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Abstract
We show that both the interior region r < M − √

M2 − a2 of a Kerr black
hole and the a2 > M2 Kerr naked singularity admit unstable solutions of
the Teukolsky equation for any value of the spin weight. For every harmonic
number, there is at least one axially symmetric mode that grows exponentially
in time and decays properly in the radial directions. These can be used as
Debye potentials to generate solutions for the scalar, Weyl spinor, Maxwell and
linearized gravity field equations on these backgrounds, satisfying appropriate
spatial boundary conditions and growing exponentially in time, as shown in
detail for the Maxwell case. It is suggested that the existence of the unstable
modes is related to the so-called time machine region, where the axial Killing
vector field is timelike, and the Teukolsky equation, restricted to axially
symmetric fields, changes its character from hyperbolic to elliptic.

PACS numbers: 04.50.+h, 04.20.−q, 04.70.−s, 04.30.−w

1. Introduction

Kerr’s solution [1] of the vacuum Einstein’s equations in the Boyer–Lindquist coordinates is

ds2 = (� − a2 sin2 θ )

�
dt2 + 2a sin2 θ

(r2 + a2 − �)

�
dt dφ

−
[

(r2 + a2)2 − �a2 sin2 θ

�

]
sin2 θ dφ2 − �

�
dr2 − � dθ2, (1)

where � = r2 + a2 cos2 θ and � = r2 − 2Mr + a2. We use the metric signature + − −− to
match the formulas in the original Newman–Penrose null tetrad formulation [2] and Teukolsky
perturbation treatment [3]. Kerr’s metric has two integration constants: the mass M and the
angular momentum per unit mass a. They can be obtained as the Komar integrals [4] using
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Figure 1. The Penrose diagram for the maximal analytic extension of Kerr’s spacetime. Regions
labeled I and I′ are isometric, and so are II and II′, and III and III′.

the time translation Killing vector field Ka and the axial Killing vector field ζ a (in the above
coordinates, these are ∂/∂t and ∂/∂φ, respectively). We will only consider the case M > 0,
and we will take a > 0 without loss of generality, since for a < 0 we can always change
coordinates φ → −φ, under which a → −a. If 0 < a < M (sub-extreme case), the � = 0
ring curvature singularity at r = 0, θ = π/2 is hidden behind the black hole inner and outer
horizons located at the zeros of �: ri = M − √

M2 − a2 and ro = M + √
M2 − a2. As is well

known that ri and ro are just coordinate singularities in (1), Kerr’s spacetime can be extended
through these horizons and new regions isometric to I: r > ro, II: ri < r < ro and III: r < ri

arise ad infinitum and give rise to the Penrose diagram displayed in figure 1. In the extreme
case, M = a, ri = ro and region II is absent; however, we will still call region I (III) that for
which r > ri = ro (r < ri = ro). In the ‘super-extreme’ case a > M, there is no horizon at all,
the ring singularity being causally connected to future null infinity. This is not a black hole,
but a naked singularity.

In this paper, we study the Kerr naked singularity (KNS), and region III of (sub-extreme
and extreme) Kerr black holes. We will refer to these solutions of the vacuum Einstein
equations as KIII and KNS from now on. These have a number of undesirable properties,
among which we mention (i) the timelike curvature singularity as we approach the ring
boundary at r = 0, θ = π/2; (ii) the fact that any two events can be connected with a future
timelike curve (in particular, there are closed timelike curves through any point), making KIII
and KNS ‘totally vicious sets’ in the terminology of [5], and causing a number of puzzling
causality problems [6]; and (iii) the violation of cosmic censorship.
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Two conjectures are known under the name of cosmic censorship: the weak cosmic
censorship conjecture establishes that the collapse of ordinary matter cannot generically lead
to a naked singularity, while the strong cosmic censorship is the assertion that the maximal
development of data given on a Cauchy surface cannot be generically continued in a smooth
way [7]. The words in italics above signal aspects of the conjectures that need to be properly
specified to turn them into a well-defined statement. In any case, the KNS violates weak cosmic
censorship, and KIII violates strong cosmic censorship, since it is a smooth extension of the
development of an initial data surface extending from spatial infinity of region I to spatial
infinity of region I′ in figure 1, whose Cauchy horizon agrees with the inner horizon at ri.

According to the Carter–Robinson theorem [8] and further results by Hawking and Wald
[9], if (M, gab) is an asymptotically flat stationary vacuum black hole that is non-singular
on and outside an event horizon, then it must be an a2 < M2 member of the two-parameter
Kerr family. The spacetime outside a black hole formed by gravitational collapse of a star is,
independent of the characteristics of the collapsing body, modeled by region I of a Kerr black
hole solution, placing this among the most important of the known exact solutions of Einstein’s
equations. Since this region is stationary (outside the ergosphere), there is a well-defined notion
of modal linear stability, under which it has been shown to be stable [3, 10]. It is our opinion,
however, that proving the instability of those stationary solutions of Einstein’s equations that
display undesirable features is as relevant as proving the stability of the physically interesting
stationary solutions. In this line of thought, we are carrying out a program to analyze the
linear stability of the most salient naked singularities (M < 0 Schwarzschild spacetime [11],
Q2 > M2 Reissner–Nordström spacetime [12] and a2 > M2 Kerr spacetime [13, 14]; and
also of those regions lying beyond the Cauchy horizons in the Reissner–Nordström and Kerr
black holes [14, 12]. As is well known, the linear perturbations of the spherically symmetric
Einstein–Maxwell spacetimes are much easier to deal with than those of the axially symmetric
Kerr spacetime, for which the only separable equations known to date are not directly related
to the metric perturbation. They are equations satisfied by perturbations of the components of
the Weyl tensor

ψ0 := −Cabcdlamblcmd, ψ4 := −Cabcdnam̄bncm̄d (2)

along a complex null tetrad la, na, ma, m̄a, among which the only nonzero dot products are [2]

lana = 1, mam̄a = −1. (3)

We use a bar for complex conjugation, la and na are real vector fields, whereas ma is complex.
The null tetrad we use is that introduced by Kinnersley [15], given in equation (4.4) in [3]. If
we take

εabcd = i 4! l[anbmcm̄d] (4)

as a right-handed volume element, we find that the following two-forms are self-dual:

m̄[anb], n[alb] + m[am̄b], l[amb]. (5)

A complex electromagnetic field can be written as

Fab := 2φ1(n[alb] + m[am̄b]) + 2φ2l[amb] + 2φ0m̄[anb]

+ 2φ̃1(n[alb] + m̄[amb]) + 2φ̃2l[am̄b] + 2φ̃0 m[anb]. (6)

If Fab is real, then φ̃ j = φ̄ j, and if Fab is self-dual (anti-self-dual), then φ̃ j (φ j) vanish. Teukolsky
[3] found that Maxwell, (Weyl) spinor and scalar fields on a Kerr background can be treated
in a similar way as the gravitational perturbations δψ0 and δψ4. If we take the components of
the Maxwell fields (see (3))

φ0 = Fablamb, φ1 = 1
2 Fab(l

anb + m̄amb), φ2 = Fabm̄anb, (7)
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and those of the two component spinors χA

χ0 = χAoA χ1 = χAιA, (8)

and weight them with an appropriate power of the spin coefficient ρ = mam̄b∇bla =
(ia cos θ − r)−1:

� 1
2

:=χ0, �− 1
2

:= ρ−1χ1, �1 := φ0, �−1 := ρ−2φ2, �2 := δψ0, �−2 := ρ−4δψ4,

(9)

then the (source-free) Maxwell, spinor and linearized gravity equations can all be encoded in
Teukolsky’s master equation [3]:

Ts[�s] :=
[

(r2 + a2)2

�
− a2 sin2 θ

]
∂2�s

∂t2
+ 4Mar

�

∂2�s

∂t∂φ
+

[
a2

�
− 1

sin2 θ

]
∂2�s

∂φ2

−�−s ∂

∂r

(
�s+1 ∂�s

∂r

)
− 1

sin θ

∂

∂θ

(
sin θ

∂�s

∂θ

)

− 2s

[
a(r − M)

�
+ i cos θ

sin2 θ

]
∂�s

∂φ

− 2s

[
M(r2 − a2)

�
− r − ia cos θ

]
∂�s

∂t
+ (s2 cot2 θ − s)�s = 0. (10)

The index s in �s gives the spin weight under tetrad rotations. The above equation also gives
the massless scalar field equation � �0 = 0 if we set s = 0.

In [13], we found numerical evidence that there are solutions of the s = −2 Teukolsky
equation in the KNS that grow exponentially in time while satisfying appropriate boundary
conditions. In [14], we confirmed this fact by proving that there are infinitely many axially
symmetric unstable (meaning, behaving as ekt for some positive k) solutions of the s = −2
equation in the KNS, and also in KIII.

In this paper, we extend further this result to other linear fields. We show that there are
infinitely many unstable solutions of the Teukolsky equation for any s value (|s| = 0, 1/2, 1, 2).
The proof is given in section 3, with some calculations relegated to the appendix. The existence
of the unstable modes is shown in section 4 to be related to the time machine region near the
ring singularity, which produces a change of character of the Teukolsky PDE—restricted to
axial modes—from hyperbolic to elliptic. It is suggested that the emergency of an instability
when a PDE changes from hyperbolic to elliptic is generic, and this is illustrated with a simple
toy model in 1 + 1 dimensions.

The use of unstable solutions of Teukolsky’s equation as ‘Debye’ potentials [16] for
constructing unstable spinor, Maxwell and linear gravitational fields is illustrated in section 5,
where the reconstruction process is explained in detail for Maxwell fields. All the reconstructed
fields decay properly along spatial directions while growing exponentially in time. This is the
notion of instability used in this work. The lack of a sensible initial value formulation due to
the fact that there are no partial Cauchy surfaces in KIII and KNS forbids a more traditional
approach to the stability issue. This is quite different from what happens for the Reissner–
Nordström and negative mass Schwarzschild timelike naked singularities, for which a unique
evolution of data given on a partial Cauchy surface can be defined, and instability proven
afterward [11, 12].

The following section contains information on the Teukolsky equation that is used in the
proof of existence of unstable modes.
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2. Separated Teukolsky’s equations

Introducing

�s = Rω,m,s(r)S
m
ω,s(θ ) exp(imφ) exp(−iωt), (11)

the linearized Teukolsky PDE (10) is reduced to a coupled system for S and R:

1

sin θ

d

dθ

(
sin θ

dS

dθ

)
+

(
a2ω2 cos2 θ − 2aωs cos θ − (m + s cos θ )2

sin2 θ
+ E − s2

)
S = 0, (12)

�
d2R

dr2
+ (s + 1)

d�

dr

dR

dr

+
{

K2 − 2is(r − M)K

�
+ 4irωs − [E − 2amω + a2ω2 − s(s + 1)]

}
R = 0,

(13)

where K = (r2 +a2)ω−am. The system (12)–(13) is coupled by their common eigenvalue E,
whose relation with the separation constant A in [3, 17] is given by A = E − s(s+1). Suppose
s, m and ω are given; then, E in (12) has to be chosen so that S is regular on the sphere. This
gives a denumerable set of eigenvalues that we label as Eang

� (s, m, aω), with � = 0, 1, 2, . . .

and E increasing with �. In a similar way, E in (13) is chosen such that R decays properly as
|r| → ∞ for the KNS (r → −∞ and r → r−

i for KIII), and this also gives a denumerable
set of increasing values E rad

n (s, m, aω), n = 0, 1, 2, . . . . A solution of the system (12)–(13)
is obtained whenever Eang

� (s, m, aω) = E rad
n (s, m, aω) =: E. Thus, for given (s, m), we may

regard a solution as an intersection of the curves Eang
� versus aω and E rad

n versus aω, the allowed
frequencies being those at which the curves intersect. This point of view is the one used in the
proof of instability below, for which we restrict our search to aω = ik, where k a real positive
number (so that (11) gives an exp(kt/a) behavior), and show that there are intersections for
every � and, at least, the fundamental radial mode n = 0.

One way of finding the radial and angular spectra consists in reducing the regularity
conditions to a continued fraction equation involving E [18]. This equation arises when
solving a three term recursion relation on the coefficients of a series solution for S and R in
(12) and (13) [18]. An alternative way to obtain the angular spectrum, which is well suited
to the case we are interested, m = 0 and aω = ik, is discussed in section 2.1 of [14]. This
approach is used in the numerical computations leading to figure 2.

2.1. Angular equation: spin-weighted spheroidal harmonics

The solutions of (12) that are regular on the sphere are called spin-weighted spheroidal
harmonics (SWSH). The spectrum of E values is discrete, and we will use the notation
Eang

� (s, m, aω), with � = 0, 1, 2, . . . , to label the eigenvalues in increasing order for a given
set of parameters (s, m, aω) (the notation is not unified in the literature, note that we use � = 0
for the lowest eigenvalue independently of the spin weight s). Equation (12) exhibits some
interesting symmetries: if (S(θ ), E ) is a regular solution of (12) for some given (s, m, ω)

values, it is easy to check that (S(π − θ ), E ) is a solution for (s,−m,−ω) and for (−s, m, ω),
and that (S(θ ), E ) is a solution for (s, m, ω̄). This implies that

Eang
� (s, m, aω) = Eang

� (s,−m,−aω) = Eang
� (−s, m, aω) = Eang

� (s, m, aω̄). (14)

We are interested in axially symmetric (m = 0) solutions with purely imaginary
frequencies (aω = ik, k ∈ R). In this case, from a solution S(θ ), we can extract solutions with

5
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Figure 2. (Left) Eang
�=1(s = 1/2, m = 0, aω = ik) obtained numerically by solving equation (9) in

[14] for s = 1/2 and different values of k ∈ [0, 15], together with a least-squares linear fit using the
large k data points, which gives E = 2.998 43k+constant, in excellent agreement with the expected
asymptotic expansion equation (20). (Right) The values obtained in this way for 0 < k < 2.5. The
solid line is the low-frequency approximation of Eang

�=1(s = 1/2, m = 0, aω = ik) in [19, 17] to
order k6.

real and imaginary parts of opposite parities by taking the linear combinations S(θ )±S(π − θ ).
Also, the eigenvalues are real, as follows from (14):

Eang
� (s, m = 0, ik) = Eang

� (s, m = 0, ik). (15)

The behavior of Eang
� (s, m = 0, aω = ik) in the limits k → 0+ and k → ∞ will be relevant

in what follows, since, as explained above, an intersection of the curve Eang
� (s, m = 0, aω =

ik), k ∈ R
+, with any of the radial curves implies the existence of an unstable (i.e. ∼ exp(kt/a))

mode. To study these limits, we will assume that s � 0 without loss of generality (see (14)).
Setting x := cos(θ ), m = 0, aω = ik in (12), we find that, for any k, this equation has regular
singular points at x = ±1, the possible behavior of local solutions around these points being
(1 − |x|)s/2 or (1 − |x|)−s/2.

For k = 0, we expand the regular solutions as

S(x) = (1 − x2)(s/2)

∞∑
j=0

a j(1 − x) j, (16)

and find that (12) implies the recursion relation

2( j + 1)( j + 1 + s)aj+1 − (( j + s)( j + s + 1) − E ) a j = 0, (17)

which, for large j, gives a j+1 ∼ a j/2. The series in (16) will thus diverge at x = −1 unless we
cut it to down to a polynomial of degree � = 0, 1, . . . by choosing E = (� + s)(� + s + 1) for
some � = 0, 1, 2, . . . . Repeating the calculation for negative s, or just using (14), we obtain

E = Eang
� (s, m = 0, aω = 0) = (� + |s|)(� + |s| + 1). (18)

A more detailed analysis of (12) using continued fraction techniques gives a Taylor expansion
for Eang

� (s, m, aω) for complex ω near ω = 0 The expansion up to order (aω)6 is available in

6
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the literature (see ([17, 19] and references therein), exhibits the symmetries (14) and has (18)
as the leading order term:

E = Eang
� (s, m = 0, aω) = (� + |s|)(� + |s| + 1) + O(ω). (19)

Asymptotic expansions for aω = ik, k → ∞ can be found in [20–22, 17]. Particularly
useful to our purposes is that, in our notation [17],

Eang
� (s, m, aω = ik) = (2� + 1)k + O(k0), as k → ∞. (20)

We should warn the reader, however, that a complete proof of the above formula is not available
for s 	= 0. Although arguments suggesting the validity of (20) are given in [17], where the
formula was also numerically checked for s = 1, 2, the case s = 1/2 has not been reported as
tested there. Given that these equations are key in the proof of instability for spinor fields, we
numerically tested their validity using the method developed in section 2.1 of [14]. We have
found and excellent agreement with both (18) and (20) for s = 0, 1/2, 1, 2. As an illustration,
we give in figure 2 the results for the only case not dealt with in the literature, that of s = 1/2.

2.2. Radial equation: reduction to a Schrödinger form

Equation (13) is of the form �R̈ + QṘ + (Z − E )R = 0, with dots denoting derivatives with
respect to r. If we introduce an integrating factor L, ψ := R/L, and change the radial variable
to r∗, where dr∗

dr := 1
f , with f being an unspecified positive-definite function of r, (13) gives

the following equation for ψ :

− ψ ′′ +
(

f ′

f
− 2L′

L
− f Q

�

)
ψ ′ +

(
L′ f ′

L f
− L′′

L
− Q f L′

L�
− f 2Z

�

)
ψ = f 2

�
Eψ, (21)

where primes denote derivatives with respect to r∗. By choosing f = √
� (note that � is strictly

positive for KIII and KNS) and L such that the coefficient of ψ ′ vanishes, i.e. L = �− (2s+1)

4 ,
(21) reduces to a stationary Schrödinger equation with the energy eigenvalue −E:

Hψ := −ψ ′′ + Vψ = −Eψ. (22)

In the case m = 0, aω = ik, the potential is

V = −
(

�L̈

L
+ QL̇

L
+ Z

)
=

[
r(r3 + ra2 + 2Ma2)

a2(r2 − 2Mr + a2)

]
k2 + 2s

[
(r3 − 3r2M + ra2 + Ma2)

a(r2 − 2Mr + a2)

]
k

+ 1

4

[
1 + (M2 − a2)(4s2 − 1)

r2 − 2Mr + a2

]
=: k2V2 + kV1 + V0. (23)

We will show that the spectrum of (22) is entirely discrete and use the notation −E rad
n (s, m =

0, aω = ik), n = 0, 1, 2, . . . , for its eigenvalues, to be consistent with our previous
conventions.

For k large enough, V is negative in a region rn < r < 0, and the resulting bound states
lead to unstable modes of the Teukolsky PDE. This is explained in detail in the following
section.

3. Unstable linear fields on Kerr’ s spacetime

The results from the previous section can be summarized as follows. There are solutions of the
Teukolsky equations behaving as ekt/a if and only if solutions can be found of equations (12)
and (13) with the same E value for ω = ik/a, i.e. Eang

� (s, m, ω = ik/a) = E rad
n (s, m, ω = ik/a)

for some � and n. Since we restrict our attention to the axially symmetric case, we will drop
the m index from now on and use (22)–(23) instead of (13). Given that the instability is a

7
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consequence of the intersection of spectral lines of the angular and radial operators for purely
imaginary frequencies, we need to gather information on the spectra of theses operators.
Since we are interested in spotting intersections for ω = ik/a, k ∈ (0,∞), we will gather
information on the asymptotic expressions for these spectra in the limits, where k → 0+ and
k → ∞. The strategy of the proof consists in showing that in one of these limits, Eang

� > E rad
0 ,

whereas in the other Eang
� < E rad

0 ; thus, the intersection follows from continuity on the spectral
lines on k. For the angular equation, these limits are given in (19) and (20). For the radial
equation, we need to work them out and, since the analysis depends on the domain of r and
boundary conditions, we will consider separately KIII and the KNS.

3.1. Unstable modes on a KNS

In this section, we consider the extreme case a2 > M2, for which −∞ < r < ∞, t, θ and φ

are the global coordinates, and � > 0 everywhere. The choice dr∗
dr := 1

f = 1/
√

� made above
gives an adimensional r∗:

r∗ = ln

(
r − M + √

r2 − 2Mr + a2

M

)
�

⎧⎨
⎩

ln
(

2r
M

)
r → ∞

ln
(

a2−M2

2M|r|
)

r → −∞ (24)

that grows monotonically with r and can easily be inverted in terms of elementary functions:

r = M exp(r∗)
2

+ M + M2 − a2

2M exp(r∗)
. (25)

Note that (22) defines a quantum mechanical problem in the entire r∗ line, with H in (21)
being a self-adjoint operator in L2(R, dr∗). The asymptotic form of the potential (23) for large
|r∗| does not depend on the value of s and is given by

V ∼
⎧⎨
⎩

(
Mk
2a

)2
e2r∗

, r∗ → ∞,(
(M2−a2 )k

2Ma

)2
e−2r∗

, r∗ → −∞.
(26)

From the above equation and the fact that V is smooth, we conclude that V reaches a minimum
and H in (21) has an entirely discrete, bounded from below spectrum −E rad

n (s, k), n =
0, 1, 2. . . . As explained above, we will need information on this spectrum in both k → 0+

and k → ∞ limits.

3.1.1. Asymptotic behavior of the radial equation spectrum as k → ∞. The large real k limit
is simple to deal with, because the behavior of V in this limit does not depend on the value
of s, and therefore, the analysis in [14] for s = −2 applies with only minor modifications.
The cubic polynomial r3 + a2r + 2Ma2 in the numerator of V2 (see (23)) has a unique real
root at r = rn(M) < 0; thus, V2 is negative in the interval rn(M) < r < 0, and non-negative
elsewhere. Note that since a2 = −rn

3/(2M + rn), then rn(M) goes from −M to −2M as a2

goes from M2 to infinity.
Let ψ be a properly normalized (〈ψ |ψ〉 = ∫ ∞

−∞ |ψ |2 dr∗ = 1) function supported in the
interval (rn(M), 0); then,

〈ψ |H|ψ〉 = 〈ψ | − (∂/∂r∗)2|ψ〉 +
2∑

j=0

k j〈ψ |Vj|ψ〉 (27)

with

〈ψ |V2|ψ〉 =
∫ 0

rn(M)

|ψ |2 V2
dr√
�

< 0. (28)

8
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Take kc to be the largest among zero and the real roots (if any) of

p(k) := 〈ψ | − (∂/∂r∗)2|ψ〉 + 〈ψ |V0|ψ〉 + k〈ψ |V1|ψ〉 + k2

2
〈ψ |V2|ψ〉

(note the one half factor in the k2 term!), and then p(k) < 0 for k > kc and if −E rad
0 (s, aω = ik)

is the lowest eigenvalue of H (see equation (22)):

− E rad
0 (s, aω = ik) � 〈ψ |H|ψ〉 = k2

2
〈ψ |V2|ψ〉 + p(k) <

k2

2
〈ψ |V2|ψ〉, if k > kc. (29)

meaning that the absolute value of the fundamental radial level grows at least quadratically
in k

E rad
0 (s, aω = ik) >

k2

2
|〈ψ |V2|ψ〉|, if k > kc. (30)

3.1.2. Asymptotic behavior of the radial equation spectrum as k → 0+. A quick inspection
to the potential (23) gives the minima for k = 0 and different spin weights:

min{V (r, k = 0, s), r ∈ R} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
4 , s = 0,

1
4 , |s| = 1/2,

− 1
2 , |s| = 1,

− 7
2 , |s| = 2.

(31)

A few lengthy calculations show however that

lim
k→0+

min{V (r, k, s, a > M), r ∈ R} = 1
4 − s2, (32)

so that there is a discontinuity at k = 0 for higher spin values. Since we will be using
continuity arguments in our proof of instability, we will consider the fundamental energy
−E rad

0 (s, aω = ik) of the quantum Hamiltonian in (22)–(23) as a function of k ∈ (0,∞), for
which

lim
k→0+

−E rad
o (s, aω = ik) > lim

k→0+
min{V (r, k, s), r ∈ R} (33)

given in (32). The appendix contains the details of the calculations leading to (32).

3.1.3. Proof of the existence of unstable modes for every s. Let us gather the relevant
results of the previous sections for the axially symmetric (m = 0) modes. For k → 0+ and
� = 0, 1, 2. . . ,

Eang
� (s, aω = ik) |k=0+= (� + |s|)(� + |s| + 1) > s2 − 1

4 > E rad
0 (s, aω = ik) |k=0+ , (34)

whereas for large enough positive real k

Eang
� (s, aω = ik) = 2(� + 1)k + O(k0) <

k2

2
|〈ψ |V2|ψ〉| < E rad

0 (s, aω = ik). (35)

By continuity, we must have, for every � and s, a k(�,s), such that Eang
� (s, aω = ik(�,s)) =

E rad
0 (s, aω = ik(�,s)). This proves that there is an axially symmetric unstable solution of

the Teukolsky equation for the fundamental radial level and every harmonic number �. For
higher excited radial level, the arguments in [14] for s = −2 suggesting that there also are
intersections generalize to arbitrary s. In any case, we have shown that there are infinitely
many unstable modes for every spin weight. These solutions of the Teukolsky equations decay
exponentially with |r| as |r| → ∞, so that they are initially bounded and grow exponentially
in time.

The calculations above can be adapted to perturbations in the interior region r < ri :=
M − √

M2 − a2 of an a � M Kerr black hole. There are some subtle differences between the
extreme a = M and sub-extreme a < M cases, as shown in the following sections.

9
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3.2. Unstable modes on region III of an extreme Kerr black hole

For the extreme black hole, the solution of dr∗/dr = 1/
√

� in the interior region
r < ri = ro = M is

r∗ = − ln

(
M − r

M

)
, r < ri, (36)

with inverse

r = M(1 − e−r∗
), −∞ < r∗ < ∞. (37)

Using the integration factor �− 2s+1
4 as before, we are led back to (22) and (23), with r given in

(37). Note that

V ∼
{

4k2 exp(2r∗), r∗ → ∞,

k2 exp(−2r∗), r∗ → −∞,
(38)

then for any k > 0 the spectrum of the self-adjoint operator H is again fully discrete and
has a lower bound. The argument leading to (30) goes through in the super-extreme case
without modifications, because the test function in (27) is supported in the r < 0 region. Thus,
the fundamental energy of the radial Hamiltonian is negative and there is an �o, such that
E rad

o (s, aω = ik)|k=0+ < (�o +|s|)(�o +|s|+1), from where it follows that there is an unstable
mode for every � � �o. The radial decay of these modes as r → r−

i and r → −∞ is

ψ ∼
⎧⎨
⎩

(
M

M−r

)2k−s− 1
2 exp

[−2k
(

M
M−r

)](
1 + O

(
M−r

r

))
, r → M−,(

M
r

) 1
2 −2k−s

exp
[

rk
M

]
(1 + O(M/r)), r → −∞.

(39)

3.3. Unstable modes on region III of a sub-extreme Kerr black hole

In the sub-extreme case, dr∗/dr = 1/
√

� and r < ri give

r∗ = ln

(
ri + ro − 2r − 2

√
(ro − r)(ri − r)

ri + ro

)
(40)

so that r∗ has an upper bound:

− ∞ < r∗ < r∗
i := ln

(
ro − ri

ro + ri

)
. (41)

Near the domain boundaries,

r∗ �
⎧⎨
⎩

r∗
i − 2

√
ri−r√

ro−ri
, r → r−

i ,

ln
(−( ro−ri

ro+ri

)2 1
4r

)
, r → −∞,

(42)

and

V �
{(

ν(k)2 − 1
4

)/(
r∗

i − r∗)2
, r∗ → r∗

i
−,

[k(M2 − a2)/(2aM)]2 exp(−2r∗), r∗ → −∞,
(43)

where we have defined

ν(k) := 2
√

ri

ro

(
ro + ri

ro − ri

)
k − s. (44)

The sub-extreme case is essentially different from the extreme and super-extreme cases
because (22) is a Schrödinger equation on the half-axis r∗ < r∗

i , with a potential that is singular

10
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at the r∗
i boundary. This situation and type of singularity is well known [23, 24]. Any local

solution of (22), in particular those which are square integrable for r∗ near −∞, behave as

ψ ∼ a
[(

r∗
i − r∗) 1

2 +ν + · · ·] + b
[(

r∗
i − r∗) 1

2 −ν + · · ·], (45)

near the horizon. Thus, if ν > 1, these are not square integrable near the horizon, unless b = 0,
and this is precisely the condition that selects a discrete set of possible E values as the spectrum
of H and that defines the space of functions where H is self-adjoint. This case is called limit
point in [24]. It is quite different from the limit circle case ν < 1, for which for any E the
eigenfunction behaving properly at minus infinity will be square integrable in r∗ ∈ (−∞, r∗

i ),
and a choice of boundary condition needs to be imposed to define a set of allowed perturbations
Dphys, in order that H be a self-adjoint operator on Dphys (i.e. Dphys = D∗

phys, see [24] for more
details), and thus have a complete set of eigenfunctions. This is done by requiring a behavior
like (45) with a fixed (possibly infinite) b/a ratio [24]. Since we are ultimately interested in the
large k case, in view of (44), we do not have to deal with this ambiguity. In any case, regardless
of our choice of boundary conditions, the test function used in (27)–(28), being supported in a
r < 0 region, will belong to the chosen space of perturbations, and the argument of instability
used for the nakedly singular Kerr spacetime will go through in the sub-extreme black hole
case if, as done for the extreme case, we restrict the harmonics to � > �o with �o the smallest
non-negative integer satisfying E rad

o (s, aω = ik)|k=0+ < (�o + |s|)(�o + |s| + 1).

3.4. Consistency with modal stability outside the black hole horizon

We would like to note that our results do not contradict the well-established modal stability
of the outer stationary, region I of Kerr black holes (see [10] and references therein). Our
arguments break down in this case since the interval where V2 is negative lies outside the
domain of interest.

Consider the extreme case a = M and switch to the adimensional variable x = r/M; then,

Vext =
[

x(x + 1)(x2 − x + 2)

(x − 1)2

]
k2 + 2s

[
x2 − 2x − 1

x − 1

]
k + 1

4
. (46)

For s = 0, Vext > 1/4 outside the horizon (x > 1), and thus, there is no instability. For s 	= 0,
∂Vext/∂x = 0 at xo gives

− k

s
= (xo − 1)

(
xo

2 − 2xo + 3
)

(
xo

2 + 1
)(

xo
2 − 2xo − 1

) . (47)

The function on the rhs above decreases monotonically from zero to minus infinity for
xo ∈ (1, 1 + √

2), and then from infinity to zero if x ∈ (1 + √
2,∞). Thus, for any s 	= 0,

Vext has a unique critical point, which (by inserting (47) in ∂2Vext/∂x2) we find that is a local,
and then absolute (using that Vext → ∞ for x → 1+ and x → ∞) minimum V o

ext of Vext in the
domain of interest. This absolute minimum V o

ext can easily be seen to decrease with k, with a
lower bound 1

4 − s2 as k → 0+. Summarizing

Vext(k, x, s) > 1
4 − s2, |s| = 0, 1/2, 1, 2; k > 0, x > 1. (48)

Then, for the radial equation, we obtain

E rad
0 (s, aω = ik) < s2 − 1

4 < s2 + |s| � (� + |s|)(� + |s| + 1)

� Eang
� (s, aω = ik), k > 0, � � 0,

and thus, the intersection argument implying the existence of modes that grow exponentially
in time breaks down.

11
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The reasoning for the sub-extreme case is similar, although the calculations are more
complicated. Instead of (47), we obtain a two branched solution for k, only one of which
corresponds to local minima. The bounds (48) are obtained again, and thus, there is no
instability.

4. Instabilities and time machine

The axial Killing vector field ζ a of the Kerr spacetime (ζ = ∂/∂φ in the Boyer–Lindsquit
coordinates) becomes timelike in what is called the time machine region T of the Kerr
spacetime [5], the region where

(r2 + a2 cos2 θ )(r2 + a2) + 2Mra2 sin2 θ < 0. (49)

The character of the restriction of the Teukolsky PDE (10) to the space of functions satisfying
£ζ� = im�) changes from hyperbolic to elliptic within T . To see this, note that the second-
order terms of the Teukolsky equation are independent of s, and so, for any s value, they equal
those of the scalar wave equation

0 = gab∇a∇b� = 1√|g|∂a(
√

|g|gab∂b�) ∼ gab∂a∂b� ∼
(

gab − ζ aζ b

ζ cζc

)
∂a∂b�, (50)

where ∼ means ‘equal up to lower order terms’, and £ζ� = im� was used in the last step.
The proof of existence of unstable modes in the Teukolsky equation in the previous section
is based on the fact that the piece V2 of the potential, which is dominant for large k, becomes
negative in the region r(r3 + ra2 + 2 Ma2). This region is precisely the intersection of T with
the equatorial plane θ = π/2 (see (49)).

The existence of instabilities seems to be related to this change of character of the
Teukolsky PDE for axial modes from hyperbolic to elliptic. To illustrate this point, consider
the simple toy model (a, ωo positive):

ω2
o(x

2 − a2)

4

∂2�

∂t2
− ∂2�

∂x2
= 0, (51)

which is hyperbolic for |x| > a, elliptic otherwise. Unstable solutions �(t, x) = ekt/aψ(x)

will exist if

− ∂2ψ

∂x2
+

(
kωo

2

)2

(x2 − a2)ψ = 0. (52)

The above equation is that of a quantum harmonic oscillator; it has square integrable solutions if

E = kω0

(
n + 1

2

)
−

(
kωoa

2

)2

= 0, n = 0, 1, 2, . . . . (53)

Thus, there are no instabilities if a = 0 (i.e. (51) is hyperbolic everywhere). Otherwise, there
will be infinitely many unstable modes, with

k = 4

ωoa2

(
n + 1

2

)
.

One of the consequences of the existence of the time machine region is that it allows to
construct a future directed timelike curve connecting any ordered pair of events in either KIII
or KNS (see [5] and references therein). This causes a number of difficulties when trying to
define notions, such as ‘evolution’ and ‘instability’, as discussed in the following section.

12
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5. Unstable modes as the Debye potentials

Solutions of the transposed Teukolsky equations of different spin weights can be used as ‘Debye
potentials’ to generate Maxwell, spinor and linearized gravity fields [16]. An explanation of
why this is so was first given by Wald in [25] and is reviewed in detail in [26, appendix C]. It is
based on a notion of transpose of a linear differential operator O acting on tensor fields of rank
k, under the inner product (U,V ) := ∫

M Ua1···akV
a1···ak , where M is the spacetime manifold

and indices are raised and lowered using the metric. The transpose is defined as usual by
(U,OV ) = (OTU,V ), and assumes a proper decay of the fields in the domain of O, so that
integration by parts is allowed. Suppose f is the tensor field we are interested in (e.g., the
Maxwell potential Ab, or the metric perturbation hab) and E ( f ) = 0 is the linear differential
equation that it satisfies. In the Teukolsky formalism, with the exception of the scalar field
equation, one does not work with the field f of interest, but with a derived field ψs := Ts( f ).
Here, Ts is a linear differential operator that projects out a null tetrad component with spin
weight s of a tensor derived from f , e.g, a perturbed Weyl component associated with a metric
perturbation hab. The Teukolsky perturbative treatment can be summarized as follows [25]:
there exist linear differential operators Ss and Os, such that

SsE ( f ) = OsTs( f ) = Os(ψs). (54)

The field equation E ( f ) = 0 then implies the Teukolsky equation Os(ψs) = 0. The
operators Os are defined by the left-hand sides of the following equations in [3] (refer also to
equations (2)–(8)): (2.12) for s = 2 (ψ2 = δψ0), (2.14) for s = −2 (ψ−2 = δψ4), (3.5) for
s = 1 (ψ1 = φ0), (3.7) for s = −1 (ψ−1 = φ2), (B.4) for s = 1/2 (ψ1/2 = χ0) and (B.5) for
s = −1/2 (ψ−1/2 = χ1). Using the information in [3, table I] (and calculating for the spinor
case), we find that the relations between the Os and the operator Ts in the master Teukolsky
equation (10) are

Os =
{

(2�)−1 ◦ Ts, s � 0,

(2�)−1ρ−2s ◦ Ts ◦ ρ2s, s < 0.
(55)

Thus,Os(ψs) = 0 reduces to Ts�s = 0, where �s = ψs for s � 0, and �s = ρ2sψs for s < 0 (cf
equation (9)). The Teukolsky master equation Ts�s = 0 is spelled out in the Boyer–Lindquist
coordinates in (10).

As Wald noted in [25], for spinor, Maxwell and linear gravitational fields, ET = E , and
the transpose of SsE = OsTs (equation (54)) then gives Ts

TOs
T = ESs

T . Thus, if ψ̂s is a
solution of the transposed Teukolsky equation, Os

T ψ̂s = 0, then ESs
T ψ̂s = 0. In other words,

ψ̂s is a ‘potential’ for a solution f = Ss
T ψ̂s of the field equation E ( f ) = 0.

A straightforward computation shows that there is a close relation between transpose and
spin weight flip:

ρ2|s| ◦ O(±s)
T ◦ ρ−2|s| = O(∓s). (56)

Solutions for the transpose of the spin weight s source-free Teukolsky equations can then
be readily obtained by multiplying a solution of spin weight −s times an appropriate power
of ρ. Unstable solutions of the Teukolsky equations will therefore produce unstable spinor,
Maxwell or gravitational fields, since the exp(kt/a) factors in the potential go through the
differential operators Ss

T .
When analyzing the linear stability of a super-extreme Reissner–Nordström spacetime

(or the interior static region of a Reissner–Nordström black hole) one is faced with the
problem that the unperturbed spacetime is non-globally hyperbolic due to the timelike singular
boundary [12]. The evolution of fields on this spacetime is a priori not well defined, and the
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curvature singularity poses the additional problem of deciding what should be considered as
a ‘reasonable’ behavior for linearized perturbations. The way around these problems is hinted
by the observation that there is a unique choice of boundary condition at the singularity that
guarantees that the perturbed curvature invariants will not diverge faster than the unperturbed
ones as the singularity is approached [12]. By choosing this particular boundary condition,
we make sure that the perturbation treatment is self-consistent, as perturbations can be
uniformly bounded on an ‘initial time’ partial Cauchy surface �o that meets the singularity (any
hypersurface orthogonal to the timelike Killing vector field). At the same time we solve the
issue of uniqueness of evolution from data given at �o. Furthermore, this evolution preserves
the chosen boundary condition [12]. The KNS, as well as KIII, also has a timelike curvature
singularity, the ring singularity, located at r = 0, θ = π/2 in the Boyer–Lindquist coordinates.
Note, however, that r ∈ (−∞,∞) for the super-extreme case (r ∈ (−∞, ri) for the black
hole interior), as one can enter the r < 0 region avoiding the singularity. The character of the
singularity and the chosen fields �s is such that the separated Teukolsky equations (12) and
(13) are not singular, i.e. r = 0 is a regular point of the ODE (13), and similarly for θ = π/2
in (12). When solving (13), which is a second-order equation, one can impose that R(r) vanish
as r → −∞ and r → ∞ (r → ri), but that leaves out any further choice, such as a selecting a
specific behavior as r → 0. This implies that although (super-extreme or black hole interior)
Reissner–Nordström and Kerr spacetimes share some properties, such as the lack of a Cauchy
surface and the existence of a time-like singularity, the issue of field propagation on those
spacetimes is technically rather different, the Kerr ring singularity being milder. On the other
hand, the causality issues are much worse in the Kerr case. This is because, as mentioned
in the introduction, any two events in KIII or KNS can be connected with a future-directed
timelike curve (in particular, there is a closed timelike curve through any point.) There is no
partial Cauchy surfaces and thus no clear notion of ‘initial time slice’ that allows to pose the
stability problem as an initial value problem. The t = constant slices are spacelike outside a
compact set, and our notion of instability is limited to the observation that there exist solutions
to the linear field equations behaving as exp(kt/a), k > 0, decaying exponentially or faster as
|r| → ∞ in the KNS (vanishing at the inner horizon in KIII), and behaving ‘properly’—as
defined below—near the ring singularity.

To check how unstable fields behave near the ring singularity of Kerr spacetime, we may
use unstable solutions of the Teukolsky master equation (proved to exist for every s in the
previous section) as Debye potentials for unstable spinor, Maxwell or gravitational fields.
Note, however, that, in contrast to our previous instability results for the Reissner–Nordström
or naked Schwarzschild case [11, 12], we lack explicit expressions for the unstable solutions of
the Teukolsky master equations. We can still get information on the behavior of unstable fields
near the ring singularity by analyzing the Frobenius series solutions of the ODE (13) near
r = 0 and the ODE (12) near θ = π/2. These series, however, are independent of the stable or
unstable character of the solution, since ω does not show up at leading order. Thus, whatever
criterion we adopt to disregard field solutions from Debye potentials based on their behavior
near the singularity, it will overrule every field (unstable or not) that can be constructed using
the potential method outlined above.

5.1. Maxwell fields

For Maxwell fields, s = ±1, and the operators and fields in (54) are

f = Ab, [E (Ab)]a = ∇c∇cAa − ∇c∇aAc, (57)
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and, for s = 1,

T1(Ab) = lamb(∇aAb − ∇bAa), (58)

S1(Ja) = 1
2 (δ − β − ᾱ − 2τ + π̄ )( jclc) − 1

2 (D − 2ρ − ρ̄ )( jcmc), (59)

O1(ψ1) = (D − 2ρ − ρ̄ )(� + μ − 2γ )ψ1 − (δ − β − ᾱ − 2τ + π̄ )(δ̄ + π − 2α)ψ1, (60)

where the standard null tetrad formulation notation [2, 3] is used (D,�, δ, δ̄ are the derivatives
along the tetrad vectors, and the other symbols represent spin coefficients.) Since T1 projects
out a self-dual piece of Fab (see (58)), the complex potential S1

T ψ̂1 constructed from a solution
O1

T (ψ̂1) = 0 of the transpose Teukolsky equation [25],[
S1

T ψ̂1
]

b
= [−lb(δ + 2β + τ ) + mb(D + ρ)]ψ̂1, (61)

will produce a self-dual Maxwell field Gab = Fab + i ∗Fab [25]. In fact, the easiest way to
check that the exterior derivative Gab of the potential (61) satisfies the source-free Maxwell
equations is by checking that it is self-dual, which amounts to checking that the contractions
of Gab with any of the three anti-self-dual two-forms obtained by complex conjugation of (5)
vanishes as a consequence of O1

T (ψ̂1) = 0.
To evaluate the strength of the real Maxwell field Fab near the ring singularity, we compute

the algebraic invariants I1 = FabFab, I2 = Fab
∗Fab (any other algebraic invariant will be a

polynomial on these). Note that, since 1
2 GabGab = I1 + iI2 =: I, we can compute the invariants

of Fab more efficiently without even taking the real part of Gab. For generic separable solutions
�̂1 = eiωtR(r)S(θ ) of the s = −1 Teukolsky mater equation, (61) gives a field whose invariants
admit an expression that can be simplified near the ring singularity by applying iteratively the
equation T−1(ψ̂1) = 0 to

I � 2
( − iS(θ )a dR(r)

dr + R(r) dS(θ )

dθ

)2
e2iωt/a

(r + ia cos(θ ))4
. (62)

As already explained, this leading order term (omitting the exp(2iωt/a) factor) will be the same
for any complex ω. This behavior near the ring singularity is universal and thus independent
of the un/stable character of the field.

To evaluate weather or not the above divergency is ‘reasonable’, we may compare with
the static Maxwell field on Kerr that we obtain from the Kerr–Newman solution

F = dA, A = Qr

�
(dt − a sin2(θ ) dφ). (63)

Note that since the Kerr–Newman metric is quadratic in Q, this field is a first order in Q
solution of Maxwell equations on a fixed Kerr metric and, being Maxwell equations linear,
(63) is also an exact solution on the Kerr background. For this static field, a straightforward
calculation shows that

Istatic = −Q2

2(r − ia cos θ )4
, (64)

which exhibits the same degree of divergency as (62), the latter being possibly even milder
along selected directions, or for some particular solutions. Note that the unstable solutions of
the s = −1 Teukolsky master equation, which evolve as ekt/a, decay in the KNS as e−k|r|/a

for large |r|, as opposed to the slow, r−4 decay of the invariants of the static field above. The
unstable modes of KIII decay exponentially as r → ∞, and as a power of r − ri toward the
inner horizon.

In conclusion, we have shown that there are solutions of the Maxwell equations that
behave in a similar way as the static field from the Kerr–Newman solution near the ring
singularity, decay much faster away of along in spacelike directions and grow exponentially
with time.
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6. Conclusions

We have proved the existence of instabilities in both Kerr naked singularities (KNS) and the
region beyond the inner horizon of sub-extreme and extreme Kerr black holes (KIII). Our
notion of instability is given by the existence of solutions of linear massless field equations
that behave as ekt, k > 0, with a fast decay to zero as |r| → ∞ in the case of KNS (as r → −∞
and r → r−

i in the case of KIII), where {t, r, θ, φ} are the Boyer–Lindquist coordinates. We
have shown that there exist massless scalar fields, Weyl spinors, Maxwell fields and linear
gravity perturbations with these properties.

Since KIII and KNS do not admit a partial Cauchy surface, there is no natural notion of
evolution from initial data and therefore of instability in the usual way (bounded data grows
unbounded). However, these spacetimes are time orientable, since the never vanishing vector
field

V = (r2 + a2)
∂

∂t
+ a

∂

∂φ

is everywhere timelike. The integral lines of V give a congruence of timelike curves filling
the entire KIII (KNS) space, which may be regarded as worldlines of (accelerated) observers.
Since the unstable fields we have found are axially symmetric (independent of φ), they grow
boundless along these curves. That a congruence of observers measure a boundless growth of
these linear fields (more properly, of any scalar made out from them) is for us an appropriate
notion of instability in spacetimes lacking a partial Cauchy surface (for examples of evolution
and stability notion in non-globally hyperbolic spacetimes admitting a partial Cauchy surface;
see the Schwarzschild and Reissner–Nordström cases [11, 12])).

A modification of the KNS metric based on alternative string motivated theories, or just
the excision of a region around the ring singularity, gives rise to ‘superspinars’, compact
rotating objects violating the black hole a � M bound [27]. The gravitational stability of these
objects (more concretely, the region r > r0 of KNS, assuming different boundary conditions
at r = r0) was studied in detail in [28] and references therein. In section 3.B of that paper, the
results of superspinar gravitational instabilities are confronted with those in our works [13]
and [14], generalized in this paper. This is done by studying the r0 → −∞ limit of unstable
axially symmetric perturbations of a superspinar with a perfectly reflecting ‘string horizon’ at
r0 → −∞. This gives a result that agrees perfectly with our previous numerical calculations
in [11].

The mathematical origin of the instability in both cases (KNS and superspinars) is,
however, quite different. In the KNS case, it is due to the negative portion of the effective
potential (23) for small r < 0 values, a region that is usually excised in a superspinar. The
superspinar stability problem reduces also to a Schrödinger equation problem. However, in the
KNS case, the Schrödinger equation is posed on the entire real axis, whereas in the superspinar
case is a quantum mechanics problem on a half-axis (which may well exclude the region where
our effective potential is negative), with non-trivial boundary conditions that are responsible
of the instability. For KIII in the sub-extreme case, we have also reduced the field equations to
a QM problem on a half-axis; however, the boundary conditions are trivial, and the negative
portion of the effective potential belongs to this half-axis.

We should also comment on the connection found in [28] (see also [29]) between circular
geodesics with negative energies and superspinar instabilities. We note that those results do
not seem to apply in a straightforward way to our case, since the arguments in [28] apply for
� = m � 1 modes, whereas unstable modes in this work have m = 0. We should also stress
that contrary to what is found in [28], the unstable modes whose existence is proved in this
work exist for any value of a/M as long as a/M > 1.
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Appendix. Lower bounds to the radial potentials for the KNS as k → 0+

This appendix gathers the calculations leading to the bounds given in (32) for the global
minima of the potential (23) in the k → 0+ limit. These are used in section 3 to obtain a bound
if the radial spectrum in this limit.

A.1. Case s = 0

Introducing the adimensional variables x = r/M, α = a/M, the critical points of the potential
(23) for s = 0 are given by

4k2 (α2 + x2)(x3 − 3x2 + α2x + α2) + α2(α2 − 1)(1 − x) = 0. (A.1)

For k small enough, three out of the five roots are real, and we order them as x1 < x2 < x3.
Given the asymptotic behavior (26), it is clear that the absolute minimum of V is reached at
some of these points (x1 or x3 if there are no inflection points). Inspection of the numerical
solutions of (A.1) for increasingly smaller k values suggests that x1 → −∞, x2 → 1 and
x3 → ∞ as k → 0+. Guided by this observation, we propose a solution of (A.1) in the form
of a power series in k taking the value x2 = 1 at k = 0 and obtain by iteration the successive
corrections in increasing powers of k, the result being

x2 = 1 + 8(1 + α2)

α2
k2 + 32(3α4 − 5α2 + α6 − 7)

α4(α2 − 1)
k4 + O(k6). (A.2)

Then, we assume x = x1 in (A.1), solve for k, and expand the resulting expression for x1 → ∞
(which we know that corresponds to taking k → 0+) to extract the leading order behavior of
the relation between x1 and k, which is x1 = −((α2 − 1)/4)1/4k−1/2. Inserting this expression
plus a correction (to be obtained) back into (A.1), we can iteratively obtain as many higher
order terms as we wish. The first few of them are

x1 = −
(

α2 − 1

4

)1/4

k−1/2 + 1

2
+

[√
2(4α2 − 7)

8(α2 − 1)1/4

]
k1/2 + O(k). (A.3)

Proceeding in a similar way leads to

x3 =
(

α2 − 1

4

)1/4

k−1/2 + 1

2
−

[√
2(4α2 − 7)

8(α2 − 1)1/4

]
k1/2 + O(k). (A.4)

The values of the potential at these points are V1 = 1/4 + O(k),V2 = 1/2 + O(k2),V3 =
1/4 + O(k). It then follows that

lim
k→0+

min{V (r, k, s = 0, α), r ∈ R} = 1/4, (A.5)

in agreement with (32).
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A.2. Case |s| = 1/2

For s = 1/2, there are three real critical points x1 < x2 < x3 (x1 and x3 are local minima, x2

is a maximum) only if k is bigger than an a-dependent critical value, below which x2 and x3

coalesce into a single (inflection) point. In any case, the absolute minimum is reached at x1,
for which

x1 = − α

2k
− 1 − 4k

α
− 16(α2 − 4)

α2
k2 + O(k3), V1 = − 2

α
k + 7

α2
k2 + O(k3).

For s = −1/2, the analysis is similar, with x1 → x2 and a global minimum at x3 → ∞ as
k → 0+:

x3 = α

2k
− 1 + 4k

α
− 16(α2 − 4)

α2
k2 + O(k3), V3 = 2

α
k + 7

α2
k2 + O(k3).

It follows that

lim
k→0+

min{V (r, k, s = ±1/2, α), r ∈ R} = 0, (A.6)

in agreement with (32).

A.3. Case |s| = 1

For s = ±1, the critical points and potential values at these points are

x1 = 1 ∓ 4

3

(α2 − 3)k

α
− 8

9

(11α2 − 21)k2

α2
+ O(k3),

x2 = ∓α

k
− 1 ± 1

4

(−11 + 3α2)k

α
− 1

2

(−41 + 17α2)k2

α2
+ O(k3),

x3 = 1

2
3
√

6 3

√
∓ (−1 + α2)α

k
+ 1 + O(k1/3),

with the values of the potential at these points being

V1 = −1

2
± 4

α
k + O(k2),

V2 = −3

4
∓ 4

α
k + O(k2),

V3 = 1

4
− 34/3

22/3

α2 − 1

(α(α2 − 1))2/3
k2/3 + O(k4/3).

Thus,

lim
k→0+

min{V (r, k, s = ±1, α), r ∈ R} = −3/4, (A.7)

in agreement with (32).

A.4. Case |s| = 2

For s = ±2, the critical points and potential values are

x1 = 1 ∓ 8

15

(α2 − 3)k

α
− 8

225

(47α2 − 81)k2

α2
+ O(k3)

x2 = ∓2
α

k
− 1 ± 1

32

(−47 + 15α2)k

α
− 1

32

(−173 + 77α2)k2

α2
+ O(k3)

x3 =
(

±15

8
(1 − α2)α

)1/3

k−1/3 + 1 + O(k1/3),
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and the values of V at these points are

V1 = −7

2
± 8

α
k + O(k2),

V2 = −15

4
∓ 8

α
k + O(k2),

V3 = 1

4
− 3151/3(α2 − 1)

(α(α2 − 1))2/3
k2/3 + O(k4/3).

It follows that

lim
k→0+

min{V (r, k, s = 0, α), r ∈ R} = −15/4. (A.8)

This completes the verification of (32).
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