
C

J

a
p
a
r
1
e
t
b
a
m
t
t

©

G
1

EOPHYSICS, VOL. 75, NO. 5 �SEPTEMBER-OCTOBER 2010�; P. 75A229–75A243, 4 FIGS., 1 TABLE.
0.1190/1.3474602
omputational poroelasticity — A review

osé M. Carcione1, Christina Morency2, and Juan E. Santos3,4
q
a
h
c

i
s
m
s
o
q
T
�
l
d

b
a
t
e
l
t
n
q
t

P
r
n

r
c
a
h

i
s

eceived
ieste, Ita
, U.S.A
aAplica
U.S.A.
ABSTRACT

Computational physics has become an essential research
and interpretation tool in many fields. Particularly in reser-
voir geophysics, ultrasonic and seismic modeling in porous
media is used to study the properties of rocks and to charac-
terize the seismic response of geologic formations. We pro-
vide a review of the most common numerical methods used
to solve the partial differential equations describing wave
propagation in fluid-saturated rocks, i.e., finite-difference,
pseudospectral, and finite-element methods, including the
spectral-element technique. The modeling is based on Biot-
type theories of dynamic poroelasticity, which constitute a
general framework to describe the physics of wave propaga-
tion. We explain the various techniques and discuss numeri-
cal implementation aspects for application to seismic model-
ing and rock physics, as, for instance, the role of the Biot dif-
fusion wave as a loss mechanism and interface waves in po-
rous media.

INTRODUCTION

The theories of poroelasticity are essential in many geophysical
pplications where pore-filling materials are of interest, e.g., oil ex-
loration, gas-hydrate detection, seismic monitoring of CO2 storage,
nd hydrogeology. The most popular theory was developed by Mau-
ice Biot in the 1950s �e.g., Biot, 1962; Bourbié et al., 1988; Allard,
993; Carcione, 2007, pp. 235–320�, who obtained the dynamic
quations for wave propagation in a fully saturated medium. The
heory assumes that anelastic effects arise from viscous interaction
etween a fluid and a solid, and it predicts two compressional waves
nd one shear wave. Basically, the fast P-wave has solid and fluid
otions in phase, and the slow �Biot� P-wave has out-of-phase mo-

ions. At low frequencies, the slow wave becomes diffusive because
he fluid-viscosity effects dominate the inertial effects. At high fre-
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uencies, the inertial effects are predominant and the slow wave is
ctivated, although under realistic conditions �low permeability,
igh clay content, etc.� this mode is also diffusive at high frequen-
ies.

Amajor cause of attenuation in porous media is wave-induced flu-
d flow, which occurs at different spatial scales — macroscopic, me-
oscopic, and microscopic �e.g., Pride et al., 2004�. The attenuation
echanism predicted by Biot’s theory takes place at macroscopic

cales. It is the wavelength-scale pressure-equilibration mechanism
ccurring between the peaks and troughs of the P-wave. The fre-
uency of the relaxation peak is fB ���� / �2��� f��T��� f�� �see
able 1 for the meaning of the symbols�, where � ��� f � �1

���s is the bulk density and the subscript B refers to Biot. The re-
axation peak is generally located at the high frequencies on the or-
er of tens of kilohertz.

At seismic frequencies, the mesoscopic loss mechanism seems to
e the most important. For instance, for mesoscopic patches of gas in
water-saturated sandstone, diffusion of pore fluid in and out be-

ween different patches dissipates energy through conversion of en-
rgy to the diffusive slow mode. The patches are assumed to be much
arger than the grain sizes but much smaller than the wavelength of
he pulse. White �1975� was the first to introduce this loss mecha-
ism in the framework of Biot’s theory. The corresponding peak fre-
uency is fM ��Kf / ���d2�, where d is the size of the patches and
he subscript M refers to mesoscopic.

The microscopic mechanism is the so-called squirt flow �e.g.,
ride et al., 2004�, by which there is flow from fluid-filled microc-
acks �grain contacts� to the pore space and vice versa. This mecha-
ism, which is not described by Biot theory, has a peak frequency

fSF��h /R�2Kf /� , where h /R is the crack-thickness-to-crack-length
atio, and the mechanism is believed to be important at high frequen-
ies. According to the values of Table 1, fB�106 kHz, fM�42 Hz,
nd fSF�2.5 MHz, where we assume d�20 cm and an aspect ratio
/R�0.001.
Seismic modeling is a technique for simulating wave propagation

n the earth. The objective is to predict the seismogram that a set of
ensors would record, given an assumed structure and composition
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75A230 Carcione et al.
f the subsurface. This technique is a valuable tool for seismic inter-
retation and an essential part of seismic inversion algorithms.
here are many approaches to seismic modeling. We classify them

nto three main categories of methods: direct, integral equation, and
ay tracing. In this work, we focus on the first class of methods,
hich is the most used to solve the equations of dynamic poroelas-

icity. These include finite-difference �FD�, pseudospectral �PS�,
ow-order finite-element �FE�, and spectral finite-element �SE�

ethods.
To solve the wave equation by direct methods, the geologic model

s approximated by a numerical mesh; that is, the model is dis-
retized into a finite number of points. Direct methods are also called
rid methods and full-wave-equation methods, the latter because the
olution provides the full wavefield. Direct methods do not have re-
trictions on the material variability and can be very accurate when a
ufficiently fine grid is used. Furthermore, these techniques are well
uited for generating snapshots, which can be an important aid in in-
erpreting the results.

A key area of numerical modeling in poroelastic media that is
orth mentioning but not discussed here is reflectivity methods.
hese methods have been implemented for flat layers �Stern et al.,
985; Turgut and Yamamoto, 1988� and for cylindrical structures
Rosenbaum, 1974�. They are based on propagator-matrix computa-
ions in the frequency-wavenumber domain.

It is important to point out when poroelastic effects are and are not
elevant. Generally, reflections at single interfaces and propagation
n homogeneous media can be simulated with equivalent elastic or
iscoelastic formulations �Gurevich, 1996; Carcione, 1998�. In the
ase of interface waves and in the presence of heterogeneities at spa-
ial scales less than the wavelength of the signal, poroelastic effects
ecome important �e.g., mesoscopic losses�. Moreover, the algo-
ithms can be useful as research tools and in practical applications
such as patchy saturated rocks�, where analytical methods are pre-
luded.

The numerical methods discussed here consider all frequency
anges, to be applied at seismic, sonic, and laboratory frequencies.
ndeed, knowledge of the input parameters to compute synthetic
eismograms requires high-frequency calibration data and a proper
nderstanding and simulation of the physics.

A detailed review of the different direct methods can be found in
arcione et al. �2002�, where the authors discuss the time integra-

ion, calculation of spatial derivatives, source implementation,

able 1. Input values for water-saturated sandstone.

aterial Parameter Value

rain Bulk modulus, Ks 40 GPa

Density, �s 2500 kg /m3

atrix Porosity, � 0.3

Bulk modulus, Km 10 GPa

Permeability, � 200 mdb

Tortuosity, T 2.3

luid Bulk modulus, Kf 2.5 GPa

Density, � f 1040 kg /m3

Viscosity, � 1 cpa

a1 cp�10�3 Pa
b1 md�10�15 m2
Downloaded 06 Dec 2010 to 163.10.46.9. Redistribution subject to S
hysical boundary conditions, and absorbing boundaries. Here, we
resent the numerical aspects strictly related to the poroelastic na-
ure of the differential equations — specifically, the methods and
omputational experiments.

BIOT’S EQUATIONS

In this section, a brief outline of the equations and physics in-
olved is given. For simplicity and clarity, we consider the partial
ifferential formulation given by Biot �1962� without the shear
ave. Although this wave is important, since there are additional

low shear modes when the pore-filling material is solid �e.g., Car-
ione and Seriani, 2001�, the poroacoustic equations are representa-
ive of the physics of porous media. By taking the solid rigidity equal
o zero, we only model dilatational deformations, i.e., the P-waves.

Furthermore, for simplicity, we consider the 1D velocity-pressure
ormulation of Biot’s theory, including the Johnson-Koplic-Dashen
JKD� dynamic permeability model �Johnson et al., 1987� to de-
cribe memory drag forces accounting for the interaction between
he pore fluid and the pore walls at all frequencies. The differential
quations are

�v̇�� fq̇��� xp, �1a�

� fv̇�mq̇��� xpf �
�

�
�D

a
�1�1/2

q, �1b�

� ṗ�KG� xv��M� xq�s, �1c�

� ṗf �M�� xq��� xv��sf �1d�

Lu and Hanyga, 2004; Masson et al., 2006; Carcione, 2007�, where
and q are the solid and fluid �relative to the solid� particle velocities
nd where p and pf are the bulk and fluid pressures, respectively. In
ddition, q���v f �v���� u̇f � u̇�, where � is the effective po-
osity and u are the respective displacements. A dot above a variable
enotes time differentiation, and � x is the spatial derivative. More-
ver, KG�Km��2M is the Gassmann bulk modulus, with � �1

Km /Ks, M �Ks / �1�� � �Km /Ks�� ��Ks /Kf��, where Ks, Km,
nd Kf are the bulk moduli of the solid, matrix, and fluid, respective-
y; � is the dynamic fluid viscosity; � is the global static permeabili-
y; � � �1����s��� f is the composite density, with �s and � f the
olid and fluid densities; and m�T� f /�, with T the tortuosity, a di-
ensionless parameter that depends on the pore geometry. �The

andstone given in Table 1 has KG�14.3 GPa and
�2062 kg /m3.�
Equation 1b is a generalization of Darcy’s law. The differential

perator ��D /a��1�1/2 is a shifted fractional derivative operator,
here D�� t is the time derivative �i� is in the frequency domain,
here i���1 and � is the angular frequency�. It is �D�a�1/2q
exp��at�D1/2�exp�at�q�, where D1/2 represents the Caputo frac-

ional derivative �Caputo, 1969�. The parameter a��T /K, where

T��� / �� fT�� is a transition frequency and K�4Tk / ��2�� is a
eometric factor; � is the pore-volume-to-grain-surface ratio �e.g.,
arcione, 2007; his equation 7.242�. If � �0, the slow mode is a
ave at all frequencies; otherwise, the theory predicts a diffusive-

tatic mode at seismic frequencies.
The associated time-domain dynamic permeability �̄ to equations

is
EG license or copyright; see Terms of Use at http://segdl.org/
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�̄ ��	�D

a
�1�1/2

�
D

�T

�1

. �2�

he choice D�0 inside the square root ��̄ ���1� �D /�T���1�
ives Biot’s poroacoustic equations �Carcione and Quiroga-Goode,
995�, whereas the approximation ���T yields �̄ ���1

��1 /2a�� �1 /�T��D��1, i.e., the low-frequency equations ob-
ained by Masson et al. �2006�. Lu and Hanyga �2004� refer to this as
he JKD model, which is quite general and matches experimental
ata very well. At low frequencies, the flow in the pores is laminar.
t high frequencies, inertial effects dominate the shear viscous forc-

s, resulting in relative flow except at the grain walls, where the rela-
ive motion at the viscous boundary layer is zero. The thickness of
his layer decreases as ��1/2 increases.

Generally, the application of the source considers three cases. The
rst case is a bulk source that assumes the energy is partitioned be-

ween the two phases. In this case, the relation between the solid and
uid source strengths is equal to �1 /���1. In the above particle-ve-

ocity/pressure formulation, this means s�sf. Case two is a source
n the solid; in this case, sf �0. In the third case, the source is in the
uid and s��sf.

FINITE-DIFFERENCE AND PSEUDOSPECTRAL
METHODS

We present the developments of numerical poroelasticity in a
early chronological order. The details about the numerical methods

FD and PS spatial differentiation and time integration — for solv-
ng the wave equation are summarized in Carcione et al. �2002� and
re not discussed here �see details in Carcione 2007, pp. 385–426�.
or a comprehensive review of all theories and physical phenomena
egarding poroelastic wave propagation, refer to Müller et al.
2010�.

arly works

The first papers about the simulation of Biot waves with direct
rid methods date to the 1970s. To our knowledge, Garg et al. �1974�
ere the first to use them. They compute 1D Green’s functions �arti-
cially damped� with an FD method. In the 1980s, Mikhailenko
1985� solved Biot’s equations with no loss �� �0� in cylindrical
oordinates, with a finite Hankel transform along the radial coordi-
ate �i.e., with constant material properties along this direction� and
n FD scheme along the vertical direction, second-order accurate in
pace and time, i.e., o�2,2�. Hassanzadeh �1991� first solved Biot’s
ow-frequency poroacoustic equations, written in the dilatation for-

ulation �e�� xu and 	�� xuf�, by using an o�2,2� FD scheme. He
ses the stability condition dt 
 dx / ��2vP�, where dt is the time
tep, dx is the grid spacing, and vP is the high-frequency-limit fast P-
ave velocity. Boundary conditions at interfaces are open and ex-
licitly satisfied �the so-called homogeneous formulation�. The code
s not tested against an analytical solution. The applications involve
ross-well experiments, and Hassanzadeh shows that the conversion
rom fast P-waves to slow P-modes �diffusive� is significant.

Zhu and McMechan �1991� solve the corresponding 2D P–S-
ave equations using the displacement formulation �locally homo-
eneous� and an o�2,2� FD scheme similar to that of Hassanzadeh
1991�. On the other hand, Dai et al. �1995� use an o�2,4� McCor-
ack predictor-corrector scheme, based on a dimensional �spatial�

plitting technique. The stability criterion is based on the fast
Downloaded 06 Dec 2010 to 163.10.46.9. Redistribution subject to S
-wave, and they test the method against an analytical solution with
propagating slow wave. In Dai et al.’s work, the free surface is
odeled for the first time with finite differences. The method of

haracteristics �e.g., Carcione et al., 2002� stabilizes the solution and
ets the stress components and fluid pressure to zero. These works do
ot simulate and test the slow static mode.

Özdenvar and McMechan �1997� develop a PS staggered-grid al-
orithm for the poroelastic differential equations expressed in the
isplacement formulation. The time derivatives are computed with a
econd-order Euler forward approximation. The standard stability
riterion for P-waves is used, and the numerical results are not tested
ith analytical solutions.

tiffness of Biot’s equations and the slow mode

Carcione and Quiroga-Goode �1995� show that the stiffness of the
ifferential equations requires a special treatment; they were the first
o model the Biot slow �static or diffusive� mode at low frequencies
nd to compare the simulation to an analytical solution. The low-fre-
uency theory is given by equations 1, but the second equation be-
omes

� fv̇�mq̇��� xpf �
�

�
q . �3�

hey recast the dynamic equations in the particle-velocity–pressure
ormulation having the matrix form v̇�Hv, where v is the field vec-
or and H is the propagation matrix.

Let us assume constant material properties and a plane-wave ker-
el of the form exp�ik ·x� i�cdt�, where k is the real wavenumber
ector, x is the position vector, and �c is a complex angular frequen-
y. Substituting the plane-wave kernel into the wave equation yields
n eigenvalue equation for the eigenvalues in the i�c complex plane.
ll eigenvalues of H have a negative real part. Although the eigen-
alues of the fast wave have a small real part, the eigenvalues of the
low wave �in the diffusive regime� have a large real part. The pres-
nce of this diffusive mode makes Biot’s differential equations stiff.
he best algorithm would be an implicit method, which is uncondi-

ionally stable in the left complex plane; however, the problem re-
ides in the accuracy to resolve the static mode. The largest negative
igenvalue corresponds to the slow mode,

���
�

�
� �

�m�� f
2�, �4�

hich should lie in the left-half i�-plane. In other words, to be phys-
cally stable, the medium must satisfy �m�� f

2 � 0; otherwise, ex-
onentially growing modes would exist.

Carcione and Quiroga-Goode �1995� propose two time-integra-
ion methods to solve equations 1. The first is based on second-order
taggered finite differences, which is A-stable, i.e., the domain of
onvergence is the open left-half i� plane. The second is based on a
artition or �temporal� splitting of the dynamic equations, similar to
he Strang scheme. Both techniques use the PS method to compute
he spatial derivatives. In the second technique, Biot’s equations are
artitioned into a stiff part and a nonstiff part, such that the evolution
perator can be expressed as exp�Hr�Hs�t, where r indicates the
egular matrix and s is the stiff matrix. �The latter contains terms pro-
ortional to � /� .� The product formulas exp�Hrt�exp�Hst� and
xp��1 /2�H t�exp�H t�exp��1 /2�H t� are first- and second-order
s r s

EG license or copyright; see Terms of Use at http://segdl.org/



a
n

s
i
�
f

A

S
P
l
m
d
t
e
d
m

i
m

q
a
j
h

P

m
f
m
e
p
m
Z
f
fi
t
F
w
d
r

s
q
d
p
t

S
g
t
c
t
t
b
e

N

p
T
t
d
s
s
c
s

C

s
s
t
P
s
e
m
d

F
p
i
z

75A232 Carcione et al.
ccurate, respectively. The stiff part is solved analytically, and the
onstiff part is solved with a fourth-order Runge-Kutta scheme.

Asnapshot in poroacoustic media is displayed in Figure 1a, which
hows the pressure field p resulting from a fluid source. Above the
nterface, � �1 cp; below the interface, � �0. The fast P-wave
P1� and the slow P-wave �P2� can be seen, the latter below the inter-
ace.Above the interface, the slow mode is diffusive.

nisotropy

The 2D particle velocity–stress anisotropic equations for P- and
-waves were first solved by Carcione �1996�, showing that the slow
-wave may have cusps, just as with the S-wave, and anomalous po-

arizations. He uses the splitting technique and proposes to approxi-
ate the time-domain dynamic permeability or JKD model with a

iscrete set of Zener mechanical models. The method requires addi-
ional �memory� variables as in the viscoelastic case. Although the
xponential kernel associated with the generalized Zener model
oes not satisfy the high-frequency dependence ��1/2, the approxi-
ation is appropriate for band-limited sources.
Figure 1b shows a snapshot where all of the modes are propagat-

ng waves. The particle velocity vy in an anisotropic poroelastic ho-
ogenous medium, where the fluid has zero viscosity, is displayed;
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igure 1. �a� Snapshot of the pressure field p from a fluid source ap-
lied to a poroacoustic medium, and �b� particle velocity vy in an an-
sotropic poroelastic homogeneous medium, where the fluid has
ero viscosity.
Downloaded 06 Dec 2010 to 163.10.46.9. Redistribution subject to S
P1, qS, and qP2 denote the fast quasi-P-wave, the quasi-S-wave,
nd the slow quasi-P-wave. The qP2-wave shows cuspidal triangles
ust as the shear wave does, indicating that the polarization vector
as strong deviations from the normal direction to the wavefront.

oroviscoelasticity

Carcione �1998� introduces poroviscoelasticity in numerical
odeling by generalizing the fluid-solid stiffness M to a relaxation

unction of the Zener type in an attempt to model the squirt-flow
echanism. In addition, he obtains the effective viscoelastic differ-

ntial equations by matching the Biot and squirt-flow relaxation
eaks with Zener elements associated with the P and S plane-wave
oduli. The solver is based on memory variables. The fit with the
ener kernels is almost perfect for realistic values of the dissipation

actor. In his work, the mesoscopic loss effect is simulated for the
rst time considering periodic fine layers of gas and water saturating

he same porous medium �matrix or skeleton� �Carcione, 1998; his
igure 7�. The modeling is improved by Carcione and Helle �1999�,
ho introduce the staggered Fourier method to compute the spatial
erivatives, eliminating undesired numerical artifacts present in the
egular Fourier method.

Arntsen and Carcione �2001� use this approach to fit the first ob-
ervation of the slow wave in a natural sandstone at ultrasonic fre-
uencies. Making the dry-rock shear moduli viscoelastic �i.e., time
ependent�, along with the coupling modulus M and the viscosity/
ermeability factor � /� , is enough to predict the observed ampli-
udes.

Figure 2 shows a microseismogram obtained by Kelder and
meulders �1997� for Nivelsteiner Sandstone as a function of the an-
le of incidence 
 compared to a numerical microseismogram ob-
ained with Biot’s poroviscoelastic theory. The events are the fast
ompressional wave, the shear wave, the first multiple reflection of
he fast compressional wave, and the slow wave. The discrepancy in
he FP wave amplitude after the critical angle �approximately 32°� is
ecause the source is closer to the sample compared to the laboratory
xperiments.

onregular mesh

A scheme based on irregular grids, allowing for surface topogra-
hy and curved interfaces, has been introduced by Zhang �1999�.
he algorithm uses staggered quadrangle cells and solves the veloci-

y-stress formulation. To obtain nonrectangular cells, the physical
omain is mapped into square cells using the chain rule to obtain the
patial derivatives. The time integration is the typical staggered
cheme, with particle velocities computed at t�dt /2 and stress
omponents at t�dt. The Biot static mode is observed in the snap-
hots.

omposite porous media and Biot-type theories

Carcione and Seriani �2001� develop a numerical algorithm for
imulating wave propagation in frozen porous media, where the pore
pace is filled with ice and water. The model, based on a Biot-type
hree-phase theory obtained from first principles, predicts three
-waves and two S-waves at the high-frequency limit and the corre-
ponding diffusive modes at low frequencies. Attenuation is mod-
led with Zener relaxation functions, which allow a differential for-
ulation based on memory variables. The generalization of these

ifferential equations to the variable porosity case is given in Car-
EG license or copyright; see Terms of Use at http://segdl.org/
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Computational poroelasticity 75A233
ione et al. �2003b� by using the analogy with the two-phase case and
he complementary energy theorem. A more rigorous generalization
s given in Santos et al. �2004a�. In this way, it is possible to simulate
ropagation in a frozen porous medium with fractal variations of po-
osity and therefore varying freezing conditions. A generalization of
he splitting method to the three-phase case is performed to solve
hese equations.

The simulation of two slow waves from capillary forces in a par-
ially saturated porous medium is presented in Carcione et al. �2004�,
ased on the theory developed by Santos et al. �1990a, 1990b�. The
ores are filled with a wetting fluid and a nonwetting fluid, and the
odel, based on a Biot-type three-phase theory, predicts three
-waves and one S-wave. Again, realistic attenuation is modeled
ith exponential relaxation functions and memory variables. Sur-

ace-tension effects in the fluids, which are not considered in the
lassical Biot theory, cause the presence of a second slow wave,
hich is faster than the classical Biot slow wave.
An alternative theory of poroelasticity derived by Hickey and co-

orkers �see Quiroga-Goode et al., 2005�, includes, in addition to
iot’s theory, thermoelastic coupling and a differential equation de-

cribing temporal variations of porosity. Using numerical modeling
ased on the PS method, Quiroga-Goode et al. �2005� show that the
wo theories yield similar results in homogeneous media and that the
dditional effects are insignificant, confirming the assumptions
ade by Biot to establish his theory.

esoscopic loss mechanism and wave propagation

The mesoscopic loss mechanism was first verified by performing
ave-propagation numerical experiments. Carcione et al. �2003b�
se the poroelastic PS modeling algorithm to obtain the phase veloc-
ty and quality factor Q of White’s model, consisting of a homoge-
eous sandstone saturated with brine and spherical gas pockets. The
as saturation varies by increasing the radius of the gas pocket or by
ncreasing the density of gas bubbles. Although the modeling is two
imensional and interaction between the gas pockets is neglected in
hite’s model, the numerical results show the trends predicted by

he theory, i.e., increase in velocity at high frequencies and low per-
eabilities. Similar tests in more realistic �fractal� media are per-

ormed by Helle et al. �2003�, showing that partial saturation is a
ore efficient loss mechanism than variable permeability �or porosi-

y� and matrix heterogeneities at the mesoscopic scale.Aseismic ap-
lication of poroviscoelastic modeling, including the mesoscopic
oss, for monitoring underground CO2 storage can be found in Car-
ione et al. �2006�.

ode implementation and absorbing boundaries

Code performance and elimination of artifacts from the edges of
he mesh are important. A classical implementation of the 3D po-
oelastic equations based on an o�2,4� fully staggered scheme is giv-
n by Aldridge et al. �2005�, who show how to optimize the algo-
ithm using domain decomposition methods. They find that po-
oelastic modeling can be two to six times more expensive than sin-
le-phase modeling. The popular perfectly matched-layer �PML�
bsorbing-boundary method is implemented by Zeng et al. �2001�,
ho use an o�2,2� FD scheme to solve the 3D displacement formula-

ion of the poroelastic equations. The convolutional form of the
ethod �C-PML� is described by Martin et al. �2008� using the clas-

ical staggered scheme.
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ynamic permeability and fractional derivatives

Lu and Hanyga �2004� and Hanyga and Lu �2005� design a nu-
erical method to solve the time-domain particle-velocity-stress

oroelastic equations, including the JKD dynamic permeability as in
quations 1. The system is evolved with a predictor-corrector
cheme, and the spatial derivatives are computed with the PS meth-
d. The shifted Caputo fractional derivative is calculated by solving
rst-order differential equations for quadrature variables, similar to

he memory variables used in Zener viscoelasticity. This approach
voids storing the entire particle-velocity history, as done when
omputing the derivative with the Grünwald-Letnikov approxima-
ion. To test the method to ensure visibility of the slow wave, the au-
hors use very high permeability.

hysical stability condition

The first complete calculation of the stability condition for the
ow-frequency poroelastic equations �no viscous boundary layers in
he pores� has been performed by Masson et al. �2006�. The algo-
ithm is explicit and has an accuracy of o�2,4� using staggered spa-
ial grids.

A necessary condition for stability is that an inertial acceleration
erm should be present in Darcy’s law. This condition is
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igure 2. �a� Real microseismogram compared to �b� a numerical
imulation obtained from Biot’s poro-viscoelastic theory. The
vents are the fast compressional wave �FP�, the shear wave �S�, the
rst multiple reflection of the fast compressional wave �FFP�, and

he slow wave �SP�.
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sing the notation of that paper, where F is the electrical formation
actor. A comparison of this algorithm with the time-splitting meth-
d is performed, showing that for comparable time steps, the latter is
ess accurate at low frequencies. Note that in the case solved by Car-
ione and Quiroga-Goode �1995� and Wenzlau and Müller �2009�
see below�, condition 5 is �T /��� �� f /�� � 0, i.e., ignoring � in
hat equation, which is equivalent to �m�� f

2 � 0 �see equation 4;
� 0 implies an exponentially growing solution�. Using the values

iven in Table 1, the condition is 7.2 � 0; generally, stability is satis-
ed for any realistic rock. For a fluid, T�1, � �1, � �� f, and �m

� f
2�0, which constitutes a limit value. Masson et al.’s �2006�

ow-frequency code has been used to simulate quasi-static poroelas-
ic propagation resulting from fluid-volume injection source �a
eaviside function in time� compared to an asymptotic semianalyti-

al approach �Vasco, 2008�.
The generalization proposed by Masson and Pride �2010� of Bi-

t’s equations to describe all the frequency range �as in Lu and
anyga, 2004� is based on an analytical inverse Fourier transform of

he dynamic permeability. The following equation is equivalent to
quation 1b:

� fv̇�mq̇��� xpf ���

�
�� � �q̇�aq�,

�6�

� �t��
H�t�exp��at�

��at
,

here the asterisk denotes time convolution and H is the Heaviside
unction. This convolution is solved by a time discretization requir-
ng the storage of less than 20 past values. The presence of the convo-
ution makes the scheme more physically stable because it adds to
he inertia term �T /��� �� f /�� a positive quantity. If T /� �1, the
ourant condition in 1D space is dt 
 0.86�dx /vP�, where vP is the

ast P-wave velocity. Spatial discretization is based on a fourth-order
D staggered operator.

imulation of the seismoelectric effect

Biot’s poroelastic equations are the basis of the seismoelectric
heory together with Maxwell’s electromagnetic equations �Haines
nd Pride, 2006; Carcione, 2007�. Seismic waves generate a 1D
orce F���� xpf �� fv̇� that transports the diffusive charges in the
uid relative to the bound charges in the grains, creating a streaming
lectric current LF, where L is the coupling coefficient. The bound
nd diffusive charges are called the electric double layer. This phe-
omenon is known as electrofiltration. On the other hand, an electric
eld induces a conduction current, according to Ohm’s law, and a
ody force on the excess charge of the diffuse double layer, resulting
n fluid filtration. This phenomenon is known as electro-osmosis.

Haines and Pride �2006� solve the low-frequency Biot’s and Max-
ell’s equations, neglecting the electro-osmotic effect. The Max-
ell equation to solve is then � �H��E�L�� /��q, where H is

he magnetic field, E is the electric field, � is the conductivity, and q
s the grain/fluid relative velocity. The effects of induction can be ne-
lected. This implies � �E�0 and thus E�� ��, where � is the
lectric potential. Taking the divergence of Maxwell’s equations
ives Poisson’s equation:
Downloaded 06 Dec 2010 to 163.10.46.9. Redistribution subject to S
� · �� ���� � ·�L�

�
q� . �7�

irst, the poroelastic equations are solved by using the algorithm de-
cribed in Özdenvar and McMechan �1997�. Finally, equation 7 is
iscretized with a second-order FD approximation, leading to a lin-
ar system that is solved by conjugate-gradient iterations and im-
roving the conditioning with the helix-derivate concept.

esoscopic loss mechanism and quasi-static tests

Masson and Pride �2007� simulate mesoscopic attenuation and
ispersion at seismic frequencies using their FD code. Applying
tress steps to numerical samples of rocks, we can compute the com-
lex moduli by measuring the strains. The samples are much smaller
han the pulse wavelength.

Consider a 2D sample in the �x,z�-plane under plane strain condi-
ions � yy �0, with the fluid particle-velocity variation set to zero �v f

v� at the edges of the mesh �undrained conditions�. The scheme is
�2,2� at the edges of the mesh to better describe these boundary
onditions. From Hooke’s law for poroelastic media,

����
1

2
�� xx�� zz

� xx�� zz
� and ��

1

2
�� xx�� zz

� xx�� zz
�,

�8�

here � denotes stress and where � and � are the �undrained� Lamé
onstants. The complex bulk modulus is

K���
2

3
� . �9�

he phase velocity and Q are then obtained from

vp�	Re� 1

vc
�
�1

and Q�
Re�vc

2�
Im�vc

2�
, �10�

here vc is the complex velocity and Re and Im denote real and
maginary parts, respectively �e.g., Carcione, 2007; pp. 321–384�.
or P- and S-waves, �vc

2���2��K� �4� /3� and �vc
2��, re-

pectively. The method requires four fourth-order spatial differenc-
ng points in the smaller patch to avoid numerical artifacts. The nu-

erical experiments show that attenuation is proportional to the
quare of the incompressibility contrasts and that pure shear attenua-
ion can be caused by fluid exchanges between anisotropically
haped inclusions and the background matrix.

The last significant work using the FD method, where loss from
esoscopic heterogeneities is investigated, is performed by Wen-

lau and Müller �2009�, who solve the 2D low-frequency particle-
elocity–stress formulation of Biot’s equations using staggering in
ime and the standard fourth-order staggered mesh or the rotated
taggered grid to compute the spatial derivatives. These workers test
he numerical solution in the wave regime of the Biot slow mode and
erify the physics of the mesoscopic loss mechanism by means of
he above-described long-wavelength experiments. Moreover, they
ompute the normal-incidence reflection coefficient at a gas-water
ontact and find that the error is maximum at intermediate frequen-
ies where the slow wave is not sampled properly. At low frequen-
ies, the estimate is acceptable even if the diffusion scale is not re-
olved properly.
EG license or copyright; see Terms of Use at http://segdl.org/



b
1
T
t

D

b
s
D
i
o
m
s
a
t
n
b
b
v
s
m
i
C

b
w
n
d
f
T
t
s
t

D

c
g
P
c
s
t
d
a
fl
t
f
t
c

a
m
�
s
m

M

t
t
a
n
s
b
s
d
t

t
n
b
m
m
w
a
T
o
t
i

S

h
v
c
s
N
t
S
s
a
f
c
s
c
i
a
t

�
l
a
i
m
e
c
i
t
i
w
g

Computational poroelasticity 75A235
The importance of modeling the slow mode at interfaces is shown
y Chiavassa et al. �2009�, who use the time-splitting method and a
D FD o�4,4� solver with grid refinement at the material contrasts.
hey explicitly satisfy the interface conditions, and refinements up

o 64 times the standard grid size are necessary.

igital rock physics

A promising field of research is digital rock physics, which com-
ines microscopic imaging with numerical simulations at the micro-
cale using direct methods, explicitly discretizing the pore network.
igital rock samples are generated by the so-called open-cell Gauss-

an random field, where the pore space is defined by the intersection
f two two-cut Gaussian random fields. Permeability can be deter-
ined through the Lattice-Boltzmann flow simulations on these

ynthetic digital rocks �Keehm, 2003�. Saenger et al. �2007� provide
n outline of the work in progress. In particular, these workers use
he rotated staggered-grid FD method to solve the viscoelastic dy-
amic equations. A viscous fluid based on the generalized Maxwell
ody describes the loss effects. Insufficient sampling of the viscous
oundary layers at the pore walls generates incorrect solutions at low
iscosities. At least three grid points are necessary to discretize the
kin depth � � �2� /�� f�1/2. Propagation through a fluid/porous-
edium interface shows that the slow wave is only generated if there

s hydraulic contact at the interface �open-pore conditions� �e.g.,
arcione, 2007; pp. 284–288�.
An approach to explicitly model cracks and fractures is proposed

y Zhang and Gao �2009�. The scheme treats the fractures as non-
elded interfaces that satisfy the linear-slip displacement-disconti-
uity conditions instead of using equivalent medium theories. The
iscretization is based on tetrahedrons, and arbitrary 2D nonplanar
ractures can be incorporated accurately into the numerical mesh.
he modeling allows the background media to differ on both sides of

he fracture. Hence, the algorithm can be used to characterize the
eismic response of fractured media and to test equivalent medium
heories.

ouble-porosity equations

A recent Biot-type poroelastic theory treats the mesoscopic loss
reated by lithological patches having, for example, different de-
rees of consolidation. It is called the double-porosity model �e.g.,
ride et al., 2004�. There are two phases, and the theory explicitly
onsiders the field variables of these phases. Ba et al. �2008� have
olved the governing equations �homogeneous case� using the split-
ing method introduced by Carcione and Quiroga-Goode �1995�. A
imensionless quantity �̇ �� � �pf1�pf2� couples the two phases
nd represents the mesoscopic flow, i.e., the average rate at which
uid volume is transferred from phase 1 into phase 2, where � has

he frequency dependence �1� �i� /�m��1/2 and �m is a resonance
requency. The approach implemented by Ba et al. �2008� to solve
he convolution is to use first-order FD in time and an explicit dis-
rete time Fourier transform.

Liu et al. �2009� solve equivalent poroviscoacoustic equations by
pproximating the mesoscopic complex moduli in the frequency do-
ain using Zener mechanical models, in the same way as Carcione

1998� represents the Biot loss mechanism. The equations are then
olved in the time domain using memory variables and the splitting
ethod.
Downloaded 06 Dec 2010 to 163.10.46.9. Redistribution subject to S
odeling the diffusive Biot mode

Recently, Carcione and Gei �2009� solve the equation describing
he diffusion of the slow static mode in anisotropic media with a
ime-domain spectral solver, which has high temporal accuracy and
llows the use of coarse numerical meshes. A correction to the stiff-
ess of the rock under conditions of transverse isotropy and uniaxial
train is assumed to model borehole conditions. The algorithm has
een tested with the Green’s function and applied to pressure diffu-
ion in fractal permeability media, simulating realistic reservoir con-
itions. The simulations show that the energy velocity must be used
o track the diffusion front.

FINITE-ELEMENT METHODS

The FE method is based on a variational formulation of the equa-
ions of motion 1. Among its advantages is the ability to fit disconti-
uities employing irregular meshes and the use of polynomials of ar-
itrary degree. Also, it allows easy implementation of natural and
ixed boundary conditions. Furthermore, because the FE approxi-
ate solutions are sought in spaces of functions consisting of piece-
ise polynomials of a chosen degree k, the functional-analysis tools

re available to derive a priori error estimates for the algorithms.
his gives asymptotic bounds for the distance between the solutions
f the differential model and the computed solution — measured in
he L2-norm or more generally in a Sobolev norm �Adams, 1975� —
n terms of mesh size and polynomial degree.

pace–time-domain solution of Biot’s equations

Let us denote by H1��� the Sobolev space of functions in L2���
aving first derivatives in L2���, whereas H�div,�� is the space of
ector functions in �L2����d with divergence in L2��� �d is the Eu-
lidean dimension�. The existence, uniqueness, and regularity of the
olution of Biot’s equations of motion in a bounded domain � under
eumann boundary conditions are analyzed by Santos �1986�; con-

inuous and discrete time FE Galerkin procedures are presented in
antos and Oreña �1986�. These works show that for each time t, the
olid and fluid displacement vectors belong to the spaces �H1����d

nd H�div,��, respectively, which in turn yield appropriate choices
or the FE spaces to compute approximate solutions. More specifi-
ally, conforming approximations to the solid displacement must be
ought in FE spaces having global continuity; conforming spaces to
ompute the fluid displacement are only required to satisfy continu-
ty of the normal component at the interior faces of the computation-
l mesh. For a mesh size h and a time step dt, optimal a priori error es-
imates in the energy norm of the form O�dt2�hk� are derived.

The results given in Santos �1986� are extended in Santos et al.
1988a� and Lovera and Santos �1988�, where FE methods to simu-
ate wave propagation in an elastic solid containing a Biot medium
re developed and analyzed. The coupled motion of a compressible
nviscid fluid with a Biot medium in a cylindrically symmetric do-

ain to compute full-waveform acoustic logs is simulated in Santos
t al. �1988b�. A quadrature rule is used to define an explicit FE pro-
edure. A first-order absorbing-boundary condition for Biot’s media
s also derived. Douglas et al. �1991b� model synthetic logs using
his technique. The method is also used to simulate the slow P-wave
n Biot media at ultrasonic frequencies and the scattering of this
ave in real rocks resulting from the presence of mesoscopic hetero-
eneities �Douglas et al., 1991a; Hensley et al., 1991�.
EG license or copyright; see Terms of Use at http://segdl.org/
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75A236 Carcione et al.
Teng �1990� uses the Galerkin weighted residual process with reg-
lar cells to obtain the nodal equations of motion. Moreover, the use
f an explicit FD time solver makes the technique efficient in terms
f computer time because one may avoid matrix inversions. Teng’s
imulation at fluid/poroelastic interfaces satisfying open and sealed
oundary conditions agrees with experimental data.

eneralized Biot models for immiscible fluids and
omposite porous solids

Santos et al. �1990a, 1990b� extend Biot’s theory to the case in
hich the porous medium is saturated by two immiscible, compress-

ble, viscous fluids �wetting/nonwetting system�. The model takes
nto account capillary-pressure effects using a Lagrange multiplier
n the complementary virtual work principle. It is assumed that the
elative flow of the fluid phases is laminar and causes energy losses
ttributable to a dissipation potential implemented in the Lagrangian
ormulation of the equations of motion.

Gedanken experiments to determine the seven elastic coefficients
n the constitutive relations are presented. A plane-wave analysis
redicts one shear �S-wave� and three compressional waves: a fast P-
ave corresponding to the motion in phase of the solid and fluid
hases and two slow P-waves associated with motions out of phase
f the two fluids. An extension of this model to include in situ condi-
ions of the single phases and viscoelasticity is given in Ravazzoli et
l. �2003� and Ravazzoli and Santos �2005�, with a parametric analy-
is of the influence of effective pressure, abnormal pore pressure,
nd saturation on the phase velocities and Q factors of the different
aves.
The first numerical evidence of the presence of a second slow

ave in porous solids saturated by immiscible fluids is presented in
antos et al. �2002� and Santos et al. �2004b�. They show that the sec-
nd slow wave can be detected at ultrasonic frequencies, but at low
requencies this wave is a source of attenuation of the fast waves �the
esoscopic loss�.
Partially frozen porous media and shaly sandstones are particular

ases of fluid-saturated porous media when the solid matrix is com-
osed of two weakly coupled solids. Leclaire et al. �1994� develop a
iot model valid only for uniform porosity.Ageneralized model val-

d for the variable porosity case is presented in Santos et al. �2004a�,
hus allowing one to perform numerical simulations in realistic situ-
tions. Three compressional waves �one fast and two slow� and two
hear waves �one fast and one slow� propagate in this type of medi-
m.

Using an alternative approach based on first principles at the mi-
roscale, the two-space homogenization technique �Sanchez Palen-
ia, 1980� is used in Santos et al. �2005� and Santos and Sheen �2008�
o obtain the equations of motion and a generalized Darcy’s law in
uid-saturated composite porous solids. The resulting macroscale
quations are similar to those derived by Carcione et al. �2003b� and
antos et al. �2004a�.
The analysis of the reflection and transmission coefficients at in-

erfaces within composite porous media is presented in Rubino et al.
2006a�, concluding the importance of slow-wave conversions at in-
erfaces defined by a contrast in ice content in partially frozen sand-
tones.

pace–frequency-domain solution of Biot’s and
iot-type equations
The space-frequency formulation of Biot’s equations of motion

nd its generalization is a convenient way to include intrinsic losses
Downloaded 06 Dec 2010 to 163.10.46.9. Redistribution subject to S
nd frequency-dependent mass and viscous coupling coefficients,
voiding the need for performing time convolutions. The founda-
ions of this approach are presented in Douglas et al. �1993�, where a
riori error estimates in terms of the mesh size h and the angular fre-
uency � are first derived. The idea is to solve the Helmholtz equa-
ions for a finite number of angular frequencies and then obtain the
pace-time solution using an inverse-time Fourier transform.

Numerical dispersion is an important aspect to be analyzed when
olving wave-propagation problems. Zyserman et al. �2003� show
hat the nonconforming elements presented in Douglas et al. �1999�
eed about half the number of points per wavelength to achieve a de-
ired tolerance in numerical dispersion as compared with the stan-
ard conforming bilinear elements. Based on this conclusion, Zyser-
an and Santos �2007� perform a numerical dispersion analysis of a
E procedure to solve Biot’s equations. They use the nonconforming
lements of Douglas et al. �1999� to represent each component of the
olid displacement and the vector part of the Raviart-Thomas-Nede-
ec space of zero order �Raviart and Thomas, 1977; Nedelec, 1980�
o represent the fluid-displacement vector. The local degrees of free-
om for the solid and fluid displacements in rectangular or triangular
lements are located at the centers of the faces of the elements, defin-
ng a staggered mesh. The analysis gives lower bounds for the num-
er of points per wavelength of the slow wave in order to have a neg-
igible error in the group velocities of the fast waves.

Santos and Sheen �2007� use the FE spaces described by Zyser-
an and Santos �2007� to solve the equations of motion given in
antos et al. �2004a� with a collection of global and iterative domain-
ecomposed FE methods. The algorithm includes an implementa-
ion of absorbing-boundary conditions. The analysis yields optimal
priori error estimates and convergence results for the domain-de-

omposition iteration. Numerical experiments showing the propa-
ation of the five types of waves in a partially frozen sandstone are
lso presented.

The domain-decomposition iteration of Santos and Sheen �2007�
s also used by Rubino et al. �2008� to simulate the acoustic response
f gas-hydrate-bearing sediments in a research exploration well. The
imulations are performed assuming the presence of multiscale spa-
ial heterogeneities associated with zones of low and high gas-hy-
rate saturations. The levels of attenuation in the synthetic traces are
n excellent agreement with those measured at the well, showing that

ultiscale distributions of gas hydrates may explain the observed at-
enuation.

The P-wave attenuation by slow-wave diffusion caused by meso-
opic-scale heterogeneities is a significant loss mechanism at low
requencies. Rubino et al. �2006b� and Picotti et al. �2007� imple-
ent an iterative FE domain-decomposition iteration in a parallel

omputer, similar to that of Santos and Sheen �2007�, to model wave
ropagation at seismic frequencies in a periodically stratified medi-
m. The Q factors obtained from the synthetic traces, estimated with
pectral-ratio and frequency-shift methods, are in very good agree-
ent with those predicted by White’s theory.
Using a reduced Biot model that ignores the shear and slow

-waves, Bermudez et al. �2006� present a displacement/pressure
oroelastic FE method to compute the response to a harmonic exci-
ation of a 3D enclosure containing a fluid and a poroelastic material.
or a tetrahedral mesh, they use the lowest-order Raviart-Thomas-
edelec space for the fluid and the sum of a bubble and a polynomial
f the first degree for the solid.
EG license or copyright; see Terms of Use at http://segdl.org/
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Computational poroelasticity 75A237
scillatory tests in the space-frequency domain

Numerical simulations using Biot equations of motion in the pres-
nce of mesoscopic-scale heterogeneities require extremely fine
eshes to properly represent these heterogeneities and their attenua-

ion effects on the fast waves.An alternative approach to wave prop-
gation is to use a numerical upscaling procedure to determine an
quivalent viscoelastic solid to the original Biot medium �Rubino et
l., 2009; Santos et al., 2009�, using the computer as a virtual labora-
ory. The procedure consists of simulating oscillatory compressibili-
y and shear tests in the space-frequency domain to determine the
quivalent �complex� undrained P- and S-wave moduli on a repre-
entative sample at a finite number of frequencies. The sample is as-
umed to obey Biot’s equations of motion, and the FEM is used to
olve the associated boundary-value problems.

In general, the distribution of the mesoscopic multiscale heteroge-
eities has a stochastic nature, so the oscillatory tests are applied in a
onte Carlo fashion on many realizations of the stochastic hetero-

eneities. Computing the moments of the equivalent phase veloci-
ies and inverse Q factors yields the desired equivalent viscoelastic

edium. The procedure allows us to determine the complex moduli
or arbitrary spatial distributions of the heterogeneities, where no an-
lytical solutions are available.

Figure 3 displays an oscillatory compressibility test applied to a
epresentative sample of partially saturated poroelastic material.
uch spatial distribution of fluids may occur when shale strings seal
ff local pockets of gas, creating many gas-liquid contacts, or during
eld production, when gas may come out of solution and create dis-

ributed pockets of free gas �White, 1975�. The boundary conditions
re a normal stress applied to the top boundary ��P exp�i�t��, and
o tangential external forces are applied to the top and lateral bound-
ries. The fluid is not allowed to flow into or out of the sample, and
he solid is not allowed to move at the bottom boundary nor to have
orizontal displacements at the lateral boundaries of the sample. The
omain is a square measuring 50 cm per side. Overall gas saturation
s 10%. Black zones correspond to pure gas saturation and white
ones to pure brine saturation �Figure 3a�. The number of cells is 75
75.
Figure 3b shows the normalized fluid pressure at a frequency of

0 Hz. The fluid-pressure gradients are maximum at the boundaries
f the gas patches, producing fluid flow and Biot slow waves that dif-
use away from the gas-water interfaces generating energy losses
nd velocity dispersion �mesoscopic losses�. The value of the
-quality factor is approximately six at 50 Hz, so there are signifi-
ant attenuation and dispersion effects because of the diffusive Biot
aves generated at the boundaries of the gas patches. This strong at-

enuation may occur in reservoir sandstones subject to overpressure
r in unconsolidated ocean sediments.

imulation of coupled seismic and electromagnetic
aves

As explained earlier, seismic waves propagating through near-
urface layers of the earth may induce electromagnetic disturbances
hat can be measured at the surface �seismoelectric effect, electrofil-
ration� �Pride and Haartsen, 1996; Mikhailov et al., 1997�. Recent
ests suggest that the reciprocal process, i.e., surface-measurable
coustic disturbances induced by electromagnetic fields �elec-
roseismic effect, electro-osmosis�, is also possible �Thompson,
005; Hornbostel and Thompson, 2007�. To explain these phenome-
a, Thompson and Gist �1993� and Pride �1994� suggest they are
Downloaded 06 Dec 2010 to 163.10.46.9. Redistribution subject to S
enerated by an electrokinetic coupling mechanism. Using a vol-
me-averaging approach, Pride �1994� derives a set of equations de-
cribing electroseismic and seismoelectric effects in electrolyte-sat-
rated porous media. In these equations, the coupling mechanism
cts through the �generally frequency-dependent� electrokinetic
oupling coefficient L �see equation 7�. When this coefficient is set to
ero, Pride’s set of equations turns to the uncoupled Maxwell’s and
iot’s equations.
Santos �2009� presents a collection of 2D FEMs for the space-fre-

uency domain solution of the fully coupled Pride’s equations in a
ounded domain, including absorbing boundary conditions. If only
eismic sources are present, the electro-osmosis effects can be ne-
lected and we have a seismoelectric FE model. On the other hand,
hen only electromagnetic sources are considered, electrofiltration

an be ignored, yielding an electroseismic numerical model.
The approach is based on a mixed formulation for Maxwell’s

quations and a standard Galerkin formulation for Biot’s equations
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ion; �b� normalized fluid-pressure after an oscillatory compressibil-
ty test.
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n global and domain decomposed forms. The analysis includes ex-
stence and uniqueness of the approximate solution, a priori error es-
imates for the global procedure, and convergence for the domain de-
omposition iteration. The electric-field vector and the scalar mag-
etic field, corresponding to the case of compressional and vertically
olarized seismic waves coupled with transverse magnetic polariza-
ion �PSVTM mode�, are computed with the rotated Raviart-Tho-

as-Nedelec FE spaces of zero order. Each component of the solid-
hase displacement vector is approximated by using the noncon-
orming space defined in Douglas et al. �1999�, whereas the dis-
lacement in the fluid phase is approximated using the vector part of
he Raviart-Thomas-Nedelec mixed FE space of zero order.

The 2D FE spaces for the case of horizontally polarized shear
aves coupled with the transverse electric polarization �SHTE
ode� are identical to those of the PSVTM mode, except that in this
ode the solid and fluid displacements are scalar functions in H1 and

2, respectively. Consequently, the solid displacement is approxi-
ated using the nonconforming spaces defined in Douglas et al.

1999� and the fluid displacement employing piecewise constants.
ecently, numerical experiments incorporating the algorithms pre-

ented in Santos �2009� are used in Zyserman et al. �2010� to model
SVTM and SHTE electroseismics.

iscontinuous Galerkin method

Several forms of the discontinuous Galerkin method �DGM� have
een applied to acoustic and elastic wave equations. Early formula-
ions of the DGM for elliptic problems can be found in Wheeler
1978�. A locally implicit space-time DGM �ADER-DG�ST�� using
umerical fluxes on unstructured tetrahedral meshes is presented by
e la Puente et al. �2008� to solve Biot’s equations on 3D bounded
omains. The formulation is valid for inviscid fluids and the low-fre-
uency case, and the algorithm is validated by comparison with
nown analytical and numerical solutions.

De Basabe et al. �2008� give a numerical dispersion analysis for an
nterior penalty DGM for elastic wave propagation, suggesting that
agrange basis functions combined with Gauss quadratures is a
ood choice for wave-propagation simulations �see De Basabe and
en �2007� and references therein for grid-dispersion analysis of
EM�.

SPECTRAL FINITE-ELEMENT METHODS

The SE method was pioneered in the late 1980s by Patera �1984�
nd Maday and Rønquist �1990�, and it was used successfully in
omputational fluid dynamics before generating interest for seismic
ave-propagation problems. In the time domain, SE methods have

hown high accuracy for 2D and 3D elastic wave modeling �e.g., Se-
iani et al., 1992; Komatitsch and Vilotte, 1998� as well as for aniso-
ropic and anelastic effects �Komatitsch et al., 2000a�. Fluid/solid
oundaries have also been treated based upon domain decomposi-
ion �Komatitsch et al., 2000b; Chaljub et al., 2007�. In the frequency
omain, SE has appeared to be of high interest for wave propagation
n layered structures �Rizzi and Doyle, 1992; Doyle, 1997; Igawa et
l., 2004; Baskaran et al., 2006�. SE methods have also been used for
ave propagation in porous media in the frequency domain �e.g.,
egrande and De Roeck, 1992a, 1992b� and the time domain

Morency and Tromp, 2008�.
Downloaded 06 Dec 2010 to 163.10.46.9. Redistribution subject to S
pace–frequency-domain solution of Biot’s equations

The governing equations of motion, such as those given by equa-
ions 1, are first transformed from the time domain, where coupled
artial differential equations need to be solved, to the frequency do-
ain using a Fourier transform that simplifies these equations to a

et of coupled ordinary differential equations. The solution is then
ound by solving a frequency-dependent eigenvalue problem. De-
rande and De Roeck �1992a� solve the 1D Biot equations in terms
f solid and relative fluid displacements. They apply their imple-
entation to the resolution of a transient pulse propagating through a

aturated porous column. For this exercise, they use high permeabil-
ty. Doing so, they are able to observe the propagation of the two
ompressional waves as well as their attenuation. They expand this
mplementation to 2D wave propagation in layered saturated media
Degrande and De Roeck, 1992b�.

In another paper, Degrande et al. �1998� tackle the problem of
ave propagation in a coupled dry, saturated, and unsaturated po-

ous medium, here again in a layered structure. Subsequently, they
resent a series of applications mimicking �1� the effect of a moving
ater table on the propagation of transient waves in an isotropic axi-

ymmetric half-space and �2� the influence of air bubbles in the pores
f an unsaturated medium. Because of their formulation, the mass
istribution and the stiffness matrix are calculated exactly. The num-
er of elements in this case coincides with the number of disconti-
uities �layers� in the model.

pace–time-domain solution of Biot’s equations

To our knowledge, Morency and Tromp �2008� are the first to
olve the Biot equations with SEM for the solid and relative fluid dis-
lacements in the time domain. They present a general 3D imple-
entation accounting for porosity discontinuity.

iscretization, assembly, and time marching

Similar to finite-element methods, a mesh is designed represent-
ng a subdivision of the model volume � into nel nonoverlapping fi-
ite elements �quadrilateral in 2D space and hexahedral in 3D space�

e, e�1, . . . ,nel, at which level the partial differential problem is ap-
roximated. Each of these elements is mapped to a reference domain
�1,1�nd �for a square in two dimensions, nd�2; for a cube in three
imensions, nd�3�. Therefore, a unique relationship exists between
point x within � e and a Gauss-Lobatto-Legendre �GLL� integra-

ion point � in the reference domain. These GLL points are the roots
f �1�� 2�Pnl

� , where Pnl
is a Legendre polynomial of degree nl. The

agrange polynomials l�
nl of degree nl, associated with nl�1 GLL

ontrol points � � within ��1,1�, with � �0, . . . ,nl, are such that at
ny control point � � , the Lagrange polynomials return zero or one,
hat is, l�

nl�� ���� �� . This property leads to an important result on
he mass matrices.

Contrary to the FE method, the SE method relies upon the use of
igher-degree Lagrange polynomials to interpolate functions on the
lements. In SE wave propagation, one typically uses a polynomial
egree nl between 4 and 10 �Komatitsch and Vilotte, 1998�. On each
olume element � e, any function f is interpolated by triple products
in 3D problems� of Lagrange polynomials as

f�x�� ,� ,� ��
 �
�,� ,�

nl

f�� � l�
nl�� �l�

nl���l�
nl�� �, �11�
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here f�� � refers to the value of f at the interpolation point
�� �,�� ,� ��. Consequently, the SE method retains the ability of the
E method to handle complex geometries while keeping the strength
f exponential convergence and accuracy resulting from the use of
igh-degree polynomials. One crucial advantage of the method is
hat, for acoustic, elastic, and poroelastic equations, the mass matri-
es are diagonal, which naturally unfolds from the use of high-de-
ree Lagrange interpolants and the GLLintegration rule. This makes
he SE solver very well suited for parallel computation, as shown by
ischer and Rønquist �1994� and Komatitsch et al. �2002�.
Finally, because the mass matrices are diagonal, the system can be

olved based on a simple explicit time-marching scheme, e.g., the
ewmark scheme using a predictor/multicorrection technique.
The key element in poroelastic wave-propagation modeling is to

esolve the slow P-wave accurately, which can be diffusive �at low
requency� or can propagate at a much slower speed than the fast P-
r S-waves �at high frequency�. Accuracy and stability for SE calcu-
ations are determined by ensuring a minimum of five grid points per
hortest wavelength and a Courant number lower than 0.3, as experi-
entally estimated for elastic waves using a regular mesh �see Ko-
atitsch, 1997�.

oundary conditions and material discontinuities

A surface integral accounting for boundary conditions, first-order
aterial discontinuities, and absorbing conditions naturally arises in

he weak-form equations, obtained by dotting each of the two gov-
rning equations with arbitrary test vectors and integrating over the
odel volume, which is standard in FE methods.
Free surface, corresponding to zero tractions, is accommodated

hen the integral of the tractions along this boundary vanishes. To
imulate unbounded media, outgoing waves need to be absorbed.

orency and Tromp �2008� use a classical first-order absorbing
oundary condition based upon a paraxial approximation �see, e.g.,
layton and Engquist �1977� for details�.
Material discontinuities in a porous medium in terms of moduli,

ensities, permeability, and viscosity are naturally taken into ac-
ount by the method. SE methods imply continuity of displacements
etween common edges of elements by construction. However, the
elative fluid displacement with respect to the solid skeleton is
eighted by the porosity, which breaks the displacement continuity

or sharp discontinuity in porosity. As shown by Morency and
romp �2008�, sharp discontinuity in porosity can be treated by do-
ain decomposition. They also show that smooth gradients in po-

osity are in turn naturally taken into account by the method. One
eeds also to realize that discontinuity within an element, from one
LL point to another, is fully acceptable.
Coupled wave propagation within an acoustic and poroelastic or

lastic and poroelastic medium is also treated by Morency and
romp �2008�, using domain decomposition. Each domain is treated
eparately, and coupling is achieved by ensuring continuity of dis-
lacement and traction at the boundary. A comparison between ana-
ytical solutions derived by a Cagniard de Hoop method �Diaz and
zziani, 2010� and SEM solutions shows good agreement for the
coustic/poroelastic coupling, as seen in Figure 4. This simulation is
n idealized example because friction is neglected. The experiment
s improbable in the real world, but it is useful for testing the code.
n explosive source is used with a Ricker wavelet source time func-

ion, situated in the upper acoustic half-space �cross�, and we consid-
r a receiver in each layer �triangles�. The snapshot of the vertical
Downloaded 06 Dec 2010 to 163.10.46.9. Redistribution subject to S
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oelastic domain �modified after Morency and Tromp, 2008�. 1
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coustic layer; 3� transmitted fast P-wave; 4�P-to-S wave; 5
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ayer.
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omponent of the displacement in Figure 4a displays the direct and
eflected P-waves in the acoustic layer and the transmitted fast
-wave, the P-to-S wave, and the fast P- to slow P-wave in the po-
oelastic layer. We also notice a head wave in the acoustic layer, as
he refracted S-to-P-wave. Figure 4b and c compares analytical solu-
ions �solid line� and SEM vertical-component velocity seismo-
rams �circles� at receivers R1 in the acoustic layer and R2 in the po-
oelastic layer, respectively. The corresponding rms misfit values on
ach plot show good agreement between numerical and analytical
olutions.

ttenuation effects

Morency and Tromp �2008� treat effects associated with physical
ispersion and attenuation and frequency-dependent viscous resis-
ance based upon a memory variable approach. The equation 1b is
hen replaced by

� fv̇�mq̇�b�t��q��� xpf . �12�

he function b�t� takes into account the frequency dependence of
he fluid-flow regime. At low frequency, the flow regime is of Poi-
euille �laminar� and the slow P-wave is diffusive, with b�� /� . At
igh frequency, inertial forces dominate the flow regime and the
low P-wave propagates. In that case, the relaxation function b�t�
ay be described in terms of viscous relaxation mechanisms �see
arcione �2007� and Morency and Tromp �2008� for details�.
Asimilar approach is used to account for the anelastic response of

he frame. In that case, a viscoelastic rheology is introduced �e.g.,
arcione, 2007�.

ierarchical FE techniques

Hierarchical FE techniques have been developed using high-or-
er polynomials, referred to as hierarchical functions, to describe
isplacement fields �Houmat, 1997�. One characteristic of these hi-
rarchical techniques is the possible use of different polynomial or-
ers for the different displacement components. These techniques
ave been used successfully to model wave propagation in air-satu-
ated foam material used in aircraft and ground transportation vehi-
les for thermal insulation and sound absorption. Hörlin et al. �2001�
resent a convergence analysis in the case of a homogeneous porous
ayer. The general trend is that for higher frequencies, a higher poly-
omial degree is required. Notice that the flow resistivity of a foam is
n the order of 103 kg / �m3 s�, almost seven orders of magnitude
maller than the resistivity of oil in a reservoir.

In a later paper, Hörlin �2005� introduces a 3D hierarchical hp-FE
mplementation of Biot’s equations, adopting a combination of high-
r-order polynomials for the element base functions and mesh re-
nement. He finds that fourth- or fifth-order polynomials for mesh
efinement are the most computationally efficient to achieve a level
f the results, which is of interest from an engineering application
oint of view characterized by a low-frequency regime. However,
he case of a two-porous-layers problem shows some slow conver-
ence of the fluid displacement at the interface, which is solved by
ncreasing the coupling between the solid and fluid phases, i.e., in-
reasing the flow resistivity. Looking at a multilayer geometry,
öransson �2006� manages to reach an accuracy better than 10% in

he displacements and fluid pressures using higher-order polynomi-
ls.
Downloaded 06 Dec 2010 to 163.10.46.9. Redistribution subject to S
INVERSE PROBLEMS

As we have described, the poroelastic forward problem has been
olved using different numerical techniques. The inverse problem,
n the other hand, is rarely addressed. Inverse procedures are based
pon characterizing the sensitivity of the seismic wavefield to per-
urbations in the model parameters through sensitivity kernels, or
réchet derivatives �Tarantola, 1984, 1987�. They are of high inter-
st to derive material properties from a measured signal.

To our knowledge, the first work done in this area has been by De
arros and Dietrich �2008�. The authors derive Fréchet derivatives

n terms of the Green’s functions of a 1D reference medium based
pon a perturbation analysis of the poroelastic wave equations in the
lane-wave domain using the Born approximation. In this study, two
eries of Fréchet derivatives are defined in terms of the fluid and bulk
ensities, and the Biot coefficients, as well as in terms of the solid-
nd fluid-phase densities, permeability, porosity, solid and fluid bulk
oduli, solid shear modulus, and a consolidation coefficient. De
arros and Dietrich present a detailed sensitivity study to investigate

he influence of a small perturbation of each model parameter on the
eismic wave. They conclude that, with their formulation, inversion
or porosity and the consolidation coefficient is more manageable
han for permeability.

Morency et al. �2009� present a general 3D derivation of finite-
requency sensitivity kernels based upon SE and adjoint methods.
he authors extend work done in �an�elastic wave propagation �e.g.,
arantola, 1987; Tromp et al., 2005; Liu and Tromp, 2008� to porous
edia. In this study, the workers present three series of Fréchet de-

ivatives. The first series is defined in terms of the eight parameters
ppearing in the Biot equations. A second series offers a parameter-
zation in terms of density-normalized moduli corresponding to
quared wavespeeds. The last series involves the poroelastic shear
nd compressional wavespeeds as well as the porosity and perme-
bility. A gallery of 2D finite-frequency sensitivity kernels is pre-
ented, which illustrates the sensitivity of the fast and slow compres-
ional waves and the shear wave to the poroelastic parameters. As
ith De Barros and Dietrich �2008�, Morency et al. �2009� observe

he weak sensitivity to the permeability for their choice of misfit
unction. A possible use of electrokinetic effects to improve perme-
bility characterization is succinctly mentioned at the end of their
aper.

Connections have been drawn between imaging in exploration
eismology, adjoint methods, and finite-frequency tomography in
he context of onshore and offshore elastic modeling by Luo et al.
2009� and Zhu et al. �2009�. They demonstrate that the density sen-
itivity kernel in adjoint tomography is closely related to the imaging
rinciple in exploration seismology introduced by Claerbout �1971�.
hey also show that in elastic modeling, reflectors are better charac-

erized by the impedance kernel. It is thus natural to expect that in
oroelastic modeling an equivalent to the elastic impedance kernel
ill arise. Notice, though, that in an isotropic poroelastic medium,

here are three types of densities and three wavespeeds, contrary to
n isotropic elastic medium that presents one density and two
avespeeds. Several potential impedance kernels may thus be de-
ned in a poroelastic medium.

CONCLUSIONS

We have provided a review of the main direct methods used in dy-
amic poroelasticity. The algorithms discussed — FE, PS, and FE
EG license or copyright; see Terms of Use at http://segdl.org/
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ethods �low-order FE and SE� — do not have restrictions on the
ype of constitutive equation, boundary conditions, and source type,
nd they allow general material variability.

Without simplified assumptions, many of the complex constitu-
ive equations handled by direct methods cannot be solved with ray
nd analytical methods. Finite differences are simple to program
nd, under not very strict accuracy requirements, are very efficient.
n this sense, a good choice can be a second-order-in-time, fourth-or-
er-in-space FD algorithm. Pseudospectral methods can, in some
ases, be more expensive, but they guarantee high accuracy when
taggered differential operators are used. In 3D space, pseudospec-
ral methods require a minimum number of grid points, compared to
nite differences, and can be the best choice when limited computer
torage is available.

The best algorithm to model surface topography and curved inter-
aces is without a doubt the FE method, which, with the use of high-
rder interpolators, can also compete in terms of accuracy and stabil-
ty with the previous techniques. FE and SE methods are also best
uited for engineering problems, where interfaces have well-defined
eometric features, in contrast with geologic interfaces. Use of non-
tructured grids, mainly in 3D space, can be challenging and time
onsuming and it may require complex mesh builders. However, FE
nd SE methods remain preferred techniques for seismic problems
nvolving the propagation of surface waves in situations of complex
opography.

The coexistence of waves and diffusion modes is challenging,
ainly because the velocity of the slow modes vary from zero at low

requencies to a finite value at high frequencies and the attenuation
evel can be very high. The mesoscopic loss mechanism, which in-
olves small heterogeneities compared to the pulse wavelength, can
e described by an effective complex modulus and simulated by
eans of viscoelastic models. The effective compressional and

hear moduli can be obtained with harmonic simulations in the fre-
uency domain or quasi-static experiments in the time domain,
ade on many realizations of stochastic heterogeneities.
Progress has been made in many other aspects: the poroelastic

quations have been solved by describing several attenuation mech-
nisms using viscoelastic models, general material symmetry �an-
sotropy�, partial saturation, and multiphase media such as perma-
rost. Digital rock physics explicitly considers the microstructure
nd can be used to perform virtual experiments and to verify effec-
ive theories such as Biot’s and other macroscopic poroelastic theo-
ies. Poroelasticity combined with electromagnetism explains the
lectrokinetic phenomenon, which in turn yields models to analyze
lectroseismic and seismoelectric effects that have been simulated
y FD and FE methods.

The numerical methods have been tested in unbounded media and
n the presence of a material interface, which allows the simulation
nd analysis of surface and interface waves in poroelastic media. Fi-
ally, the inverse problem in poroelastic media is essential to derive
aterial properties, particularly microstructural information, from a
easured signal. Recent studies bring promising insights.
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