.0431 (11)	0.0039 (8)	0.0046 (8)	0.0000 (8)
C18	0.0381 (11)	0.0269 (10)	0.0441 (11)	-0.0004 (9)	0.0074 (9)	0.0037 (8)
C19	0.0301 (10)	0.0354 (11)	0.0443 (11)	-0.0022 (9)	0.0127 (8)	-0.0015 (9)
C20	0.0241 (9)	0.0400 (11)	0.0597 (13)	0.0045 (9)	0.0097 (9)	0.0056 (10)
C21	0.0315 (10)	0.0339 (10)	0.0504 (12)	0.0047 (9)	0.0102 (9)	0.0106 (9)
C22	0.0713 (16)	0.0497 (13)	0.0650 (15)	-0.0122 (13)	0.0367 (13)	0.0003 (12)
O1A	0.0344 (7)	0.0313 (7)	0.0438 (7)	0.0009 (6)	0.0061 (6)	-0.0001 (6)

supplementary materials

O2A	0.0331 (7)	0.0374 (7)	0.0400 (7)	0.0010 (7)	0.0048 (6)	0.0012 (6)	
C1A	0.0687 (16)	0.0401 (12)	0.0701 (16)	-0.0137 (12)	0.0140 (13)	-0.0011 (12)	
C2A	0.0309 (10)	0.0303 (10)	0.0502 (12)	0.0009 (9)	0.0185 (9)	-0.0071 (9)	
C3A	0.0319 (10)	0.0418 (11)	0.0459 (11)	-0.0060 (9)	0.0079 (9)	-0.0102 (10)	
C4A	0.0255 (9)	0.0482 (12)	0.0390 (11)	0.0061 (9)	0.0105 (8)	-0.0070 (10)	
C5A	0.0404 (12)	0.0725 (17)	0.0439 (12)	0.0010(12)	0.0023 (10)	0.0009 (12)	

Geometric parameters (Å, °)

Zn1—O2A ⁱ	2.0448 (13)	C12—C13	1.390 (3)
Zn1—O2A	2.0448 (13)	C12—H12	0.9300
Zn1—O1A ⁱ	2.0667 (12)	С13—Н13	0.9300
Zn1—O1A	2.0667 (12)	C14—C15	1.380 (3)
Zn1—N1 ⁱ	2.2607 (14)	C14—H14	0.9300
Zn1—N1	2.2607 (14)	С15—Н15	0.9300
S1—C19	1.7586 (18)	C16—C17	1.389 (2)
S1—C22	1.781 (2)	C16—C21	1.394 (2)
N1—C3	1.334 (2)	C17—C18	1.383 (2)
N1—C2	1.335 (2)	С17—Н17	0.9300
N2—C6	1.342 (2)	C18—C19	1.386 (3)
N2—C10	1.345 (2)	C18—H18	0.9300
N3—C14	1.302 (3)	C19—C20	1.393 (3)
N3—C13	1.306 (3)	C20—C21	1.375 (2)
C1—C2	1.376 (2)	С20—Н20	0.9300
C1—C5	1.391 (2)	C21—H21	0.9300
C1—H1	0.9300	C22—H22A	0.9600
C2—H2	0.9300	С22—Н22В	0.9600
C3—C4	1.374 (2)	C22—H22C	0.9600
С3—Н3	0.9300	O1A—C2A	1.266 (2)
C4—C5	1.380 (2)	O2A—C4A	1.259 (2)
C4—H4	0.9300	C1A—C2A	1.511 (3)
C5—C6	1.486 (2)	C1A—H1AA	0.9600
C6—C7	1.387 (2)	C1A—H1AB	0.9600
С7—С8	1.396 (2)	C1A—H1AC	0.9600
С7—Н7	0.9300	C2A—C3A	1.397 (3)
C8—C9	1.395 (2)	C3A—C4A	1.400 (3)
C8—C16	1.477 (2)	СЗА—НЗА	0.9300
C9—C10	1.381 (2)	C4A—C5A	1.507 (3)
С9—Н9	0.9300	C5A—H5AA	0.9600
C10—C11	1.492 (3)	C5A—H5AB	0.9600
C11—C15	1.353 (3)	C5A—H5AC	0.9600
C11—C12	1.359 (3)		
	100.00 (0)		104.1 (2)
$O2A^{i}$ ZnI $O2A^{i}$	180.00 (9)	N3-C13-C12	124.1 (3)
O_2A^{-} Zn1 $-O_1A^{-}$	88./2 (S)	N5	117.9
$O_2A - Zn_1 - O_1A^1$	91.28 (5)	C12—C13—H13	11/.9
O_2A^{-} ZnI $-O_1A$	91.28 (5)	N3-C14-C15	125.3 (2)
U2A—Zn1—U1A	88.72 (5)	$N_{3} - C_{14} - H_{14}$	11/.4
UIA Znl UIA	180.00 (8)	C15—C14—H14	11/.4
$O2A^{i}$ —Zn1—N1 ⁱ	87.95 (5)	C11—C15—C14	119.9 (2)

O2A—Zn1—N1 ⁱ	92.05 (5)	C11—C15—H15	120.0
O1A ⁱ —Zn1—N1 ⁱ	90.14 (5)	C14—C15—H15	120.0
O1A—Zn1—N1 ⁱ	89.86 (5)	C17—C16—C21	117.25 (17)
O2A ⁱ —Zn1—N1	92.05 (5)	C17—C16—C8	122.22 (16)
O2A—Zn1—N1	87.95 (5)	C21—C16—C8	120.52 (16)
O1A ⁱ —Zn1—N1	89.86 (5)	C18—C17—C16	121.54 (17)
O1A—Zn1—N1	90.14 (5)	С18—С17—Н17	119.2
N1 ⁱ —Zn1—N1	180.00 (7)	С16—С17—Н17	119.2
C19—S1—C22	106.11 (11)	C17—C18—C19	120.28 (17)
C3—N1—C2	116.04 (16)	C17—C18—H18	119.9
C3—N1—Zn1	118.94 (12)	C19—C18—H18	119.9
C2—N1—Zn1	124.46 (13)	C18—C19—C20	118.99 (17)
C6—N2—C10	117.34 (16)	C18—C19—S1	125.74 (15)
C14 - N3 - C13	114.7 (2)	C20—C19—S1	115.27 (15)
C2-C1-C5	120.03 (18)	C21—C20—C19	119.99 (18)
C2—C1—H1	120.0	C21—C20—H20	120.0
C5-C1-H1	120.0	C19—C20—H20	120.0
N1-C2-C1	123.42 (18)	C_{20} C_{21} C_{16}	121.93 (17)
N1—C2—H2	118.3	C20—C21—H21	119.0
C1—C2—H2	118.3	C16—C21—H21	119.0
N1—C3—C4	124.40 (17)	S1—C22—H22A	109.5
N1—C3—H3	117.8	S1—C22—H22B	109.5
С4—С3—Н3	117.8	H22A—C22—H22B	109.5
C3—C4—C5	119.50 (17)	S1—C22—H22C	109.5
C3—C4—H4	120.2	H22A—C22—H22C	109.5
C5—C4—H4	120.2	H22B—C22—H22C	109.5
C4—C5—C1	116.57 (16)	C2A—O1A—Zn1	126.67 (12)
C4—C5—C6	121.86 (16)	C4A—O2A—Zn1	127.10 (12)
C1—C5—C6	121.55 (16)	C2A—C1A—H1AA	109.5
N2—C6—C7	123.14 (17)	C2A—C1A—H1AB	109.5
N2—C6—C5	114.80 (16)	H1AA—C1A—H1AB	109.5
C7—C6—C5	122.04 (16)	C2A—C1A—H1AC	109.5
C6—C7—C8	119.83 (16)	H1AA—C1A—H1AC	109.5
С6—С7—Н7	120.1	H1AB—C1A—H1AC	109.5
С8—С7—Н7	120.1	O1A—C2A—C3A	125.43 (17)
C9—C8—C7	116.45 (16)	O1A—C2A—C1A	115.52 (19)
C9—C8—C16	120.70 (16)	C3A—C2A—C1A	119.04 (19)
C7—C8—C16	122.85 (16)	C2A—C3A—C4A	126.04 (19)
С10—С9—С8	120.52 (17)	С2А—С3А—НЗА	117.0
С10—С9—Н9	119.7	С4А—С3А—НЗА	117.0
С8—С9—Н9	119.7	O2A—C4A—C3A	125.94 (19)
N2—C10—C9	122.70 (17)	O2A—C4A—C5A	115.83 (19)
N2—C10—C11	115.07 (16)	C3A—C4A—C5A	118.24 (19)
C9—C10—C11	122.22 (16)	С4А—С5А—Н5АА	109.5
C15—C11—C12	115.62 (19)	С4А—С5А—Н5АВ	109.5
C15—C11—C10	121.49 (17)	Н5АА—С5А—Н5АВ	109.5
C12—C11—C10	122.89 (18)	C4A—C5A—H5AC	109.5
C11—C12—C13	120.3 (2)	Н5АА—С5А—Н5АС	109.5

supplementary materials

C11—C12—H12	119.9	H5AB—C5A—H5AC	109.5
C13—C12—H12	119.9		

Symmetry code: (i) -x+1/2, -y+1/2, -z.

Hydrogen-bond geometry (Å, °)

Table 1. C—H··· π contacts in (I) (Å, °).

Cg1 is the centroid of the Zn1/O1A/C2A/C3A/C4A/O2A chelate ring and Cg2 is the centroid of the N1/C1–C5 pyridine ring.

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
$C2$ — $H2$ ··· $Cg1^i$	0.93	2.66	3.187 (2)	116
C3—H3…Cg1	0.93	2.43	3.001 (2)	120
C21—H21···Cg2 ⁱⁱ	0.93	2.87	3.560 (2)	132

Symmetry codes: (i) -*x*+1/2, -*y*+1/2, -*z*; (ii) -*x*, -*y*+1, -*z*.

(II) { μ -4'-[4-(methylsulfanyl)phenyl]-4,2':6',4''-terpyridine- $\kappa^2 N^1:N^{1''}$ }bis[bis(acetylacetonato- $\kappa^2 O,O'$)zinc(II)]

Crystal data $[Zn_2(C_5H_7O_2)_4(C_{22}H_{17}N_3S)]$ F(000) = 1832 $M_r = 882.61$ $D_{\rm x} = 1.344 \text{ Mg m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc Cell parameters from 27845 reflections a = 14.1522 (3) Å $\theta = 3.9 - 29.0^{\circ}$ b = 13.4408 (3) Å $\mu = 1.20 \text{ mm}^{-1}$ c = 23.3887 (5) ÅT = 295 K $\beta = 101.342 \ (2)^{\circ}$ Polyhedra, colourless $V = 4362.05 (16) \text{ Å}^3$ $0.32 \times 0.16 \times 0.14$ mm Z = 4Data collection

Oxford Diffraction Gemini CCD S Ultra	27845 measured reflections
diffractometer	9862 independent reflections
Radiation source: fine-focus sealed tube	6308 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.028$
ω scans, thick slices	$\theta_{\rm max} = 29.0^{\circ}, \ \theta_{\rm min} = 3.9^{\circ}$
Absorption correction: multi-scan	$h = -17 \rightarrow 18$
(CrysAlis PRO; Oxford Diffraction, 2009)	$k = -15 \rightarrow 18$
$T_{\min} = 0.80, \ T_{\max} = 0.85$	$l = -30 \rightarrow 31$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.034$ Hydrogen site location: inferred from $wR(F^2) = 0.087$ neighbouring sites S = 0.98H-atom parameters constrained 9862 reflections $w = 1/[\sigma^2(F_o^2) + (0.0451P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$ 505 parameters 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$ Primary atom site location: structure-invariant direct methods $\Delta \rho_{\rm min} = -0.35 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Znl	0.218436 (19)	-0.023500 (19)	0.349827 (10)	0.04179 (8)	
Zn2	0.249447 (19)	0.788509 (17)	0.095196 (11)	0.04252 (8)	
S 1	0.26203 (8)	-0.04367 (6)	-0.22174 (3)	0.0864 (3)	
N1	0.23827 (13)	0.03543 (12)	0.27084 (7)	0.0402 (4)	
N2	0.26390 (13)	0.27281 (12)	0.11112 (7)	0.0384 (4)	
N3	0.26336 (12)	0.63883 (12)	0.08122 (7)	0.0377 (4)	
C1	0.2783 (2)	0.17360 (18)	0.21648 (9)	0.0622 (7)	
H1	0.3006	0.2388	0.2170	0.075*	
C2	0.2695 (2)	0.12781 (17)	0.26771 (9)	0.0654 (8)	
H2	0.2863	0.1638	0.3022	0.079*	
C3	0.2163 (2)	-0.01285 (16)	0.22092 (10)	0.0577 (7)	
H3	0.1953	-0.0783	0.2215	0.069*	
C4	0.2229 (2)	0.02835 (16)	0.16801 (10)	0.0609 (7)	
H4	0.2055	-0.0090	0.1341	0.073*	
C5	0.25462 (16)	0.12378 (14)	0.16501 (9)	0.0376 (5)	
C6	0.25986 (15)	0.17335 (15)	0.10865 (8)	0.0357 (5)	
C7	0.25918 (16)	0.12118 (15)	0.05764 (8)	0.0403 (5)	
H7	0.2567	0.0520	0.0579	0.048*	
C8	0.26220 (14)	0.17133 (14)	0.00593 (8)	0.0347 (5)	
C9	0.26433 (16)	0.27450 (14)	0.00884 (9)	0.0387 (5)	
Н9	0.2649	0.3117	-0.0246	0.046*	
C10	0.26559 (15)	0.32220 (14)	0.06159 (8)	0.0347 (5)	
C11	0.26723 (15)	0.43249 (14)	0.06757 (8)	0.0356 (5)	
C12	0.25005 (16)	0.49616 (14)	0.01986 (9)	0.0394 (5)	
H12	0.2400	0.4705	-0.0178	0.047*	
C13	0.24805 (15)	0.59650 (15)	0.02846 (9)	0.0404 (5)	
H13	0.2354	0.6377	-0.0041	0.049*	
C14	0.28264 (18)	0.57757 (15)	0.12719 (9)	0.0492 (6)	
H14	0.2954	0.6052	0.1644	0.059*	
C15	0.28448 (19)	0.47635 (16)	0.12209 (9)	0.0495 (6)	
H15	0.2974	0.4369	0.1554	0.059*	
C16	0.26189 (15)	0.11671 (14)	-0.04945 (8)	0.0355 (5)	
C17	0.24822 (17)	0.01453 (15)	-0.05372 (9)	0.0433 (5)	
H17	0.2403	-0.0210	-0.0208	0.052*	
C18	0.24604 (17)	-0.03592 (16)	-0.10542 (9)	0.0475 (6)	
H18	0.2360	-0.1043	-0.1069	0.057*	
C19	0.25856 (18)	0.01415 (16)	-0.15492 (9)	0.0463 (6)	
C20	0.27351 (19)	0.11550 (17)	-0.15099 (10)	0.0544 (6)	
H20	0.2826	0.1505	-0.1838	0.065*	
C21	0.27534 (18)	0.16609 (17)	-0.09943 (9)	0.0498 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H21	0.2858	0.2344	-0.0981	0.060*
C22	0.2009 (3)	-0.1586 (2)	-0.21953 (13)	0.0987 (12)
H22A	0.2369	-0.2000	-0.1895	0.148*
H22B	0.1946	-0.1915	-0.2565	0.148*
H22C	0.1380	-0.1464	-0.2113	0.148*
O1A	0.29796 (13)	-0.13868 (11)	0.38313 (7)	0.0583 (4)
O2A	0.32724 (11)	0.07003 (11)	0.39319 (6)	0.0442 (4)
C1A	0.4306 (3)	-0.2400 (2)	0.42020 (16)	0.1062 (13)
H1AA	0.4051	-0.2677	0.4519	0.159*
H1AB	0.4993	-0.2341	0.4315	0.159*
H1AC	0.4148	-0.2828	0.3868	0.159*
C2A	0.3871 (2)	-0.13828 (19)	0.40509 (11)	0.0607 (7)
C3A	0.4441 (2)	-0.0551 (2)	0.41636 (12)	0.0673 (7)
H3A	0.5097	-0.0655	0.4294	0.081*
C4A	0.41288 (18)	0.04379 (18)	0.41012 (10)	0.0496 (6)
C5A	0.4852 (2)	0.1264 (2)	0.42386 (16)	0.0896 (10)
H5AA	0.5053	0.1469	0.3888	0.134*
H5AB	0.5402	0.1034	0.4516	0.134*
H5AC	0.4565	0.1817	0.4400	0.134*
O1B	0.13151 (12)	0.05352 (13)	0.38961 (7)	0.0612 (4)
O2B	0.10714 (13)	-0.11416 (14)	0.31358 (7)	0.0686 (5)
C1B	0.0021 (3)	0.0937 (3)	0.4345 (2)	0.1332 (16)
H1BA	0.0508	0.1150	0.4668	0.200*
H1BB	-0.0463	0.0563	0.4487	0.200*
HIBC	-0.0270	0.1508	0.4135	0.200*
C2B	0.0472 (2)	0.0294 (3)	0.39461 (14)	0.0772 (9)
C3B	-0.0035(2)	-0.0486(3)	0.36671 (17)	0.0913(10)
H3B	-0.0644	-0.0592	0 3749	0.110*
C4B	0.0249(2)	-0.1140(2)	0.32762(13)	0.0753 (9)
C5B	-0.0453(3)	-0.1923(3)	0.29922(16)	0.1174 (14)
H5BA	-0.0819	-0.1669	0.2632	0.176*
H5BR	-0.0882	-0.2093	0.3248	0.176*
H5BC	-0.0105	-0.2505	0.2915	0.176*
010	0.33071 (13)	0.78156 (11)	0.17868 (7)	0.0557(4)
020	0.34574(12)	0.87955 (12)	0.17399(8)	0.0557(1)
C1C	0.54574(12) 0.4520(3)	0.8109 (3)	0.07377(0)	0.0002(3)
HICA	0.4077	0.8336	0.2847	0.177*
HICR	0.5109	0.8550	0.2710	0.177*
HICC	0.4651	0.7415	0.2685	0.177*
	0.4031 0.4070 (2)	0.7413 0.8261 (2)	0.10713 (11)	0.177
C2C	0.4079(2) 0.4542(2)	0.8201(2) 0.8875(2)	0.19713(11) 0.16381(15)	0.0037(7)
H3C	0.4342 (2)	0.0075 (2)	0.1824	0.0792 (9)
	0.3121 0.4228(2)	0.9109	0.1024 0.10508 (15)	0.095
C4C	0.4228(2) 0.4834(2)	0.9100(2) 0.0787(3)	0.10398(13) 0.07552(10)	0.0093(8)
	0.4834 (2)	0.9787 (5)	0.07552 (19)	0.1101(13) 0.177*
HJCA H5CB	0.5100	1 0127	0.0508	0.177*
	0.3302	1.0127	0.1042	0.177*
	0.4423	1.0200 0.81287 (12)	0.0323	0.1/7
	0.10303(14) 0.12678(12)	0.01207(13) 0.81541(12)	0.01404(7) 0.12117(7)	0.0043(3)
020	0.13070(13)	0.01341 (13)	0.13117(7)	0.0012(3)

C1D	0.0275 (2)	0.8421 (3)	-0.05845 (13)	0.1007 (11)
H1DA	0.0682	0.8756	-0.0806	0.151*
H1DB	-0.0323	0.8775	-0.0619	0.151*
H1DC	0.0150	0.7756	-0.0730	0.151*
C2D	0.0774 (2)	0.83809 (19)	0.00505 (12)	0.0621 (7)
C3D	0.0246 (2)	0.8601 (3)	0.04699 (15)	0.0855 (9)
H3D	-0.0368	0.8861	0.0343	0.103*
C4D	0.0549 (2)	0.8469 (3)	0.10617 (14)	0.0808 (9)
C5D	-0.0148 (3)	0.8663 (5)	0.14618 (18)	0.178 (3)
H5DA	-0.0336	0.8042	0.1609	0.267*
H5DB	-0.0708	0.8997	0.1249	0.267*
H5DC	0.0157	0.9073	0.1781	0.267*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.04805 (16)	0.04775 (16)	0.03023 (13)	-0.00284 (12)	0.00929 (11)	0.00155 (11)
Zn2	0.05416 (17)	0.02841 (13)	0.04535 (15)	-0.00145 (12)	0.01067 (12)	0.00171 (11)
S1	0.1568 (8)	0.0639 (5)	0.0494 (4)	-0.0240 (5)	0.0473 (5)	-0.0213 (3)
N1	0.0592 (12)	0.0317 (10)	0.0301 (9)	-0.0006 (9)	0.0098 (8)	0.0002 (8)
N2	0.0548 (11)	0.0292 (9)	0.0330 (9)	-0.0001 (8)	0.0130 (8)	0.0009 (7)
N3	0.0507 (11)	0.0297 (9)	0.0343 (9)	0.0014 (8)	0.0126 (8)	0.0011 (8)
C1	0.111 (2)	0.0370 (12)	0.0348 (13)	-0.0201 (14)	0.0054 (13)	0.0020 (10)
C2	0.124 (2)	0.0419 (14)	0.0273 (12)	-0.0168 (15)	0.0075 (14)	-0.0045 (10)
C3	0.108 (2)	0.0307 (12)	0.0384 (12)	-0.0150 (13)	0.0236 (13)	-0.0036 (10)
C4	0.121 (2)	0.0328 (12)	0.0343 (12)	-0.0124 (14)	0.0277 (14)	-0.0076 (10)
C5	0.0529 (13)	0.0287 (11)	0.0335 (11)	0.0050 (10)	0.0145 (10)	0.0017 (9)
C6	0.0464 (12)	0.0290 (10)	0.0334 (11)	0.0026 (10)	0.0121 (9)	0.0026 (9)
C7	0.0605 (14)	0.0268 (11)	0.0358 (11)	0.0019 (10)	0.0146 (10)	0.0005 (9)
C8	0.0429 (12)	0.0309 (11)	0.0316 (10)	0.0006 (9)	0.0100 (9)	-0.0003 (9)
C9	0.0549 (14)	0.0317 (12)	0.0316 (11)	0.0005 (10)	0.0139 (10)	0.0030 (9)
C10	0.0443 (12)	0.0295 (11)	0.0317 (11)	0.0002 (9)	0.0110 (9)	0.0012 (9)
C11	0.0473 (12)	0.0297 (11)	0.0322 (11)	-0.0005 (10)	0.0133 (9)	0.0018 (9)
C12	0.0591 (14)	0.0316 (11)	0.0280 (10)	0.0012 (10)	0.0098 (10)	-0.0006 (8)
C13	0.0533 (14)	0.0365 (12)	0.0320 (11)	0.0013 (10)	0.0095 (10)	0.0061 (9)
C14	0.0880 (18)	0.0310 (12)	0.0300 (11)	-0.0034 (12)	0.0146 (11)	-0.0018 (10)
C15	0.0857 (18)	0.0324 (12)	0.0313 (11)	0.0009 (12)	0.0140 (11)	0.0049 (10)
C16	0.0462 (12)	0.0319 (11)	0.0302 (10)	0.0008 (9)	0.0114 (9)	0.0005 (8)
C17	0.0671 (16)	0.0307 (11)	0.0344 (11)	-0.0009 (11)	0.0160 (11)	0.0030 (9)
C18	0.0687 (16)	0.0324 (12)	0.0445 (12)	-0.0020 (11)	0.0188 (12)	-0.0067 (10)
C19	0.0644 (15)	0.0427 (13)	0.0350 (12)	-0.0003 (12)	0.0178 (11)	-0.0049 (10)
C20	0.0902 (19)	0.0416 (13)	0.0371 (12)	-0.0052 (13)	0.0263 (12)	0.0015 (10)
C21	0.0827 (18)	0.0316 (12)	0.0385 (12)	-0.0055 (12)	0.0203 (12)	0.0004 (10)
C22	0.155 (3)	0.074 (2)	0.071 (2)	-0.033 (2)	0.033 (2)	-0.0329 (17)
O1A	0.0686 (12)	0.0476 (10)	0.0546 (10)	-0.0011 (9)	0.0021 (9)	0.0064 (8)
O2A	0.0454 (9)	0.0482 (9)	0.0375 (8)	-0.0003 (8)	0.0044 (7)	-0.0012 (7)
C1A	0.121 (3)	0.0625 (19)	0.116 (3)	0.030 (2)	-0.023 (2)	0.000 (2)
C2A	0.0713 (19)	0.0572 (16)	0.0502 (15)	0.0129 (15)	0.0034 (13)	0.0033 (12)
C3A	0.0494 (16)	0.0669 (18)	0.0803 (19)	0.0096 (14)	0.0000 (14)	0.0039 (15)
C4A	0.0460 (15)	0.0612 (16)	0.0408 (12)	-0.0044 (12)	0.0070 (11)	-0.0001 (11)

C5A	0.0578 (18)	0.083 (2)	0.121 (3)	-0.0132 (16)	0.0003 (17)	0.009 (2)
O1B	0.0530 (11)	0.0768 (12)	0.0559 (10)	0.0093 (9)	0.0160 (8)	-0.0014 (9)
O2B	0.0654 (12)	0.0812 (13)	0.0585 (11)	-0.0264 (10)	0.0101 (9)	-0.0053 (9)
C1B	0.096 (3)	0.154 (4)	0.168 (4)	0.044 (3)	0.069 (3)	-0.013 (3)
C2B	0.0530 (18)	0.100 (2)	0.082 (2)	0.0240 (18)	0.0224 (16)	0.0166 (19)
C3B	0.0545 (19)	0.123 (3)	0.100 (3)	-0.007 (2)	0.0243 (18)	0.004 (2)
C4B	0.0608 (19)	0.094 (2)	0.0652 (19)	-0.0268 (18)	-0.0027 (15)	0.0240 (17)
C5B	0.088 (2)	0.143 (3)	0.112 (3)	-0.061 (2)	-0.003 (2)	0.007 (2)
O1C	0.0653 (11)	0.0541 (10)	0.0454 (9)	-0.0117 (9)	0.0051 (8)	0.0002 (8)
O2C	0.0584 (11)	0.0524 (10)	0.0694 (11)	-0.0072 (9)	0.0112 (9)	0.0201 (9)
C1C	0.093 (3)	0.185 (4)	0.066 (2)	-0.024 (3)	-0.0092 (18)	0.002 (2)
C2C	0.0586 (17)	0.0739 (18)	0.0560 (16)	0.0018 (15)	0.0053 (13)	-0.0048 (14)
C3C	0.0532 (17)	0.087 (2)	0.092 (2)	-0.0222 (16)	0.0011 (16)	0.0018 (18)
C4C	0.0488 (17)	0.0579 (17)	0.103 (2)	-0.0007 (14)	0.0177 (16)	0.0238 (17)
C5C	0.066 (2)	0.125 (3)	0.165 (4)	-0.021 (2)	0.025 (2)	0.069 (3)
O1D	0.0656 (12)	0.0698 (12)	0.0556 (11)	0.0053 (10)	0.0075 (9)	0.0172 (9)
O2D	0.0557 (11)	0.0717 (12)	0.0562 (10)	0.0030 (9)	0.0112 (9)	-0.0194 (9)
C1D	0.084 (2)	0.131 (3)	0.076 (2)	-0.007 (2)	-0.0116 (17)	0.028 (2)
C2D	0.0652 (19)	0.0494 (15)	0.0649 (17)	-0.0096 (14)	-0.0036 (15)	0.0109 (13)
C3D	0.0575 (18)	0.107 (3)	0.086 (2)	0.0180 (18)	-0.0005 (17)	0.0000 (19)
C4D	0.062 (2)	0.105 (2)	0.074 (2)	0.0068 (18)	0.0116 (17)	-0.0230 (18)
C5D	0.080 (3)	0.362 (8)	0.096 (3)	0.056 (4)	0.027 (2)	-0.039 (4)

Geometric parameters (Å, °)

Zn1—O1B	1.9752 (17)	C22—H22B	0.9600
Zn1—O1A	1.9812 (16)	C22—H22C	0.9600
Zn1—O2B	2.0394 (17)	O1A—C2A	1.265 (3)
Zn1—N1	2.0793 (16)	O2A—C4A	1.250 (3)
Zn1—O2A	2.0894 (15)	C1A—C2A	1.513 (4)
Zn2—O2C	1.9663 (16)	C1A—H1AA	0.9600
Zn2—O2D	1.9770 (17)	C1A—H1AB	0.9600
Zn2—N3	2.0538 (16)	C1A—H1AC	0.9600
Zn2—O1D	2.0560 (17)	C2A—C3A	1.373 (4)
Zn2—O1C	2.0641 (16)	C3A—C4A	1.399 (3)
S1—C19	1.755 (2)	СЗА—НЗА	0.9300
S1—C22	1.777 (3)	C4A—C5A	1.502 (3)
N1—C3	1.318 (3)	С5А—Н5АА	0.9600
N1-C2	1.325 (3)	C5A—H5AB	0.9600
N2C6	1.339 (3)	С5А—Н5АС	0.9600
N2-C10	1.340 (2)	O1B—C2B	1.264 (3)
N3—C13	1.337 (2)	O2B—C4B	1.270 (3)
N3—C14	1.339 (3)	C1B—C2B	1.503 (4)
C1—C5	1.361 (3)	C1B—H1BA	0.9600
C1—C2	1.375 (3)	C1B—H1BB	0.9600
C1—H1	0.9300	C1B—H1BC	0.9600
С2—Н2	0.9300	C2B—C3B	1.363 (5)
C3—C4	1.375 (3)	C3B—C4B	1.383 (4)
С3—Н3	0.9300	C3B—H3B	0.9300
C4—C5	1.365 (3)	C4B—C5B	1.509 (4)

C4—H4	0.9300	C5B—H5BA	0.9600
C5—C6	1.492 (3)	C5B—H5BB	0.9600
C6—C7	1.382 (3)	C5B—H5BC	0.9600
C7—C8	1.393 (3)	01C—C2C	1.246 (3)
С7—Н7	0.9300	O2C—C4C	1.266 (3)
C8—C9	1.388 (3)	C1C—C2C	1.520 (4)
C8—C16	1.488 (3)	C1C—H1CA	0.9600
C9—C10	1.387 (3)	C1C—H1CB	0.9600
С9—Н9	0.9300	C1C—H1CC	0.9600
C10—C11	1.489 (3)	C2C—C3C	1.385 (4)
C11—C15	1.382 (3)	C3C—C4C	1.374 (4)
C11—C12	1.389 (3)	СЗС—НЗС	0.9300
C12—C13	1.365 (3)	C4C—C5C	1.523 (4)
C12—H12	0.9300	C5C—H5CA	0.9600
C13—H13	0.9300	С5С—Н5СВ	0.9600
C14—C15	1.366 (3)	C5C—H5CC	0.9600
C14—H14	0.9300	O1D—C2D	1.247 (3)
C15—H15	0.9300	O2D—C4D	1.264 (3)
C16—C17	1.388 (3)	C1D—C2D	1.515 (4)
C16—C21	1.389 (3)	C1D—H1DA	0.9600
C17—C18	1.381 (3)	C1D—H1DB	0.9600
С17—Н17	0.9300	C1D—H1DC	0.9600
C18—C19	1.380 (3)	C2D—C3D	1.377 (4)
C18—H18	0.9300	C3D—C4D	1.377 (4)
C19—C20	1.379 (3)	C3D—H3D	0.9300
C20—C21	1.380 (3)	C4D—C5D	1.509 (4)
C20—H20	0.9300	C5D—H5DA	0.9600
C21—H21	0.9300	C5D—H5DB	0.9600
C22—H22A	0.9600	C5D—H5DC	0.9600
O1B—Zn1—O1A	125.64 (7)	H22A—C22—H22C	109.5
O1B—Zn1—O2B	90.42 (8)	H22B—C22—H22C	109.5
O1A—Zn1—O2B	91.67 (7)	C2A—O1A—Zn1	126.89 (16)
O1B—Zn1—N1	115.11 (7)	C4A—O2A—Zn1	124.07 (15)
O1A—Zn1—N1	118.78 (7)	C2A—C1A—H1AA	109.5
O2B—Zn1—N1	94.96 (7)	C2A—C1A—H1AB	109.5
O1B—Zn1—O2A	85.63 (7)	H1AA—C1A—H1AB	109.5
O1A—Zn1—O2A	88.39 (6)	C2A—C1A—H1AC	109.5
O2B—Zn1—O2A	175.17 (7)	H1AA—C1A—H1AC	109.5
N1—Zn1—O2A	89.24 (6)	H1AB—C1A—H1AC	109.5
O2C—Zn2—O2D	130.58 (7)	O1A—C2A—C3A	125.6 (2)
O2C—Zn2—N3	118.46 (7)	O1A—C2A—C1A	114.7 (3)
O2D—Zn2—N3	110.95 (7)	C3A—C2A—C1A	119.6 (3)
O2C—Zn2—O1D	88.99 (7)	C2A—C3A—C4A	126.3 (2)
O2D—Zn2—O1D	88.94 (7)	С2А—С3А—Н3А	116.9
N3—Zn2—O1D	93.89 (7)	С4А—С3А—Н3А	116.9
O2C—Zn2—O1C	88.96 (7)	O2A—C4A—C3A	124.6 (2)
O2D—Zn2—O1C	87.23 (7)	O2A—C4A—C5A	115.9 (2)
N3—Zn2—O1C	93.05 (6)	C3A—C4A—C5A	119.5 (2)

O1D—Zn2—O1C	172.91 (7)	С4А—С5А—Н5АА	109.5
C19—S1—C22	105.07 (12)	C4A—C5A—H5AB	109.5
C3—N1—C2	115.83 (18)	Н5АА—С5А—Н5АВ	109.5
C3—N1—Zn1	123.36 (14)	C4A—C5A—H5AC	109.5
C2—N1—Zn1	120.71 (14)	Н5АА—С5А—Н5АС	109.5
C6—N2—C10	117.73 (16)	Н5АВ—С5А—Н5АС	109.5
C13—N3—C14	116.73 (17)	C2B—O1B—Zn1	126.6 (2)
C13—N3—Zn2	124.09 (13)	C4B—O2B—Zn1	124.3 (2)
C14—N3—Zn2	119.03 (13)	C2B—C1B—H1BA	109.5
C5—C1—C2	120.1 (2)	C2B—C1B—H1BB	109.5
C5—C1—H1	119.9	H1BA—C1B—H1BB	109.5
C2—C1—H1	119.9	C2B—C1B—H1BC	109.5
N1—C2—C1	123.8 (2)	H1BA—C1B—H1BC	109.5
N1—C2—H2	118.1	H1BB—C1B—H1BC	109.5
C1—C2—H2	118.1	O1B—C2B—C3B	124.8 (3)
N1—C3—C4	123.6 (2)	O1B—C2B—C1B	115.7 (3)
N1—C3—H3	118.2	C3B—C2B—C1B	119.4 (3)
C4—C3—H3	118.2	C2B-C3B-C4B	127.6 (3)
C5-C4-C3	120.4 (2)	C2B—C3B—H3B	116.2
C5—C4—H4	119.8	C4B—C3B—H3B	116.2
C3—C4—H4	119.8	O2B-C4B-C3B	124.9(3)
C1C5C4	116.31 (19)	O2B-C4B-C5B	116.2(3)
C1 - C5 - C6	121.03 (18)	C3B-C4B-C5B	118.2(3)
C4-C5-C6	122.63 (18)	C4B-C5B-H5BA	109 5
N_{2} C6 C7	122.01 (10)	C4B-C5B-H5BB	109.5
$N_2 - C_6 - C_5$	114 64 (16)	H5BA_C5B_H5BB	109.5
C_{7} C_{6} C_{5}	122.89 (17)	C4B-C5B-H5BC	109.5
$C_{1}^{-} = C_{1}^{-} = C_{2}^{-}$	122.09(17) 120.52(18)	H5BA = C5B = H5BC	109.5
C6 C7 H7	110 7	H5BB C5B H5BC	109.5
C_{0} C_{7} H_{7}	119.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
C_{3} C_{8} C_{7}	119.7	$C_{2}C_{-}O_{1}C_{-}Z_{1}Z_{2}$	120.40(10) 127.00(17)
$C_{2} = C_{3} = C_{1}$	110.43(17) 122.11(17)	$C_{1}C_{1}C_{2}C_{2}C_{2}C_{1}C_{1}C_{1}C_{1}C_{1}C_{1}C_{1}C_{1$	127.99 (17)
$C_{2} = C_{3} = C_{10}$	122.11(17) 121.46(17)	C2C C1C H1CR	109.5
$C_{10} = C_{10} = C_{10}$	121.40(17) 120.00(18)		109.5
$C_{10} = C_{9} = C_{8}$	120.09 (18)	COC CIC UICC	109.5
$C_{10} C_{9} H_{9}$	120.0		109.5
C8-C9-H9	120.0	HICA—CIC—HICC	109.5
N2-C10-C1	122.74(17)	HICB—CIC—HICC	109.5
N2 = C10 = C11	114.50 (16)	010 - 020 - 030	124.8 (3)
	122.75 (17)		116.0 (3)
C15-C11-C12	116./1 (18)		119.2 (3)
	120.54 (17)	C4C - C3C - C2C	126.3 (3)
	122.74 (17)	C4C—C3C—H3C	116.9
C13—C12—C11	119.71 (18)	$C_2C_{-C_3C_{-H_3C_3C_3C_3C_3C_3C_3C_3C_3C_3C_3C_3C_3C_$	116.9
C13—C12—H12	120.1	020-040-030	125.5 (2)
U11	120.1	020 - 040 - 050	114.9 (3)
N3-C13-C12	123.53 (18)	$C_3C - C_4C - C_5C$	119.6 (3)
N3-C13-H13	118.2	C4C—C5C—H5CA	109.5
C12—C13—H13	118.2	C4C—C5C—H5CB	109.5
N3-C14-C15	123.13 (19)	нэса—сэс—нэсв	109.5

N3—C14—H14	118.4	C4C—C5C—H5CC	109.5
C15—C14—H14	118.4	H5CA—C5C—H5CC	109.5
C14—C15—C11	120.15 (19)	H5CB—C5C—H5CC	109.5
C14—C15—H15	119.9	C2D—O1D—Zn2	126.08 (18)
C11—C15—H15	119.9	C4D—O2D—Zn2	127.40 (19)
C17—C16—C21	116.91 (18)	C2D—C1D—H1DA	109.5
C17—C16—C8	121.82 (17)	C2D—C1D—H1DB	109.5
C21—C16—C8	121.27 (18)	H1DA—C1D—H1DB	109.5
C18—C17—C16	121.83 (19)	C2D—C1D—H1DC	109.5
C18—C17—H17	119.1	H1DA—C1D—H1DC	109.5
С16—С17—Н17	119.1	H1DB—C1D—H1DC	109.5
C19—C18—C17	120.69 (19)	O1D—C2D—C3D	125.5 (3)
C19—C18—H18	119.7	O1D—C2D—C1D	115.9 (3)
C17—C18—H18	119.7	C3D-C2D-C1D	118.5 (3)
C20-C19-C18	117.98 (19)	C2D-C3D-C4D	125.7 (3)
C20—C19—S1	117.78 (17)	C2D—C3D—H3D	117.2
C18—C19—S1	124.18 (16)	C4D—C3D—H3D	117.2
C19—C20—C21	121.4 (2)	O2D—C4D—C3D	125.7 (3)
С19—С20—Н20	119.3	O2D—C4D—C5D	115.0 (3)
C21—C20—H20	119.3	C3D—C4D—C5D	119.3 (3)
C20—C21—C16	121.2 (2)	C4D—C5D—H5DA	109.5
C20—C21—H21	119.4	C4D—C5D—H5DB	109.5
C16—C21—H21	119.4	H5DA—C5D—H5DB	109.5
S1—C22—H22A	109.5	C4D—C5D—H5DC	109.5
S1—C22—H22B	109.5	H5DA—C5D—H5DC	109.5
H22A—C22—H22B	109.5	H5DB—C5D—H5DC	109.5
S1—C22—H22C	109.5		

Hydrogen-bond geometry (Å, °)

Table 3. C—H··· π contacts in (II) (Å, °).

Cg4 is the centroid of the Zn2/O1D/C2D/C3D/C4D/O2D chelate ring and Cg8 is the centroid of the C16–C21 benzene ring.

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A	
C4—H4···Cg4 ⁱ	0.93	2.85	3.712 (3)	155	
C1 <i>B</i> —H1 <i>BC</i> ··· <i>Cg</i> 4 ⁱⁱ	0.96	2.78	3.563 (4)	140	
C5D—H5DB····Cg8 ⁱⁱⁱ	0.96	2.67	3.549 (5)	152	

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) –*x*, *y*-1/2, –*z*+1/2; (iii) –*x*, –*y*+1, –*z*.

Table 2. π - π contacts in (I) (Å, °)

Cg4 is the centroid of the N3/C11-C15 pyridine ring.

Group 1/Group 2	ccd (Å)	da (°)	ipd (Å)	sa (°)
Cg4…Cg4 ⁱⁱⁱ	3.945 (2)	0	3.7822 (14)	16.48

Symmetry code: (iii) -x, -y+1, -z. Notes: ccd is the center-to-center distance (distance between ring centroids); da is the dihedral angle between rings; ipd is the interplanar distance (distance from one plane to the neighbouring centroid), sa is the slippage angle (angle subtended by the intercentroid vector to the plane normal). For details, see Janiak (2000).