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Abstract
We give a definition and derive the equations of motion for the center of
mass and angular momentum of an axially symmetric, isolated system that
emits gravitational and electromagnetic radiation. A central feature of this
formulation is the use of Newman–Unti cuts at null infinity that are generated
by worldlines of the spacetime. We analyze some consequences of the results
and comment on the generalization of this work to general asymptotically flat
spacetimes.

PACS numbers: 03.30.De, 04.40.Nk

1. Introduction

The notion of center of mass for an isolated system is very important in Newtonian theory.
It is used to define the linear and intrinsic angular momentum of the system, both conserved
observables in the theory. However, its generalization to general relativity (GR) has proved to
be a non-trivial task.

A major obstacle to a relativistic definition is the fact that energy or momentum cannot
be local quantities. The energy–momentum tensor of a system does not take into account the
fact that gravitational waves carry away energy and momentum and nevertheless are solutions
of the Ricci flat equations. Thus, one must search for global definitions of these quantities.
Also one must bear in mind that, unless the spacetime is stationary, energy or momentum of
an isolated system are not conserved in GR due to the emission of gravitational radiation.

Fortunately there are ways to overcome, at least in principle, these difficulties. One
has available in the literature the notion of an asymptotically flat spacetime, the appropriate
framework to analyze isolated systems in GR. For those spacetimes, one can define the
notion of Bondi mass and linear momentum and write down equations of motion linking their
time evolution with the emitted gravitational radiation. All that is needed then is to relate
these variables to a suitable definition of center of mass, characterized by a worldline Ra,
such that Pa = MṘa+ radiative corrections. The problem is how to select this worldline.
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There are two approaches in the literature that select the center of mass worldline in a fiducial
space using the available structure at null infinity.

One approach that has been carried out by Newman and collaborators is based on the
introduction of asymptotically shear free null congruences, i.e. congruences such that at I ,
we have vanishing shear. At null infinity, this congruence appears to come from a point in the
Minkowski space. This asymptotically shear free condition yields a family of complex two-
surfaces, ‘good cuts’, that are constructed from special solutions of the Good Cut equation. This
family is characterized by complex worldlines in a fiducial holographic space. Furthermore,
the vanishing of the complex mass dipole term at I singles out a particular worldline of this
family. Its real part gives the center of mass, while the imaginary part is, by definition, the
intrinsic angular momentum per unit mass. Assuming a quadrupole radiation and using any
available definition of total angular momentum (all of them coincide for quadrupole radiation),
one obtains equations of motion coupling center of mass, intrinsic angular momentum and
radiation. (A complete description is available in Living Reviews [1]).

The other approach has been done by Moreschi [2]. In this case, one first defines the
notion of ‘supermomentum’ at I and then asks for a special family of cuts, called nice cuts,
where the supermomentum only has l = 0, 1 spherical harmonics decomposition. Again one
obtains another holographic solution space and one special worldline in this space is selected,
via a similar condition as above, as the center of mass. Furthermore, Moreschi defines the
notion of total angular momentum [3] and its restriction to the center of mass worldline yields
the intrinsic angular momentum of the system.

Both formulations coincide at a linear level if the gravitational radiation is pure quadrupole.
In spite of the clever ideas used in both approaches to define a global notion of center of mass,
there are some drawbacks that one must mention.

It is not true that light coming from distant isolated systems is asymptotically shear free.
In fact, the shear of light coming from these sources is used to define weak lensing effects in
GR. Most important, neither the nice cuts nor the good cuts are future light cones from points
inside the spacetime. One can write down the equation that must be satisfied by any light cone
cut at I coming from a worldline in the spacetime [4]. None of these approaches satisfy this
equation up to second and higher orders.

The idea of this work is to define the center of mass as a special worldline on the spacetime.
One knows that a light cone cut of null infinity, the intersection of the future light cone from
a point with null infinity, can be used to describe any point or worldline of the spacetime [5].
Thus, worldlines of the spacetime yield light cone cuts that are locally Newman–Unti cuts [6].
The vanishing of the mass dipole moment on these cuts then selects the special center of mass
worldline.

The intrinsic angular momentum or spin is then defined as the restriction of the angular
momentum to the center of mass. The only caveat is that so far, a satisfactory definition
of angular momentum for non-stationary spacetimes without symmetries is not available.
To overcome this difficulty, we will consider here axially symmetric spacetimes since in
this case there is a suitable definition of angular momentum using a Komar integral that is
conserved. It is worth mentioning that neither the Adamo–Kozameh–Newman (AKN) nor
the Moreschi formulation of angular momentum yield the Komar formula when restricted to
axially symmetric spacetimes. Thus, or work is clearly different from previous approaches.

This work is divided in seven sections and two appendices. Section 2 is devoted to the
mathematical tools and definitions needed for this work. Readers familiar with the Newman–
Penrose formulation and asymptotic flatness may skip this section. The light cone cuts of null
infinity are introduced in sections 3. In particular, we show how either the good cut sections
or nice sections used by AKN or Moreschi do not come from points of the spacetime. In
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section 4, we introduce the notion of angular momentum for axially symmetric Einstein–
Maxwell spacetimes. Sections 5 and 6 constitute the core of the paper. We define the center
of mass and intrinsic angular momentum and relate them with others defined at null infinity
like Bondi mass or momentum. We derive their equations of motion, give some examples and
compare our results with those obtained by AKN. Finally, in the conclusions we summarize
our work and outline a generalization of this approach to arbitrary spacetimes.

2. Foundations

There are many results that are needed for this work. In this section, we introduce several of
the key ideas and the basic tools that are indispensable for our later discussions. Derivations
of these results are given in the references.

2.1. Asymptotically flat spacetime and I +

The notion of asymptotically flatness is the adequate tool to analyze the gravitational and
electromagnetic radiation coming from an arbitrary compact source. A spacetime is called
asymptotically flat if the curvature tensor vanishes as it approaches infinity along the future-
directed null geodesics of the spacetime. All these geodesics end up at what is referred to
as future null infinity, I +, the future boundary of the spacetime [1, 7]. One can introduce a
natural set of coordinates in the neighborhood of I + called Bondi coordinates (uB, r, ζ , ζ̄ ).
In this system, the Bondi time uB labels a special family of null surfaces whose intersections
with I are two spheres, r is the affine parameter along each null geodesic of the constant uB

surface and ζ = eiϕ cot θ
2 is the complex stereographic angle that labels the null geodesics of

the null surface.
Associated with the Bondi coordinates, there is a null tetrad system denoted by (la, na,

ma, m̄a). The first tetrad vector la is defined as [7]

la = ∇auB. (2.1)

Thus, la = gab∇buB is a null vector tangent to the geodesics of the surface. For the second
tetrad vector, we pick a null vector na normalized to

nala = 1. (2.2)

The tetrad is finally completed with the choice of a complex null vector ma orthogonal to la

and na

mam̄a = −1. (2.3)

The spacetime metric is then written as [7]

gab = lanb + nalb − mam̄b − m̄amb. (2.4)

There is a great deal of tetrad freedom, but the most important to us is a different choice of the
original uB = const. cuts of I + so that

uB = Z(u, ζ , ζ̄ ), (2.5)

where Z(u, ζ , ζ̄ ) is a real function. Let us denote by T the inverse function Z, so

u = T (uB, ζ , ζ̄ ). (2.6)

It is easy to show that Ṫ = 1
Z′ , then the rest of the coordinate system and the tetrad system are

then constructed as before.
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Another important notion is that of spin weight [7]. A quantity η that transforms as
η → eisλη under a rotation ma → eiλma is said to have a spin weight s. One can also define
spin weighted differential operators ð and ð̄ by

ð f = P1−s ∂(Ps f )

∂ζ
(2.7)

ð̄ f = P1+s ∂(P−s f )

∂ζ̄
, (2.8)

where f has a spin weight s and P is the conformal factor defining a metric on the sphere

ds2 = 4dζ dζ̄

P2
. (2.9)

The operators ð and ð̄) raise and lower the spin weight by one respectively. Note that for
axial symmetry, ð and ð̄ act as derivatives on θ since all functions will not depend on φ. In
equations (2.7) and (2.8), the conformal factor P is arbitrary. However, in Bondi coordinates,
the conformal factor is restricted to

P = P0 = 1 + ζ ζ̄ . (2.10)

2.2. The Newman–Penrose formalism

Although the Newman–Penrose (NP) formalism is the basic working tool for our analysis,
we will simply give an outline of the formulation and leave the reference [7] for details. We
focus in the general form of the asymptotically flat solutions of Einstein–Maxwell equations
in Bondi coordinates.

Using the tetrad components [7, 8]

λa
c = (la, na, ma, m̄a); c = 1, 2, 3, 4 (2.11)

as the basic variables, the metric, equation (2.4) can be written as

gab = ηcdλa
cλ

b
d (2.12)

with

ηcd =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎞
⎟⎟⎠ . (2.13)

The Ricci rotation coefficients γ c
df are defined by [7, 8]

γ c
df = λa

dλ
b

f ∇aλ
c

b. (2.14)

The 12 spin coefficients are defined as combinations of the γ c
df :

α = 1
2 (γ124 − γ344); λ = −γ244; κ = γ131

β = 1
2 (γ123 − γ343); μ = −γ243; ρ = γ134 (2.15)

γ = 1
2 (γ122 − γ342); ν = −γ242; σ = γ133

ε = 1
2 (γ121 − γ341); π = −γ241; τ = γ132.

The third basic variable in the NP formalism is the Weyl tensor or, equivalently, the
following five complex tetrad components of the Weyl tensor:

ψ0 = −Cabcdlamblcmd; ψ1 = −Cabcdlanblcmd

ψ2 = − 1
2 (Cabcdlanblcnd − Cabcdlanbmcm̄d ) (2.16)

ψ3 = Cabcdlanbncm̄d; ψ4 = −Cabcdnam̄bncm̄d .
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When an electromagnetic field is present, we include the complex tetrad components of
the Maxwell field

φ0 = Fablamb; φ1 = 1
2 Fab(l

anb + mam̄b); φ2 = Fabnam̄b, (2.17)

into the equations [1, 7].
Using Sachs Peeling theorem [9], one can show that the Weyl and Maxwell scalars behave

as

ψ0 = ψ0
0 r−5 + O(r−6),

ψ1 = ψ0
1 r−4 + O(r−5),

ψ2 = ψ0
2 r−3 + O(r−4),

ψ3 = ψ0
3 r−2 + O(r−3), (2.18)

ψ4 = ψ0
4 r−1 + O(r−2),

φ0 = φ0
0r−3 + O(r−4),

φ1 = φ0
1r−2 + O(r−3),

φ2 = φ0
2r−1 + O(r−2),

where the quantities with a zero superscript are function only of (uB, ζ , ζ̄ ). The spin coefficients
and metric variables are given as [1, 7].

κ = π = ε = 0; ρ = ρ̄; τ = ᾱ + β

ρ = − r−1 − σ 0σ̄ 0r−3 + O(r−5)

σ = σ 0r−2 + [(σ 0)2σ̄ 0 − ψ0
0 /2]r−4 + O(r−5)

α = α0r−1 + O(r−2)

β = β0r−1 + O(r−2) (2.19)

γ = γ 0 − ψ0
2 (2r2)−1 + O(r−3)

μ = μ0r−1 + O(r−2)

λ = λ0r−1 + O(r−2)

ν = ν0 + O(r−1)

with the following relationships among the r-independent functions:

ξ 0ζ = − P0; ξ̄ 0ζ = 0; ξ 0ζ̄ = 0; ξ̄ 0ζ̄ = −P0,

α0 = − β̄0 = −ζ

2
; γ 0 = ν0 = 0; ω0 = −ð̄σ 0,

λ0 = ˙̄σ 0; μ0 = U0 = −1; ψ0
4 = − ¨̄σ 0; ψ0

3 = ð ˙̄σ 0
,

ψ0
2 − ψ̄0

2 = ð̄
2σ 0 − ð

2σ̄ 0 + σ̄ 0λ0 − σ 0λ̄0. (2.20)

Finally, we return to the choice of the null tetrad. If we start from the rescaled metric
gab∗ = Z′2gab, then the tangent vector to the generators of I is rescaled as na∗ = Z′na. Using
this null vector, we can define all the other vectors of the new tetrad as

l∗a = 1

Z′

(
la − L

r
m̄a − L̄

r
ma + LL̄

r2
na

)
(2.21)

n∗
a = 1

Z′ na (2.22)

m∗
a = 1

Z′

(
ma − L

r
na

)
(2.23)
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m̄∗
a = 1

Z′

(
m̄a − L̄

r
na

)
, (2.24)

where

L(uB, ζ , ζ̄ ) = −ð(uB )T

Ṫ
= ð(u)Z(u, ζ , ζ̄ )|u=T (uB,ζ ,ζ̄ ).

In the above, ð(uB ) or ð(u) means to apply the eth operator keeping uB or u constant respectively.
From this tetrad, we can define the new Weyl scalar [1, 10]

ψ0∗
1 (u, ζ , ζ̄ ) = Z′3[ψ0

1 − 3Lψ0
2 + 3L2ψ0

3 − L3ψ0
4

]
(uB, ζ , ζ̄ ) (2.25)

from which we can write the following approximation:

ψ0∗
1 = ψ0

1 − 3Lψ0
2 (2.26)

if we keep up to linear terms in Z′ and/or L.

2.3. Evolution equations and physical definitions

Using the peeling theorem, the radial part of the Einstein equations can be integrated leaving
only the Bianchi identities at I as the unsolved equations. Some of those equations are used
to relate Weyl scalars with the free Bondi data σ 0, i.e. [7]

ψ0
2 − ψ̄0

2 = ð̄
2σ 0 − ð

2σ̄ 0 + σ̄ 0σ̇ 0 − σ 0 ˙̄σ 0
, (2.27)

ψ0
3 = ð ˙̄σ 0

, (2.28)

ψ0
4 = − ¨̄σ 0

. (2.29)

From equation (2.27), we can define the mass aspect [1]

� = ψ0
2 + ð

2σ̄ 0 + σ 0 ˙̄σ 0 (2.30)

which satisfies the reality condition

� = �̄. (2.31)

Finally, the evolution equations (Bianchi identities) are given by [7]

ψ̇0
1 = − ð� + ð

3σ̄ 0 + ðσ 0 ˙̄σ 0 + 3σ 0
ð ˙̄σ 0 + 4G

c4
φ0

1 φ̄
0
2 , (2.32)

ψ̇0
2 = − ð

2 ˙̄σ 0 − σ 0 ¨̄σ 0 + 2G

c4
φ0

2 φ̄
0
2 , (2.33)

φ̇0
1 = − ðφ0

2 , (2.34)

φ̇0
0 = − ðφ0

1 + σ 0φ0
2 . (2.35)

Using the mass aspect � instead of ψ0
2 in the second of the asymptotic Bianchi identities, one

obtains

�̇ = σ̇ 0 ˙̄σ 0 + 2G

c4
φ0

2 φ̄
0
2 . (2.36)

Note that in the above equation the gravitational radiation σ 0 and the electromagnetic radiation
φ0

2 determine the mass aspect �. In addition, we can define the Bondi mass and linear
momentum as [7]

M = − c2

8π
√

2G

∫
� d� (2.37)

Pi = − c3

8π
√

2G

∫
�li d�, (2.38)

and one can easily see that the Bondi mass decreases as a result of the emitted radiation.
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3. Light cone cuts of null infinity

A very important tool in our definition of center of mass is the notion of a light cone cut of null
infinity [5], which is the basic variable in the null surface formulation (NSF) of GR [4, 11].
We first give a brief review of the local and global properties of light cone cuts for a generic
spacetime and then we apply an approximation valid for vacuum spacetimes in the definition
of center of mass.

A light cone cut of null infinity is defined as the intersection of the future light cone from
a point xa with I +. Using standard Bondi coordinates (uB, ζ , ζ̄ ), one can locally describe
such intersection as

uB = Z(xa, ζ , ζ̄ ). (3.1)

Using the ð and ð̄ operators on the sphere holding constant xa, one can show that Z
satisfies

ð
2Z = σB − σx. (3.2)

The rhs of the above equation is the difference between the Bondi shear and the shear from the
point xa at null infinity. While σ̇B is the gravitational radiation reaching I +, σx is determined
by solving the geometrical optics equation and functionally depends on the Weyl and Ricci
tensor. Except for a special class of spacetimes and for very special worldlines, σx will always
be non-vanishing at null infinity.

For a flat spacetime, σx vanishes and one can always choose a Bondi system where σB = 0.
One thus has

ð
2Z = 0, (3.3)

whose regular solution is given by

Z0 = xa�a. (3.4)

with

�a = (Y0,0,Y1,i).

3.1. Global properties

In a flat space, each cut is a global section of I + described by a function on the sphere which
is a linear combination of the l = 0 and l = 1 spherical harmonics. However, for a generic
space-time, the cuts will not define global sections of I +. It is clear that, due to the presence
of Weyl curvature or matter, null cones will generically develop caustics and self-intersection.
Thus, the cuts associated with these cones will have self intersections, singularities, and a
global behavior that might be difficult to describe.

It turns out that both the homotopic properties of these cuts, i.e. how many times they wrap
around themselves and the generic singularities of light cone cuts, i.e. singularities that cannot
be removed by small perturbations are remarkably simple [12, 13]. Below we summarize the
main global properties of light cone cuts.

• The light cone cuts are projections from globally smooth 2-dim Legendre submanifolds of
the projective cotangent bundle of I +. Denoting by (η, η̄) the coordinates on the sphere
of null directions above each point of the spacetime, by (yi, p j) with p jn j = 1, the local
coordinates of the projective cotangent bundle, the Legendre submanifold is given by(
yi(xa, η, η̄), p j(xa, η, η̄)

)
. In Bondi coordinates, the projection is given by

uB = Z(xa, η, η̄)

ζ = Z (xa, η, η̄).
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• They have a finite number of singularities and those singularities can be classified as either
cusps or swallowtails.

It follows from the above properties that the light cone cuts are smooth maps from the
sphere of null directions to I + and local sections at null infinity. In fact, a cut can define a
global section on I + by selecting the points of the cut that cannot be joined by a timelike
curve with the apex xa. This closed 2-surface is described by a finite number of local sections.
Physically, this arises from the bending of rays that get close to the sources since they arrive
at a later time than those who escape away from the sources. Thus, each cut intersects itself
before reaching a singularity. After the self-intersection (this is not a singularity), the points
of the cut that contain the singular points lie in the future of the 2-surface that is singularity
free. (see [14] for an explicit 2+1 description of an axisymmetric spacetime).

Finally, if xa(u) describes parametrically a worldline the closed 2-surfaces u = const.
(after we remove the points that are timelike connected with xa) are topological spheres and
any subset of these and can be used to introduce local Newman–Unti coordinates.

3.2. Comparing light cone cuts with other sections of I +

Now we would like to compare the light cone cuts at null infinity with the sections that are
used in either the AKN or the Moreschi definition of center of mass and angular momentum.
To do so, one must assume that the spacetime is Ricci flat in the neighborhood of I + and that
in absence of gravitational radiation the cuts are given by equation (3.4).

It has recently been shown [4] that the light cone cuts Z satisfy

ð̄
2
ð

2Z = ð̄
2σB(Z, ζ , ζ̄ ) + ð

2σ̄B(Z, ζ , ζ̄ ) +
∫ Z

∞
σ̇B ˙̄σ B du|l�2 + F[Z2], (3.5)

where only spherical harmonics with l � 2 are taken into account in the integral term and
where F[Z2] is quadratic in Z and vanishes as the apex of the cone approaches null infinity.
The first three terms on the rhs depend on the free data σB and it shows that the light cone cuts
are determined from its knowledge. The last term appears from the back scattering and acts as
a timelike source. Note that the spacetimes points have disappeared from the equation. They
are recovered as the solution space, i.e. the constants of integration of the NSF equation.

One can write down a perturbative series

Z = Z0 + Z1 + Z2 + · · · , (3.6)

where each term in the series is determined from the previous one and the free data σB(ub, ζ , ζ̄ ).
The first two terms satisfy

ð̄
2
ð

2Z0 = 0,

ð̄
2
ð

2Z1 = ð̄
2σB(Z0, ζ , ζ̄ ) + ð

2σ̄B(Z0, ζ , ζ̄ ).

The first term is simply the flat cut, the second term is Huygens, i.e. it is determined from
the data given on the flat cut. Note that the second term on the rhs shows that σx �= 0 even at a
linearized level.

It is important to compare equation (3.5) with either the good cut equation or the nice
section equation used in the AKN definition or the Moreschi definition of center of mass
respectively.

The good cut equation reads

ð
2ZN = σB(ZN, ζ , ζ̃ ), (3.7)

8
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and consequently the good cuts are shear free (see equation (3.2)). Since any cut coming from
a point on the spacetime will have shear, we conclude that the solution space of the good cut
equation is given by points that are not in the spacetime but rather in a different holographic
space.

A similar observation can be made for the nice section equation, namely

ð̄
2
ð

2ZM =
∫ ZM

∞
σ̇B ˙̄σ B du|l�2, (3.8)

Note that the sections of this equation are not cuts coming from points even at the linear
level. The solution space of this equation does not lie in the spacetime. Only in absence of
gravitational radiation the three solution spaces coincide and it is given by Minkowski space.

Moreover, the way in which the Bondi shear σB(uB, ζ , ζ̄ ) enters into the equation for the
cuts is crucial in determining the equation of motion for the center of mass, giving in fact three
different equations. We claim our formulation gives the correct answer.

Finally, it is also important to mention that once a solution to the good cut or the nice
section equation is given it is not clear by how much this section differs from a cut coming
from a point of the spacetime. An alternative way of phrasing the same question is, in what
sense the holographic spaces of solutions to those equations render the real spacetime they are
trying to describe? If they are not the same, in which sense are the holographic spaces different
from the spacetime?

The light cone cuts, on the other hand, do come from real points of the spacetime. Even
if we perform a perturbation calculation to obtain the light cone cuts, it is clear what is being
approximated. The price one has to pay are the caustics and self-intersections, but even those
features can be dealt with following the steps outlined above.

3.3. Approximations and assumptions

We now return to the assumptions and approximations that will be used in this work.

(1) We will assume that the zeroth-order contribution to the center of mass cut is given by
(3.4), with Ra(u) the worldline of the center of mass.

(2) Since the equation of motion of the center of mass will only keep second-order terms in
either the gravitational or the electromagnetic radiation, we will only need the first-order
perturbation of the flat cuts which are regular solutions to (3.7).

As we will see from the equations that determine the center of mass worldline, one only
needs the zeroth-order cut and the linearized Weyl scalars Re[ψ0

1 ] and Re[ψ0
2 ] (which are

essentially �miri and �mi respectively) to define the center of mass at the lowest level. This
calculation gives

MT R =
∑

miri,

a desired result.
If more perturbative terms are needed, equation (3.5) gives us in principle a method to

obtain those terms. However, a number of technical difficulties can make this perturbation
calculation very cumbersome, one of those being how to deal with caustics and self-
intersections. Equation (3.5) is given in a caustic free neighborhood and it cannot be solved
globally on the sphere. There is a method to overcome this problem, namely to write an
equation on the sphere of null directions, obtain regular solutions and then find the points
where the function ζ = Z (xa, η, η̄) fails to be injective. For practical purposes, we do not
address those issues in this work.

9
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On the other hand, the zeroth-order cut is still a valid approximation if one is interested
in gravitational or electromagnetic tails off a Schwarzschild background [15]. In this case, the
center of mass is given by the stationary worldline (u, 0, 0, 0) and the emission of radiation
produces an acceleration of the center of mass that will be related to the radiation via the
equations of motion described below.

4. Angular momentum

The definition of angular momentum in GR has proven to be a major problem which so far
does not have a satisfactory solution. Basically the problem lies at identifying a canonical
origin at null infinity. However, for vacuum axially symmetric spacetimes, one can use the
Komar integral associated with the rotation Killing field ξ a

(ϕ) and write a conserved quantity

Jz = 1

16π
lim

St→∞

∮
St

∇aξ b
(ϕ) dSab = const. (4.1)

We now want to extend this definition to include the contribution of the electromagnetic
radiation.

Using Stokes theorem and the fact that ξ a
(ϕ) is a Killing field, we have∮

∂�

∇aξ b
(ϕ) dSab = 2

∫
�

Rabξ
b
(ϕ) d�a, (4.2)

where ∂� is the boundary of the hypersurface � and consists of two 2-surfaces, S+ and S−.
Since the Killing vector is tangent to I , ie ξ b

(ϕ)lb = 0, we can replace the Ricci tensor by the
stress energy tensor Tab, in the above, i.e.∮

∂�

∇aξ b
(ϕ) dSab = 16π

∫
�

Tabξ
b
(ϕ) d�a. (4.3)

Inserting the stress-energy tensor of electromagnetic field Tab = 1
4π

(FacFb
c − 1

4 gabFcdFcd ) in
the rhs. of the above equation yields∮

∂�

∇aξ b
(ϕ) dSab = 4

∫
�

Fa
cFbcξ

b
(ϕ) d�a (4.4)

= 4
∫

�

Fa
c(∇bAc − ∇cAb)ξ

b
(ϕ) d�a. (4.5)

Since we can choose the Maxwell potential to have axial symmetry and the Maxwell field is
pure radiation, we have in addition

ξ b
(ϕ)∇bAc + Ab∇cξ

b
(ϕ) = 0

and

∇cFac = 0.

Thus, ∮
∂�

∇aξ b
(ϕ) dSab = −4

∫
�

∇c(Abξ
b
(ϕ)Fa

c) d�a. (4.6)

Using Stokes theorem once again, we finally obtain

− 4
∫

�

∇c(Abξ
b
(ϕ)F

ac) d�a = −2
∮

∂�

Abξ
b
(ϕ)F

ac dSac. (4.7)

which shows that∮
S+

[∇aξ b
(ϕ) + 2Acξ

c
(ϕ)F

ab] dSab =
∮

S−
[∇aξ b

(ϕ) + 2Acξ
c
(ϕ)F

ab] dSab. (4.8)

10
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Since the boundaries are arbitrary, the integral is constant on null infinity. We thus redefine
the angular momentum equation (4.1), to include electromagnetic field, as

Jz
T = 1

16π
lim

St→∞

∮
St

[∇aξ b
(ϕ) + 2Acξ

c
(ϕ)F

ab] dSab, (4.9)

where the integral is taken over any 2-surface. The first integrand is the original gravitational
term, whereas the second one is the electromagnetic contribution. Using the N-P formalism
[7], one can write equation (4.9) as (see appendix A),

Jz
T =

√
2c3

8G
[Im(ψ0

1 − σ 0
ðσ̄ 0)|l=1 + 2 Im(A0φ0

1 )|l=1], (4.10)

where A0(uB, ζ , ζ̄ ) is the Maxwell potential free data related to the electromagnetic radiation
via

φ̄0
2 = Ȧ0.

The new conserved quantity Jz
T will be called total angular momentum for any axially

symmetric Einstein–Maxwell spacetime. It is worth mentioning that neither in the AKN nor
in the Moreschi approach, the conserved quantity (4.9) is used to define angular momentum.
Since their definitions of angular momentum do not give conserved quantities, it is difficult to
see the physical meaning of those definitions.

5. Center of mass

By assumption the spacetime is axially symmetric, we will thus assume that the center of
mass is given by a worldline Ra(u) along the axis of symmetry, i.e. along the z-axis. We
recall that in section 2.2, we introduced a null tetrad based on outgoing null hypersurfaces
u = const. We will then assume that this family of hypersurfaces has been generated by the
future light cones of Ra(u). The intersection of these light cones with I + yield Newman–Unti
coordinates (u, ζ , ζ̄ ). The basic idea is to start with the mass dipole term at I in a Bondi
frame, use equation (2.26) to write down the transformation equation to a Newman–Unti frame
and demand that the mass dipole term vanishes on the u = const. slices. (A similar idea has
been used before in another approach for axially symmetric spacetimes [16] but as we will see
below it yields different results.)

5.1. Analysis and definition

In a Bondi frame, the mass dipole momentum for asymptotically flat spacetime is defined to be
the real part of the l = 1 component of Re[ψ0

1 ]. We extend this definition to a Newman–Unti
frame and define the mass dipole momentum as the l = 1 component of Re[ψ0∗

1 ].
The basic idea to obtain the center of mass is to start by imposing the condition that on

the u = const cuts generated by the worldline Ra(u), the mass dipole momentum vanishes.
Then, using the relation (2.26) and expanding ψ0

1 in a tensorial spherical harmonic basis as

ψ0
1 = ψ0i

1 (uB)Y 1
1i + ψ

0i j
1 (uB)Y 1

2i j + · · · ,
one obtains a relationship between Re[ψ0i

1 (uB)] and the center of mass worldline Ṙi.
Following this prescription, and using equation (2.26), on a u = const. slice we impose

Re[ψ0
1 (Z, ζ , ζ̄ ) − 3ð(Z)ψ0

2 (Z, ζ , ζ̄ )]i
u=const. = 0, (5.1)

11
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where we have replaced uB by the function uB = Z(Ra(u), ζ , ζ̄ ). Furthermore, using a slow
motion approximation and keeping up to first-order terms in the velocity of the center of mass,
we write

Z(Ra(u), ζ , ζ̄ ) = u + δu,

where we assume δu is small. Thus, we make a Taylor expansion of

Re[ψ0∗
1 (u, ζ , ζ̄ )] = Re[ψ0

1 (u + δu, ζ , ζ̄ ) − 3ðδuψ0
2 (u + δu, ζ , ζ̄ )],

decompose each term in spherical harmonics and demand that on the u = const. cut, the l = 1
part of this series vanishes. The Taylor expansion yields

Re[ψ0∗
1 (u, ζ , ζ̄ )] = Re[ψ0

1 (u, ζ , ζ̄ ) + ψ0′
1 (u, ζ , ζ̄ )δu − 3ðδuψ0

2 (u, ζ , ζ̄ )],

where we have omitted second-order terms in δu. Taking the l = 1 part of the above expression
and putting it equal to zero yields the following expression:

Re[ψ0
1 (u)]i = Re[(ð� − ð

3σ̄ 0)δu]i + 3 Re[ðδu(� − ð
2σ̄ 0)]i, (5.2)

i.e. the real, l = 1 part of ψ0
1 can be written in terms of the center of mass and other Weyl

scalars at null infinity.
Inserting the following tensorial spin-s harmonics expansion [19]:

Z = u + δu

δu = − 1

2
Ri(u)Y 0

1i(ζ ) + xi j(u)Y 0
2i j(ζ ) + xi jk(u)Y 0

3i jk(ζ )

ðδu = Ri(u)Y 1
1i(ζ ) − 6xi j(u)Y 1

2i j(ζ ) − 12xi jk(u)Y 1
3i jk(ζ )

σB = σ i j(uB)Y 2
2i j(ζ ) + σ i jk(uB)Y 2

3i jk(ζ )

ψ0
1 = ψ0i

1 (uB)Y 1
1i(ζ ) + ψ

0i j
1 (uB)Y 1

2i j(ζ ) + ψ
0i jk
1 (uB)Y 0

3i jk(ζ )

� = − 2
√

2G

c2
M(uB) − 6G

c3
Pi(uB)Y 0

1i(ζ ) + � i j(uB)Y 0
2i j(ζ ) + � i jk(uB)Y 0

3i jk(ζ )

φ0
0 = φ0i

0 (uB)Y 1
1i(ζ ) + φ

0i j
0 (uB)Y 1

2i j(ζ )

φ0
1 = Q(uB) + φ0i

1 (uB)Y 0
1i(ζ ) + φ0

1i j(uB)Y 0
2i j(ζ )

φ0
2 = φ0i

2 (uB)Y −1
1i (ζ ) + φ

0i j
2 (uB)Y −1

2i j (ζ )

in equation (5.2) yields

Di = MRi − 96

5
√

2c
xi jP j + c2

7
√

2G
[72x jk(σ

i jk
R − � i jk) + 360xi jk(� jk − σ

jk
R )] (5.3)

where we have defined

Di(u) ≡ − c2

6
√

2G
Re[ψ0

1 (u)]i.

(Since we assume axial symmetry, Ri(u) only has a z component. Likewise, all the high order
tensors are symmetric, diagonal and trace-free.)

We now take a small digression to concentrate on the light cone cut function Z = u + δu
defined as the intersection of the future lightcone from a worldline xa(u) with I +. The
function Z dynamically depends on the matter and radiation content of the spacetime via the
solution of the Einstein equations, i.e. the light cone cut function is dynamical variable and
we do not make any a priori assumption about its behavior. Z satisfies the equation

ð
2Z = �(Z, ðZ, ð̄Z, ðð̄Z, ζ , ζ̄ ),

12
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and � satisfies the Einstein’s equations (it vanishes for a flat spacetime). The freedom in the
solution is given by a combination of l = 0, 1 spherical harmonics since they are annihilated
by the ð2 operator.

One can write this freedom as

Z0 = t(u) + xi(u)Y 0
1i(ζ , ζ̄ ) = u + xi(u)Y 0

1i,

where int he last equality we have thrown away quadratic and higher order terms in vi(u).
The function � only contains l = 2 and higher spherical harmonics decomposition which are
completely determined from the Einstein’s equations. For example, if we assume a vacuum
spacetime in the neighborhood of null infinity, the linearized equation for � is given by

ð̄
2� = ð

2σ̄B(Z0, ζ , ζ̄ ) + ð̄
2σB(Z0, ζ , ζ̄ ). (5.4)

It follows from the above equation that given any point xa of the spacetime, the l = 2 and
higher terms of Z are completely determined from σB(u, ζ , ζ̄ ). For example, up to linear order
terms in σB and/or xi we have

xi j = 1
12σ

i j
R (5.5)

xi jk = 1
60σ

i jk
R , (5.6)

where the subscript R means the real part of the complex quantities. (If we keep bilinear
terms of σB and xi in 5.4, then the above terms also depend on xi(u).) Inserting xi j and xi jk in
equation (5.2) gives an explicit relationship between xi(u) and Re[ψ0

1 (u)]i. For the particular
assumption given in (5.5) and (5.6), we obtain

Di = MRi − 8

5
√

2c
σ

i j
R P j − 6c2

7
√

2G

[
σ

i jk
R � jk − σ

jk
R � i jk

]
. (5.7)

It follows from the Bianchi identities that the time evolution of � is quadratic in σ̇B. Assuming
σB, � i j and � i jk vanish at uB = −∞ and keeping up to second-order terms in σB or Ri,
weobtain the following expression:

Di + 8

5
√

2c
σ

i j
R P j = MRi. (5.8)

We have thus obtained an explicit relationship between the center of mass Ri and the Weyl
scalars defined at null infinity. Even if we assume a more involved field equation for Z giving
a functional dependence of xi j and xi jk on Ri as well as on σB, equation (5.2) will give an
algebraic expression relating Ri with the Weyl scalars at null infinity from which one can solve
for the center of mass worldline.

Note also that if the radiation is not present in (5.8) and we compute the linearized version
of Di arising from several sources with masses mA and positions Xi

A, we obtain the expression∑
A

mAXi
A = MRi,

a familiar expression for the center of mass definition.
To obtain a relation between the velocity of the center of mass and the Bondi linear

momentum, we take a time derivative of (5.8). Using again the Bianchi identities yields the
following expression

Pi + 4

5c
σ̇

i j
R P j − 3c2

14G
(σ i jk ˙̄σ jk − σ jk ˙̄σ i jk

)R − 1

3c

(
φ0

1 φ̄
0
2

)i

R = M√
2

V i. (5.9)

13
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(In the above, we have omitted the terms Ṁ, Ṗi, �̇ i j and �̇ i jk as they are quadratic in σB and
φ0

2 .) Since all the vector quantities are aligned with the symmetry axis and the tensor variables
are symmetric and trace free, we can obtain a simplified form of the equations as

Dz + 8

5
√

2c
σ zz

R Pz = MRz (5.10)

Pz + 4

5c
σ̇ zz

R Pz − 3c2

14G
(σ z jk ˙̄σ jk − σ jk ˙̄σ z jk

)R − 1

3c
(φ0

1 φ̄
0
2 )z

R = M√
2

V z. (5.11)

These equations provide explicit relations between Dz, Pz and Rz, V z. It is important to
note that all derivatives are taken with respect to the Bondi time uB. Defining the time
coordinate as t = √

2uB, it is possible to rewrite all the equations in term of t using
Ẇ = √

2∂tW = √
2W̊ . In this way, the equation for the linear momentum take the well

known form Pz = MR̊z + · · · = Mvz + · · ·
The equation for the linear momentum can also be written as a sum of different parts as

Pz = Pz
M + Pz

G + Pz
EM, (5.12)

with

Pz
M =

(
1 − 4

5c
σ̇ zz

R

)
M√

2
V z, (5.13)

Pz
G = 3c2

14G
(σ z jk ˙̄σ jk − σ jk ˙̄σ z jk

)R, (5.14)

Pz
EM = 1

3c
(φ0

1 φ̄
0
2 )z

R, (5.15)

emphasizing the role of each contribution to the total linear momentum. The leading term in
(5.15) is proportional to the charge times the time derivative of the electric dipole contribution.
If one further assumes that the dipole contribution is due to a charged particle with worldline
Ri, one recovers a known result, the Abraham–Lorentz momentum [18]. However, we are here
concerned with astrophysical compact objects and this term usually vanishes.

5.2. Equation of motion

Taking a time derivative of (5.11) and inserting the Bianchi identity

Ṗz = − 6c2

14G
(σ̇ z jk ˙̄σ jk

)R + 1

3
(φ0

2 φ̄
0
2 )z (5.16)

gives the equation of motion for the center of mass,

M

(
V̇ z − 4

5c
σ̈ zz

R V z

)
= −

√
2c2

14G
[3(σ z jk ˙̄σ jk − σ jk ˙̄σ z jk

)̇R + 2(σ̇ z jk ˙̄σ jk
)R] (5.17)

−
√

2

3

[(
φ0

2 φ̄
0
2

)z + c−1
(
φ0

1 φ̄
0
2

)̇z

R

]
.

For completeness, we also give the mass loss equation

Ṁ = − c

2
√

2G

[
1

5
σ̇ i j ˙̄σ i j + 6

7
σ̇ i jk ˙̄σ i jk

]
−

√
2

6c
φ̄0i

2 φ0i
2 . (5.18)

From the rhs of (5.17), we define the notion of gravitational and electromagnetic forces, i.e.

FG ≡ −
√

2c2

14G
[3(σ z jk ˙̄σ jk − σ jk ˙̄σ z jk

)̇R + 2(σ̇ z jk ˙̄σ jk
)R] (5.19)

14
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FEM ≡ −
√

2

3

[(
φ0

2 φ̄
0
2

)z + c−1
(
φ0

1 φ̄
0
2

)̇z

R

]
. (5.20)

Note that the gravitational force vanishes when either the quadrupole or octupole moment
vanish. Since the electromagnetic force is negligible for most situations, the center of mass
will have no acceleration when one of these two moments vanish. On the other hand, since the
mass loss equation has a separate contribution from the quadrupole and octupole moments,
the net effect in this situation will be a reduction of the gravitational mass of the system while
the center of mass remains at rest in a suitable Bondi frame. However, most head-on collisions
between compact objects will produce quadrupole and octupole radiation terms and there will
be a net acceleration of the center of mass.

It also follows from equation (5.17) that there are no runaway solutions. The functions
σ̈ zz

R , FG and FEM decrease to zero as u → ∞. Asymptotically, this equation gives a constant
velocity if the total radiation is finite. Thus, the motion of the center of mass does not have
runaway behavior.

6. Applications

In this section, we will first check that the formalism developed gives the correct answer for
the cases where definitions have already been given. We will also compare our work with a
similar approach to analyze similarities and differences between them. We begin by applying
this formalism to the case of a stationary and axially symmetric spacetime.

6.1. Stationary and axially symmetric spacetime

We first consider the Kerr metric for which we have ψ0
4 = ψ0

3 = 0. Moreover, as the spacetime
is stationary, all asymptotic scalars do not depend on uB. In particular, σ = σ (ζ , ζ̄ ) and we can
find a reference frame where σ = 0. From equation (2.36), we obtain Pi = � i j = � i jk = 0
for all i, j, k and from equation (2.30) we obtain ψ0

2 ∝ M. Furthermore, from equation (5.4) it
is easy to show that xi j = xi jk = 0 and that,

ψ0z
1 = 6G

c2
M

(
−

√
2R

z+i
4

3
√

2c
a

)
, (6.1)

where a is the angular parameter. The real part of ψ0z
1 yields equation (5.8), whereas from

equation (4.10) we have

Jz
T = aM, (6.2)

which corresponds to the angular momentum of the Kerr spacetime. The Kerr–Newman
case is very similar to Kerr. Note that in equation (4.10) Acmc = 0, so we obtain the same
equations

ψ0z
1 = 6G

c2
M

(
−

√
2R

z+i
4

3
√

2c
a

)
(6.3)

Px = Py = Pz = 0 (6.4)

Jz
T = aM. (6.5)

Although these equations are identical, the evolution of the mass center is different for Kerr–
Newman spacetime due to the presence of electromagnetic fields.
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6.2. Massive explosions or head-on collisions

We consider here either a massive explosion, like type I supernova, or a massive head-on
collision. We also assume that initially the center of mass is at rest. Immediately after the
explosion or collision, the acceleration of the center of mass will be given by

MV̇ z = −
√

2c2

14G
[3(σ z jk ˙̄σ jk − σ jk ˙̄σ z jk

)̇R + (σ̇ z jk ˙̄σ jk + σ̇ jk ˙̄σ z jk
)]

−
√

2

3

[(
φ0

2 φ̄
0
2

)z + c−1(φ0
1 φ̄

0
2

)̇z

R

]
.

Note that if either the quadrupole or octupole term vanish there is no gravitational
contribution to the acceleration. Any collision will have a quadrupole term, but only collisions
between uneven masses will also have an octupole contribution. Likewise, the electromagnetic
force will be dominated by the radiation term since for most astrophysical objects φ0

1 = 0.
Although total angular momentum is conserved, the coupling between gravitational and

electromagnetic angular momentum gives a transfer mechanism by which the system can gain
or loose intrinsic angular momentum. Consider for simplicity that initially the system does not
have angular momentum. After the explosion or collision, the system will acquire an intrinsic
gravitational angular momentum if electromagnetic radiation is emitted, i.e. from

Jz
T = Jz

G +
√

2c3

8G

[
2 Im

(
A0φ0

1

)|l=1
] = 0,

the electromagnetic angular momentum creates an intrinsic gravitational angular momentum
in the opposite direction of the electromagnetic one. This effect could be important in charged
isolated systems like the positron cloud discovered by the COMPTON detector in GRO, but
will be negligible for most cases.

6.3. Comparison with the AKN approach

In this subsection, we will compare our results with those obtained by AKN. It is important
to do so since both approaches offer explicit relationships between asymptotically defined
quantities like Bondi momentum and kinematical variables like the velocity of the center of
mass. Also in both approaches there are explicit formulae relating the acceleration of the
center of mass and the emitted gravitational radiation. The question is whether or not both
approaches yield similar results and if not which one gives physically consistent answers.
Both approaches yield the same results for stationary spacetimes. Thus, we will assume that
the spacetime contains gravitational radiation.

Our first observation is that the AKN definition of angular momentum for vacuum
spacetimes

Jz
AKN =

√
2c3

12G

[
Im

(
ψ0

1

)]|l=1 (6.6)

is not conserved whereas the Komar formula (4.10) is. Only when the gravitational radiation
is pure quadrupole both formulae agree. Even for this particular case, the AKN formulation
does not give a simple relationship between intrinsic and total angular momentum. Defining
the intrinsic angular momentum via

Sz ≡
√

2

2
Mcξ z

I ,

16



Class. Quantum Grav. 29 (2012) 235006 C N Kozameh and G D Quiroga

with ξ z
I being the imaginary part of the complex center of mass worldline, one can show that

the total angular momentum in the AKN formalism is given by

Jz
AKN = Sz − 3

√
2

10

c2

GM
Szσ zz

R + 1

20c
Ṡzσ zz

R + 3

10

c3

G
2Rzσ zz

I − 9

10
MV zσ zz

I . (6.7)

This relationship is highly non-trivial and unexpected. Since the orbital part of the angular
momentum vanishes when the center of mass vector Ri and the velocity V i are aligned along
the z-axis, one expects that the intrinsic and total angular momentum should be equal for
an axially symmetric spacetime. In addition, since Jz

AKN = const. (when only quadrupole
radiation is considered), the above relation gives an intrinsic angular momentum that is not
conserved. This is not what one should expect for an axially symmetric spacetime.

In our approach, we obtain

Jz
T = Sz = const., (6.8)

a result that follows from the Komar formula if one uses a Bondi and a Newman–Unti cut
as the boundary ∂�. Generalizing (6.7) to include octupole terms does not help either since
in this case neither the total nor the intrinsic angular momentum are conserved. On the other
hand, the Komar formula (6.8) is true for a general form of gravitational radiation.

One can also compare the relation between the Bondi momentum Pz and the velocity
V z in both approaches. Again we consider a vacuum spacetime in the neighborhood of null
infinity and assume that the gravitational radiation only has quadrupole terms. Directly from
[1], we write

Pz = M√
2

V z − 9

20

M

c

(
V̇ zσ zz

R + V zσ̇ zz
R

) − 1

20

M

c

(
ξ̈ z

I σ
zz
I + ξ̇ z

I σ̇
zz
I

) − 6

10
√

2

c2

G

(
2Rzσ zz

R + ξ z
I σ

zz
I

)̇
.

(6.9)

In this work, the equivalent equation is given by

Pz = M√
2

V z

(
1 − 4

5c
σ̇ zz

R

)
. (6.10)

Since in both cases (and only for quadrupole radiation) one has

Pz = const.,

it is interesting to consider the situation of a head-on collision of equal masses (with or without
spin). In this case, one expects that V z = 0, i.e. one expects that the center of mass does not
move before or after the quadrupole radiation is emitted. This is the result obtained with our
definition of center of mass when we use (6.10) together with Pz = 0. The AKN approach,
on the other hand gives a non vanishing acceleration even if Rz and V z initially vanish. At this
order of approximation, the AKN approach does not give a consistent result.

The above results clearly show the consistency of our approach in contrast to the AKN
approach.

It is also worth mentioning a recent result obtained as an application of the AKN
formulation to type II metrics [17]. Although it suffers from the same weaknesses as the
general version, i.e. fiducial world lines defined on a different manifold and a definition of
angular momentum that does not yield the Komar formula when axial symmetry is imposed,
the work incorporated Maxwell fields and in principle could be applied to axially symmetric
spacetimes. Thus, it is worth making some comments on this work.

• Regarding the issue of angular momentum, only a linear approximation for quadrupole
radiation is considered. This is the reason why it appears that angular momentum is
conserved. When higher order terms are included and also higher multipole terms are
taken into account, the formula for angular momentum does not give a conserved quantity.
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• Only gravitational deviations from Reissner–Nordstrom are discussed and the definition
of angular momentum does not include a Maxwell part. In contrast, our derivation for total
angular momentum is given for any axially symmetric Einstein–Maxwell spacetime.

• Since the work applies to any type II solutions, the formula for angular momentum should
have contained the orbital part, i.e. RxP. This can be obtained very easily when considering
up to second-order terms and it is the reason why the orbital angular momentum does not
appears in the formula. However, if one adds this term then the angular momentum is not
conserved.

• Our definition of linear momentum also differs from the one in [17] as it can be seen by
comparing equation (5.11) with the analogous formula in this paper.

7. Conclusions

Using the available geometric structure of asymptotically flat spacetimes together with
conservation laws that arise when those spacetimes are axially symmetric, we have introduced
the notion of linear and angular momentum for Einstein–Maxwell spaces.

Using the light cone equation, we have been able to identify worldlines inside the
spacetime with Newman–Unti cuts at null infinity. The center of mass worldline Ra is then
selected by imposing the condition that the mass dipole moment at null infinity vanishes when
restricted to the center of mass NU cut. Using the available Bianchi identities at I +, one
obtains a relationship between the center of mass velocity and the Bondi momentum as well
as the equation of motion of Ra.

Several nice highlights of this approach are as follows.

• A definition of angular momentum when electromagnetic fields are present.
• A definition of center of mass worldline and velocity which are algebraically related to

radiation fields at null infinity.
• Definitions of gravitational and electromagnetic forces in terms of radiation fields.
• Appropriate behavior of the equations of motion (no runaway solutions).
• A natural relationship between intrinsic and total angular momentum (they are the same

in this case).
• Consistent behavior when applied to particular cases of collisions with emission of

quadrupole radiation.

The equations of motion could be used in astrophysical situations when the system has
axial symmetry to predict the motion of the center of mass from the emitted radiation or to
predict the amount of radiation if the velocity and acceleration of the center of mass is given.
This could be the case in head-on collisions or supernova explosions.

The main ideas upon we have based our approach are as follows.

(1) Center of mass should be a worldline of the spacetime.
(2) Angular momentum should give us the Komar formula when axial symmetry is imposed.

Since neither the Adamo–Kozameh–Newman (AKN) nor the Moreschi approach satisfy
these hypothesis, our formulation is clearly different from them. Nevertheless, since the AKN
formulation offers explicit formulae, we have compared our results with them and shown that
our formulation yields physically consistent results while the AKN does not.

The formalism is ready to be generalized for spaces without symmetries. In the
generalization, we expect some new features that are absent in axially symmetric spaces.
Although at the moment there is no definition of angular momentum that has been universally
accepted, it appears that the so-called linkages of Geroch and Winicour fit nicely with our
generalization. This will be left for future work.
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Appendix A. Komar integral and angular momentum

In vacuum spaces, the Komar integral of the Killing field ξ b
(ϕ) yields a definition of the

z-component of the angular momentum,

Jz = 1

16π
lim

St→∞

∮
St

∇aξ b
(ϕ) dSab. (A.1)

One can explicitly integrate this equation in the N-P formalism to obtain a formula at I in
terms of the spin coefficients. We first write the Killing vector field ξ b

(ϕ) as a combination of
the null tetrad vectors as

ξ b
(ϕ) = ξl l

b + ξ̄mmb + ξmm̄b + ξnnb, (A.2)

where

ξl = − i sin θ√
2

r(ω − ω̄) (A.3)

ξm = − i sin θ√
2

r (A.4)

ξn = 0, (A.5)

where the two-dimensional surface area can also be expressed as

dSab = −2n[alb]r
2 sin θ dθ dϕ, (A.6)

thus the Komar integral can be written as

Jz = − 1

16π
lim

r→∞

∫ π

0

∫ 2π

0
∇aξ b

(ϕ)(nalb − lanb)r
2 sin θ dϕ dθ. (A.7)

Using equations (2.15), (2.19) and (2.2), (2.3) and writing this equation up to order O(r−2)

we obtain

∇aξ b
(ϕ)(nalb − lanb) = −

√
2 sin θ

r2
Im

[
ψ0

1 − σ 0
ðσ̄ 0

]
. (A.8)

Thus, the Komar integral can be written as

Jz =
√

2

8

∫ 1

−1
Im[ψ0

1 − σ 0
ðσ̄ 0] sin θd(cos θ ), (A.9)

where we have used the axial symmetry to integrate in the azimuth direction. Finally, this
integral gives the following definition of angular momentum [20]

Jz ∝ Im
[
ψ0

1 − σ 0
ðσ̄ 0

]|l=1. (A.10)

We can follow a similar calculation with equation (4.9)

Jz
T = 1

16π
lim

St→∞

∮
St

[∇aξ b
(ϕ) + 2Acξ

c
(ϕ)F

ab] dSab. (A.11)

Using the fact that [7]

Fab = 2φ0m̄[anb] + φ1
(
n[alb] + m[am̄b]

) + 2φ2l[amb], (A.12)
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the second integral can be put in the form
1

16π
lim

St→∞

∮
St

2Acξ
c
(ϕ)F

ab dSab = 1

8
lim

r→∞

∫ π

0
2Acξ

c
(ϕ)φ

0
1 sin θ dθ. (A.13)

Using the tetrad decomposition of the vector killing field ξ b
(ϕ) at I +, and the fact that Ac and

φ0
1 are real, one can define the electromagnetic angular momentum JEM as

JEM = 1

8
lim

r→∞

∫ π

0
2Acξ

c
(ϕ)φ

0
1 sin θ dθ

= − 1

8
lim

r→∞

∫ 1

−1
i
√

2Acr(mc − m̄c)φ0
1 sin θd(cos θ )

= 2
√

2

8
lim

r→∞r Im(Acmcφ0
1 )|l=1.

Furthermore, it can be shown that,

lim
r→∞rAcmc = A0,

where A0(uB, ζ , ζ̄ ) is the free Maxwell potential data related to the electromagnetic radiation
via

φ̄0
2 = Ȧ0.

Thus, the total angular momentum is finally expressed as

Jz
T =

√
2c3

8G

[
Im

(
ψ0

1 − σ 0
ðσ̄ 0

)|l=1 + 2 Im
(
A0φ0

1

)|l=1
]
.

Appendix B. Tensorial spin-s harmonics products

We present a table of tensorial harmonics products which complete the list of product [19].
Products of the form Y s

1iY
s

3 jkl

Y −1
1i Y 2

3 jkl = 5
21 F2(1)

i jkl − 2
21 G2(1)

i jkl − 1
24 i

√
2F3(1)

i jkl − 1
56 F4(1)

i jkl (B.1)

Y 0
1iY

1
3 jkl = 20

21 F2(1)

i jkl − 8
21 G2(1)

i jkl − 1
12 i

√
2F3(1)

i jkl + 5
28 F4(1)

i jkl (B.2)

Y 1
1iY

0
3 jkl = − 10

7 F2(1)

i jkl + 4
7 G2(1)

i jkl + 1
2 i

√
2F3(1)

i jkl + 5
14 F4(1)

i jkl (B.3)

Y 0
1iY

0
3 jkl = 10

7 F2(0)

i jkl − 4
7 G2(0)

i jkl + 1
7 F4(0)

i jkl (B.4)

Y −1
1i Y 1

3 jkl = 5
21 F2(0)

i jkl − 2
21 G2(0)

i jkl + 1
24 i

√
2F3(0)

i jkl − 1
56 F4(0)

i jkl (B.5)

Y 1
1iY

−1
3 jkl = 5

21 F2(0)

i jkl − 2
21 G2(0)

i jkl − 1
24 i

√
2F3(0)

i jkl − 1
56 F4(0)

i jkl (B.6)

where

F2(s)
i jkl = δi jY

s
2kl + δikY

s
2 jl + δilY

s
2 jk

G2(s)
i jkl = δ jkY

s
2il + δklY

s
2i j + δ jlY

s
2ik

F3(s)
i jkl = εi jmY s

3klm + εikmY s
3 jlm + εilmY s

3 jkm

F4(s)
i jkl = Y s

4i jkl

with the superscript s = 0, 1.
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Products of the form Y s
2i jY

s
3klm

Y 1
2i jY

0
3klm = − 1

12 F1(1)

i jklm + 24
35 G1(1)

i jklm + 24
35 H1(1)

i jklm − 2
7 i

√
2F2(1)

i jklm + 5
7 i

√
2G2(1)

i jklm

+ 2
15 F3(1)

i jklm + 1
15 G3(1)

i jklm + 1
15 H3(1)

i jklm + 1
14 i

√
2F4(1)

i jklm + 2
21 F5(1)

i jklm (B.7)

Y 0
2i jY

1
3klm = 1

12 F1(1)

i jklm − 24
35 G1(1)

i jklm − 24
35 H1(1)

i jklm + 1
7 i

√
2F2(1)

i jklm − 5
14 i

√
2G2(1)

i jklm

+ 1
5 F3(1)

i jklm + 1
10 G3(1)

i jklm + 1
10 H3(1)

i jklm − 1
28 i

√
2F4(1)

i jklm + 1
14 F5(1)

i jklm (B.8)

Y −2
2i j Y 3

3klm = 1
14 F1(1)

i jklm − 1
35 G1(1)

i jklm − 1
35 H1(1)

i jklm − 1
168 i

√
2F2(1)

i jklm

+ 5
336 i

√
2G2(1)

i jklm − 1
180 F3(1)

i jklm − 1
360 G3(1)

i jklm − 1
360 H3(1)

i jklm

− 1
1680 i

√
2F4(1)

i jklm + 1
5040 F5(1)

i jklm (B.9)

Y 2
2i jY

−1
3klm = − 1

7 F1(1)

i jklm + 2
35 G1(1)

i jklm + 2
35 H1(1)

i jklm − 1
28 i

√
2F2(1)

i jklm

+ 5
56 i

√
2G2(1)

i jklm + 1
15 F3(1)

i jklm + 1
30 G3(1)

i jklm + 1
30 H3(1)

i jklm

− 1
84 i

√
2F4(1)

i jklm − 1
168 F5(1)

i jklm (B.10)

Y −1
2i j Y 2

3klm = 2
7 F1(1)

i jklm − 4
35 G1(1)

i jklm − 4
35 H1(1)

i jklm + 1
30 F3(1)

i jklm + 1
60 G3(1)

i jklm

+ 1
60 H3(1)

i jklm + 1
120 i

√
2F4(1)

i jklm − 1
210 F5(1)

i jklm (B.11)

Y 0
2i jY

0
3klm = 36

7 F1(0)

i jklm − 72
35 G1(0)

i jklm − 72
35 H1(0)

i jklm + 4
15 F3(0)

i jklm + 2
15 G3(0)

i jklm

+ 2
15 H3(0)

i jklm + 1
21 F5(0)

i jklm (B.12)

Y 1
2i jY

−1
3klm = 4

7 F1(0)

i jklm − 8
35 G1(0)

i jklm − 8
35 H1(0)

i jklm + 1
42 i

√
2F2(0)

i jklm

− 5
84 i

√
2G2(0)

i jklm + 1
90 F3(0)

i jklm + 1
180 G3(0)

i jklm + 1
180 H3(0)

i jklm

− 1
168 i

√
2F4(0)

i jklm − 1
252 F5(0)

i jklm (B.13)

Y −1
2i j Y 1

3klm = 4
7 F1(0)

i jklm − 8
35 G1(0)

i jklm − 8
35 H1(0)

i jklm − 1
42 i

√
2F2(0)

i jklm

+ 5
84 i

√
2G2(0)

i jklm + 1
90 F3(0)

i jklm + 1
180 G3(0)

i jklm + 1
180 H3(0)

i jklm

+ 1
168 i

√
2F4(0)

i jklm − 1
252 F5(0)

i jklm (B.14)

Y −2
2i j Y 2

3klm = 1
14 F1(0)

i jklm − 1
35 G1(0)

i jklm − 1
35 H1(0)

i jklm − 1
168 i

√
2F2(0)

i jklm

+ 5
336 i

√
2G2(0)

i jklm − 1
180 F3(0)

i jklm − 1
360 G3(0)

i jklm − 1
360 H3(0)

i jklm

− 1
1680 i

√
2F4(0)

i jklm + 1
5040 F5(0)

i jklm (B.15)

Y 2
2i jY

−2
3klm = 1

14 F1(0)

i jklm − 1
35 G1(0)

i jklm − 1
35 H1(0)

i jklm + 1
168 i

√
2F2(0)

i jklm

− 5
336 i

√
2G2(0)

i jklm − 1
180 F3(0)

i jklm − 1
360 G3(0)

i jklm − 1
360 H3(0)

i jklm

+ 1
1680 i

√
2F4(0)

i jklm + 1
5040 F5(0)

i jklm (B.16)
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where (with s = 0, 1)

F1(s)
i jklm = (δikδ jl + δilδ jk)Y

s
1m + (δilδ jm + δimδ jl )Y

s
1k + (δimδ jk + δikδ jm)Y s

1l

G1(s)
i jklm = (δ jkδlm + δ jlδmk + δ jmδkl )Y

s
1i + (δikδlm + δilδmk + δimδkl )Y

s
1 j

H1(s)
i jklm = δi j(δklY

s
1m + δlmY s

1k + δmkY
s

1l )

F2(s)
i jklm = (δlmεik f + δkmεil f + δlkεim f )Y

s
2 j f + (δlmε jk f + δkmε jl f + δlkεim f )Y

s
2i f

G2(s)
i jklm = δil(ε jm fY

s
2k f + ε jk fY

s
2m f ) + δim(ε jk fY

s
2l f + ε jl fY

s
2k f )

+ δik(ε jl fY
s

2m f + ε jm fY
s

2l f ) + δ jl (εim fY
s

2k f + εik fY
s

2m f )

+ δ jm(εik fY
s

2l f + εil fY
s

2k f ) + δ jk(εil fY
s

2m f + εim fY
s

2l f )

F3(s)
i jklm = δi jY

s
3klm

G3(s)
i jklm = δ jmY s

3ikl + δ jkY
s

3ilm + δ jlY
s

3ikm + δimY s
3 jkl + δikY

s
3 jlm + δilY

s
3 jkm

H3(s)
i jklm = (εik f ε jln + ε jk f εiln + εil f ε jkn + ε jl f εikn)Y

s
3 f nm

+ (εil f ε jmn + ε jl f εimn + εim f ε jln + ε jm f εiln)Y
s

3 f nk

+ (εim f ε jkn + ε jm f εikn + εik f ε jmn + εkm f εimn)Y
s

3 f nl

F4(s)
i jklm = εik fY

s
4 f jlm + εil fY

s
4 f jkm + εim fY

s
4 f jkl + ε jk fY

s
4 f ilm + ε jl fY

s
4 f ikm + ε jm fY

s
4 f ikl

F5(s)
i jklm = Y s

5i jklm

Products of the form Y s
3i jkY

s
3lmn

Y 0
3i jkY

1
3lmn = 6

7 i
√

2F1(1)

i jklmn − 30
7 i

√
2G1(1)

i jklmn + 1
3 F2(1)

i jklmn + 1
3 G2(1)

i jklmn

− 2
21 H2(1)

i jklmn + 9
7 K2(1)

i jklmn − 5
18 i

√
2F3(1)

i jklmn + 2
9 i

√
2G3(1)

i jklmn

+ 2
9 i

√
2H3(1)

i jklmn + 15
154 F4(1)

i jklmn + 15
154 G4(1)

i jklmn + 25
154 H4(1)

i jklmn

− 5
252 i

√
2F5(1)

i jklmn + 5
132 F6(1)

i jklmn (B.17)

Y −2
3i jkY

3
3lmn = 1

140 i
√

2F1(1)

i jklmn − 1
28 i

√
2G1(1)

i jklmn + 1
72 F2(1)

i jklmn + 1
72 G2(1)

i jklmn

− 1
252 H2(1)

i jklmn + 3
56 K2(1)

i jklmn + 1
216 i

√
2F3(1)

i jklmn − 1
270 i

√
2G3(1)

i jklmn

− 1
270 i

√
2H3(1)

i jklmn − 1
616 F4(1)

i jklmn − 1
616 G4(1)

i jklmn − 5
1848 H4(1)

i jklmn

− 1
6048 i

√
2F5(1)

i jklmn + 1
15840 F6(1)

i jklmn (B.18)

Y 2
3i jkY

−1
3lmn = − 1

14 i
√

2F1(1)

i jklmn + 5
14 i

√
2G1(1)

i jklmn + 1
12 F2(1)

i jklmn + 1
12 G2(1)

i jklmn

− 1
42 H2(1)

i jklmn + 9
28 K2(1)

i jklmn + 1
77 F4(1)

i jklmn + 1
77 G4(1)

i jklmn

+ 5
231 H4(1)

i jklmn − 1
336 i

√
2F5(1)

i jklmn − 1
528 F6(1)

i jklmn (B.19)

Y −1
3i jkY

2
3lmn = 1

14 i
√

2F1(1)

i jklmn − 5
14 i

√
2G1(1)

i jklmn + 1
12 F2(1)

i jklmn + 1
12 G2(1)

i jklmn

− 1
42 H2(1)

i jklmn + 9
28 K2(1)

i jklmn + 1
77 F4(1)

i jklmn + 1
77 G4(1)

i jklmn (B.20)

+ 5
231 H4(1)

i jklmn + 1
336 i

√
2F5(1)

i jklmn − 1
528 F6(1)

i jklmn

Y 0
3i jkY

0
3lmn = − 48

7 F0
i jklmn + 120

7 G0
i jklmn + 4

3 F2(0)

i jklmn + 4
3 G2(0)

i jklmn

− 8
21 H2(0)

i jklmn + 36
7 K2(0)

i jklmn + 9
77 F4(0)

i jklmn + 9
77 G4(0)

i jklmn + 15
77 H4(0)

i jklmn + 5
231 F6(0)

i jklmn

(B.21)
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Y −1
3i jkY

1
3lmn = − 4

7 F0
i jklmn + 10

7 G0
i jklmn − 1

14 i
√

2F1(0)

i jklmn + 5
14 i

√
2G1(0)

i jklmn

+ 1
12 F2(0)

i jklmn + 1
12 G2(0)

i jklmn − 1
42 H2(0)

i jklmn + 9
28 K2(0)

i jklmn

+ 5
216 i

√
2F3(0)

i jklmn − 1
54 i

√
2G3(0)

i jklmn − 1
54 i

√
2H3(0)

i jklmn

+ 1
616 F4(0)

i jklmn + 1
616 G4(0)

i jklmn + 5
1848 H4(0)

i jklmn

− 5
3024 i

√
2F5(0)

i jklmn − 5
3696 F6(0)

i jklmn (B.22)

Y −2
3i jkY

2
3lmn = − 2

35 F0
i jklmn + 1

7 G0
i jklmn − 1

70 i
√

2F1(0)

i jklmn + 1
14 i

√
2G1(0)

i jklmn

+ 1
432 i

√
2F3(0)

i jklmn − 1
540 i

√
2G3(0)

i jklmn − 1
540 i

√
2H3(0)

i jklmn (B.23)

− 1
880 F4(0)

i jklmn − 1
880 G4(0)

i jklmn − 1
528 H4(0)

i jklmn

− 1
7560 i

√
2F5(0)

i jklmn + 1
18480 F6(0)

i jklmn

where

F0
i jklmn = δi j(δklδmn + δkmδnl + δknδlm) + δ jk(δilδmn + δimδnl + δinδlm)

+ δki(δ jlδmn + δ jmδnl + δ jnδlm)

G0
i jklmn = δil(δ jmδkn + δ jnδkm) + δ jl(δkmδin + δknδim) + δkl(δimδ jn + δinδ jm)

F1(s)
i jklmn = (δi jδlmεkn f + δi jδlnεkm f + δi jδnmεkl f + δ jkδlmεin f + δ jkδlnεim f

+ δ jkδnmεil f + δkiδlmε jn f + δkiδlnε jm f + δkiδnmε jl f )Y
s

1 f

G1(s)
i jklmn = (δilδ jmεkn f + δimδ jnεkl f + δinδ jlεkm f + δ jlδkmεin f + δ jmδknεil f

+ δ jnδklεim f + δklδimε jn f + δkmδinε jl f + δknδilε jm f )Y
s

1 f

F2(s)
i jklmn = (δmnδkl + δmlδkn + δlnδkm)Y s

2i j + (δmnδil + δmlδin + δlnδim)Y s
2 jk

+ (δmnδ jl + δmlδ jn + δlnδ jm)Y s
2ik

G2(s)
i jklmn = (δi jδkl + δ jkδil + δikδ jl )Y

s
2mn + (δi jδkm + δ jkδim + δikδ jm)Y s

2ln

+(δi jδkn + δ jkδin + δikδ jn)Y
s

2lm

H2(s)
i jklmn = (δ jkδmn + δ jmδkn + δ jnδkm)Y s

2il + (δ jkδln + δ jnδkl + δ jlδkn)Y
s

2im

+ (δ jkδlm + δ jlδkm + δ jmδkl )Y
s

2in + (δikδmn + δimδkn + δinδkm)Y s
2 jl

+ (δikδln + δinδkl + δilδkn)Y
s

2 jm + (δikδlm + δilδkm + δimδkl )Y
s

2 jn

+(δ jiδmn + δ jmδin + δ jnδim)Y s
2kl + (δ jiδln + δ jnδil + δ jlδin)Y

s
2km

+ (δ jiδlm + δ jlδim + δ jmδil )Y
s

2kn

K2(s)
i jklmn = (εil f ε jmgδkn + εim f ε jngδkl + εin f ε jlgδkm + ε jl f εkmgδin + ε jm f εkngδil

+ ε jn f εklgδim + εkl f εimgδ jn + εkm f εingδ jl + εkn f εilgδ jm)Y s
2 f g

F3(s)
i jklmn = δil(ε jm fY

s
3 f kn + ε jn fY

s
3 f km + εkm fY

s
3 f jn + εkn fY

s
3 f jm) + δim(ε jn fY

s
3 f kl

+ ε jl fY
s

3 f kn + εkn fY
s

3 f jl + εkl fY
s

3 f jn) + δin(ε jl fY
s

3 f km + ε jm fY
s

3 f kl + εkl fY
s

3 f jm

+εkm fY
s

3 f jl ) + δ jl(εkm fY
s

3 f in + εkn fY
s

3 f im + εim fY
s

3 f kn + εin fY
s

3 f km)

+ δ jm(εkn fY
s

3 f il + εkl fY
s

3 f in + εin fY
s

3 f kl + εil fY
s

3 f kn) + δ jn(εkl fY
s

3 f im

+ εkm fY
s

3 f il + εil fY
s

3 f km + εim fY
s

3 f kl ) + δkl(εim fY
s

3 f jn + εin fY
s

3 f jm

+ ε jm fY
s

3 f in + ε jn fY
s

3 f im) + δkm(εin fY
s

3 f jl + εil fY
s

3 f jn + ε jn fY
s

3 f il )

+ ε jl fY
s

3 f in + δkn(εil fY
s

3 f jm + εim fY
s

3 f jl + ε jl fY
s

3 f im + ε jm fY
s

3 f il )
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G3(s)
i jklmn = δi j(εkl fY

s
3 f mn + εkm fY

s
3 f ln + εkn fY

s
3 f lm) + δik(ε jl fY

s
3 f mn + ε jm fY

s
3 f ln

+ ε jn fY
s

3 f lm) + δ jk(εil fY
s

3 f mn + εim fY
s

3 f ln + εin fY
s

3 f lm)

H3(s)
i jklmn = δlm(εin fY

s
3 f jk + ε jn fY

s
3 f ik + εkn fY

s
3 f i j) + δln(εim fY

s
3 f jk + ε jm fY

s
3 f ik

+ εkm fY
s

3 f i j) + δnm(εil fY
s

3 f jk + ε jl fY
s

3 f ik + εkl fY
s

3 f i j)

F4(s)
i jklmn = δi jY

s
4klmn + δk jY

s
4ilmn + δkiY

s
4 jlmn

G4(s)
i jklmn = δlmY s

4ni jk + δmnY
s

4li jk + δnlY
s

4mi jk

H4(s)
i jklmn = εil f ε jmgY

s
4 f gkn + ε jl f εkmgY

s
4 f gin + εkl f εimgY

s
4 f gjn

+ εim f ε jngY
s

4 f gkl + ε jm f εkngY
s

4 f gil + εkm f εingY
s

4 f gjl

+ εin f ε jlgY
s

4 f gkm + ε jn f εklgY
s

4 f gim + εkn f εilgY
s

4 f gjm

F5(s)
i jklmn = εil fY

s
5 f jkmn + ε jl fY

s
5 f ikmn + εkl fY

s
5 f i jmn + εim fY

s
5 f jkln + εin fY

s
5 f jklm

+ε jm fY
s

5 f ikln + ε jn fY
s

5 f iklm + εkm fY
s

5 f i jln + εkn fY
s

5 f i jlm

F6(s)
i jklmn = Y s

6i jklmn
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