

XXII CONGRESO ARGENTINO DE FISICOQUÍMICA Y QUÍMICA INORGÁNICA LA PLATA 2021

CARACTERIZACIÓN DE FILAMENTOS COMPUESTOS PARA IMPRESIÓN DIRECTA SOBRE MATERIALES TEXTILES

Giaroli M. Carolina^{1,2}, Ciolino Andrés E.^{3,4} y Ninago Mario D.^{1,2}

- ¹ Facultad de Ciencias Aplicadas a la Industria (FCAI), Universidad Nacional de Cuyo (UNCuyo), Bernardo de Irigoyen 375, San Rafael (5600), Mendoza, Argentina.
- ² Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, (C1425FQB), Buenos Aires, Argentina.
- ³ Planta Piloto de Ingeniería Química (PLAPIQUI-CONICET), Camino La Carrindanga Km 7, (8000) Bahía Blanca, Argentina.
- ⁴ Departamento de Ingeniería Química. Universidad Nacional del Sur (DIQ-UNS), Av. Alem 1253, (8000), Bahía Blanca, Argentina.

Introducción

La tecnología de impresión 3D se transformó en menos de una década en un método eficiente que permite acelerar el proceso de fabricación de prototipos. Debido a la simplicidad de su uso y a su fácil manipulación, puede ser incorporada a la cadena productiva de fabricación de productos. Particularmente, la industria textil cuenta con una gran variedad de filamentos compuestos comerciales, y conocer sus características microestructurales, así como los valores máximos de adhesión que pueden alcanzarse entre las probetas impresas y la superficie del textil, resultan de gran interés desde el punto de vista de su uso final. En este trabajo se caracterizaron fisicoquímicamente dos filamentos comerciales a base de poli(ácido láctico) PLA, con y sin relleno. Además, se evaluó la fuerza máxima de adhesión (ensayo de peeling) entre las probetas impresas y un sustrato textil de algodón.

Resultados

Mediante espectroscopia infrarroja se detectaron señales típicas de absorción asociadas a cadenas de PLA, así como bandas de absorción de celulosa y hemicelulosa. Mediante ensayos térmicos se determinó que los filamentos de PLA sin relleno poseen dos transiciones térmicas a ~65°C (transición vítrea) y 175°C (fusión), mientras que los filamentos compuestos presentaron un tercer evento de cristalización a ~97°C, atribuido a procesos de nucleación heterogénea que ocurre en el PLA en presencia de rellenos con tamaños micro y nanométricos¹. A partir de ensayos de peeling se determinó que las probetas de PLA con y sin relleno presentaron una fuerza máxima de adhesión con el sustrato de 38,1±3,1N y 33,7±2,9N, respectivamente. Por lo tanto, se puede inferir que la presencia del relleno no modificó de manera significativa la capacidad de adhesión entre los materiales.

Conclusiones

Se obtuvieron con éxito probetas de PLA con y sin relleno, impresas sobre un sustrato de algodón. Los ensayos de adhesión revelaron que la presencia del relleno no altera la adherencia entre los materiales.

Referencias

1) Turner, J., Riga, A., O'Connor, A., Zhang, J., Collis, J. *J. Therm. Anal.* **2004**, 75, 257–268